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a b s t r a c t

In this paper, the effects of the long-range correlated diagonal disordered optical waveguide arrays in the
presence and absence of the positive Kerr nonlinearity are analyzed numerically. The calculated inverse
localization length shows that the long-range correlation in a disordered system causes a decrease in the
transverse localization in linear optical waveguide arrays. In the presence of positive Kerr nonlinearity,
the inverse localization length is increased by increasing the nonlinear parameters in long-range
correlated disordered systems in comparison with the uniform distribution disordered systems. This
means that the long range correlation causes an enhancement of transverse localization in nonlinear
waveguides in contrast with linear waveguide arrays. The calculated participation ratio and effective
beamwidth confirm these results for linear and nonlinear systems.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The localization phenomenon was introduced for the first time
by Anderson for electron's wave function in disordered potential in
1958 [1]. It was shown that all electron wave functions are
exponentially localized in any 1D system in the presence of even
small disordered potential. After a long time, some of the theore-
tical (numerical) and experimental studies of 1D disordered
systems showed some deviation from this picture [2–15]. Some
numerical studies showed that if the disordered potential is
tailored in a specific manner, such as those that are chosen from
long-range or short-range correlated sequences, or in dimer and
generalized M-mer systems, the extended states appear in some
electron energy intervals [2–15]. The presence of extended states
in dimer systems were confirmed experimentally by measuring
the conductance of some polymers such as polyaniline and
electronic super lattices [14,15]. Izrailiev et al. showed, both
theoretically and experimentally, that the correlation in disorder
causes not only suppressed localization, but it may enhance the
localization in some correlated systems [7–10]. Some natural
systems such as nucleotide in DNA and the trace of particles in
Brownian motion also demonstrate the long-range correlated
sequence [11–13].

Localization phenomena are due to the wave interference, so it
is natural to be expected to introduce them in any wave system
ll rights reserved.
such as condensed matter, elastic and optical systems [16–21]. One
of the interesting topics in light localization is the transverse
localization (TL) which was first predicted in 1989 [22], and was
experimentally observed in disordered optical lattices in 2007
[23]. Later on, TL was also investigated in other disordered optical
lattices [24–33]. Optical lattices can be realized experimentally by
several techniques such as the optical induced technique, laser
writing and lithographic methods [23,27–33]. One of the most
realizable systems is 1D array of optical waveguides [32,33].
Disorder can be introduced by randomly changing the propagation
constant of each waveguide (diagonal disorder) or randomly
changing the coupling coefficients between them (off-diagonal
disorder) [42].

In this paper, we consider a 1D array of optical waveguides
with diagonal disorder. In Section 2 the theoretical models and
methods for the generation of a long-range correlated sequence
and the TL of light in a linear and a positive Kerr nonlinearity
system (such as in fused silica waveguides) are introduced. Section
3 is devoted to results of numerical simulations and discussion.
Finally it is ended by conclusion section.
2. Theoretical models and methods

2.1. Theoretical models for linear and nonlinear coupled waveguides

A 1D array of optical waveguides has been considered. We used
the slowly varying envelope approximation (SVEA) to writing the
propagation equations for light in linear and nonlinear waveguides.
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Fig. 1. Long range correlated sequences (a) α¼ 0:0, (b) α¼ 1:0, (c) α¼ 2:0, and (d) α¼ 2:5.
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The appropriate equations in this approximation can be written in
tight-binding model as follows [27–36]:

i
dEn
dz

þ KnEn þ Cn;nþ1Enþ1 þ Cn;n−1En−1 þ γjEnj2En ¼ 0; ð1Þ

where n¼1, 2,…,N. N is the number of waveguides, En and Kn are
amplitudes of electric fields and propagation constants of the nth
waveguide, respectively. Cn;m are coupling coefficients between the
nth and mth waveguide. γ ¼ n2ω=cAeff is the third order Kerr
parameter, n2, Aeff, c and ω are nonlinear refractive index, effective
area of fundamental modes, speed of light in free space and
frequency, respectively. Kn depends to the width and refractive
index of the nth waveguide. Cn;m depends on the separation
distance and refractive index of material between the nth and
mth waveguides, that can be calculated by coupled mode theory
[37]. In the weak coupling regime, the coupling coefficients can be
adjusted by appropriately choosing the distance between wave-
guides. We assumed that the coupling coefficients are constant, but
propagation constants were chosen from long-range correlated
sequence. In order to rewrite Eq. (1) in a dimensionless form the
following variables are employed:

Cn;nþ1 ¼ C; εn ¼
Kn

C
; s¼ Cz; Un ¼

Enffiffiffi
P

p ; χ ¼ γP
C

where P is the intensity of the injected light. Eq. (1) versus
dimensionless variables are as follows [33]:

i
dUn

ds
þ εnUn þ Unþ1 þ Un−1 þ χjUnj2Un ¼ 0; n¼ 1;2;…;N ð2Þ

The system of Eq. (2), for χ ¼ 0 is linear, while in the presence of
self-focusing Kerr nonlinearity ðχ40Þ, the system of Eq. (2) is
nonlinear.

As already mentioned, we have considered the third order Kerr
type nonlinearity and neglected the higher order ones. This
assumption is correct when the waveguide arrays are written
with Ti: Sapphire laser on fused silica wafer [43]. In this case, the
typical value of separation distances and the coupling coefficients
between each waveguides are about 48 μm and 13.5 m−1, respec-
tively [43]. The normalized strength of third and fifth order Kerr
nonlinearity are χ ¼ χð3Þ ¼ γð3ÞP=C ¼ 2πn0n2P=λCAeff and
χð5Þ ¼ γð5ÞP2=C ¼ 2πn0n4P

2=λCA2
eff , respectively. The parameters of

fused silica waveguides array are as follows [34,44]:

n0 ¼ 1:47; λ¼ 0:8 μm; Aeff ¼ 50 μm2; n2 ¼ 3:2� 10−20 m2

W

n4 ¼−1:59� 10−38 m4

W2

In our simulation, the third order Kerr nonlinearity changes in the
range ½0;10�. For the χð3Þmax ¼ 10, the relative strength of the fifth to
the third order Kerr nonlinearity is about χð5Þ=χð3Þmax≃1:75� 10−4.
Therefore, the higher order terms of Kerr type nonlinearity can be
ignored in fused silica waveguide arrays. The effects of higher
order Kerr nonlinearity must be considered for other types of
waveguide arrays such as those are made from AlGaAs , PTSpoly-
mers and other high nonlinear materials, for them the higher
order Kerr nonlinearity introduces the significant effects [34,45].

In this work, we have focused on fused silica waveguides, and
considered only third order Kerr type nonlinearity.

2.2. Generation of long-range correlated sequence

In Eq. (2), εn is chosen from a long-range correlated sequence in
such a way that the spectral density decays as a power law
(SðkÞ∝1=kα). Spectral density is the Fourier transform of two-
point correlation function. α is the long-range correlation expo-
nent. In order to generate the long-range correlated sequence ϵ′n is
chosen by the following relation [11–13]:

ϵ′n ¼ ∑
N=2

m ¼ 1
m−α 2π

N

� �1−α" !1=2

cos
2πnm
N

þ ϕm

� �
; ð3Þ

where ϕm s are uniformly distributed in the ½0;2π� interval. The ϵn
sequence is defined by the ϵ′n rescaled sequence:

ϵn ¼
ϵ′n−ϵ′n

Δ
; ð4Þ

Where Δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈ϵ′2n 〉−〈ϵ′n〉2

p
and ϵ′n are the standard deviation and the

mean of ϵ′n, respectively. Some examples of long-range correlated
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sequences, which are generated by this method, are presented in
Fig. 1 for four different values of correlation exponents.

2.3. Studying the transverse localization

There are two important measures for studying the TL in
disordered waveguides: the transverse localization length and
participation ratio (PR). The Rung–Kutta Fehlberg method [38] is
employed to solve the systems of governing equations (2) up to
the s¼ s0 point. The solutions [Unðs¼ s0Þ] are fitted by a least
square process in the exponential function [39]:

〈jUnðs¼ s0Þj2〉¼ jUmaxðs¼ s0Þj2 exp −
jn−mj

l

� �
; ð5Þ

where m (1≤m≤N) is the coordinate of maximum amplitude
waveguide. l is the normalized transverse localization length and
〈…〉 denotes averaging over large numbers of realizations due to
the statistical nature of the Anderson localization.

PR is a qualitative measure of TL, and is defined by [24–26,33]:

PRðsÞ ¼ ð∑N
n ¼ 1jUnðsÞj2Þ2

∑N
n ¼ 1jUnðsÞj4

* +
: ð6Þ

In the case of a completely transverse localized system
ðUnðsÞ ¼ δn;mÞ the PR of the system is approximately equal to one
(PR≃1), while in a completely extended system (delocalized)
ðUnðsÞ ¼ 1=

ffiffiffiffi
N

p
Þ the participation ratio approaches to the number

of waveguides (PR≃N). The effective beam width is defined as the
square root of the participation ratio (Weff ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
PRðsÞ

p
) [24–26].
3. Numerical results and discussion

For numerical simulation a finite number of coupled wave-
guides has been considered. Light is injected in one of the
waveguides (UnðsÞ ¼ δn;n0 ) and fixed boundary conditions are
exerted (U0ðsÞ ¼ UNþ1ðsÞ ¼ 0). The inverse localization length and
PR for linear and nonlinear systems are calculated.
0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1/
L

Fig. 2. Inverse localization Length versus long range correlation exponent p
3.1. Linear waveguides

To consider the effect of long-range correlated disorder on the
localization length, in the absence of Kerr nonlinearity, the linear
system of Eq. (2) (χ ¼ 0) with N¼200, n0¼100 are solved numeri-
cally for different values of correlation exponent (α). The inverse
localization length versus correlation exponent is shown in Fig. 2.
As it is expected by increasing the long-range correlation exponent
(α), the transverse localization decreases. This behavior is similar
to destruction of localization in electronic systems in the presence
of a long range correlated disorder [11–13]. As shown in Fig. 3 the
PR increases along the propagation direction and the effective
beam width enhances due to the increase in the correlation
exponent i.e. light is expanded over a larger number of wave-
guides for higher correlation exponents.

The light intensity profile for uniform distributed and long-
range correlated disordered waveguide arrays are shown in Fig. 4
(a) and (b) respectively. As it is expected light is expanded over
large numbers of waveguides in correlated disordered waveguide
arrays, by propagation along waveguides.

3.2. Nonlinear waveguides

In the self-focusing arrays χ is positive. All array parameters are
chosen as those used in the previous section. The system of Eq. (2) is
solved numerically, in the presence of positive Kerr nonlinearity.
Variation of the inverse localization length versus nonlinear para-
meter χ for three different correlation exponents is presented in
Fig. 5. As shown in Fig. 5 for low values of nonlinear parameters
(χoχc ¼ 4:4), the inverse localization length is approximately con-
stant. In the low nonlinear regime, the inverse localization length
decreases by increasing the long-range correlation exponent i.e. the
transverse localization decreases by increasing the correlation &QJ;
exponent for χoχc . This figure shows that the system behaves
similar to the linear system in low nonlinear regime, as it was shown
in the previous section. χc is the critical nonlinear parameter. &QJ;By
increasing the nonlinear parameter (χ4χc), the correlated systems
are localized faster than the uniform distributed disordered
1.5 2 2.5 3
α

arameter for linear waveguides, n0¼100, N¼200, nr¼1000, s0¼1000.
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Fig. 4. Light intensity profile for (a) uniform distributed α¼ 0:0 and (b) long-range correlated α¼ 3:0 disordered waveguide arrays. N¼200, n0¼100, nr¼1000, s0¼1000.
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waveguide arrays (α¼ 0). As it is expected, by increasing the non-
linear Kerr parameter self-trapping occurs and the probability of the
confinement of light near the initial injected waveguide increases,
therefore, self trapping causes TL of light in high nonlinear para-
meters [40,41]. Fig. 5 also shows that the long range correlated
disorder enhances the self trapping phenomena in high nonlinear
parameters.

For positive χ waveguide arrays, there are two important
mechanisms for localization of light in the transverse direction:
disorder and self-trapping. Both enhance the TL, but the TL is
dominated by the effect of self-trapping and localization in
transverse direction is often due to the self-trapping effect at
χ4χc . On the other hand, the probability of self-trapping in
ordered systems is higher than in disordered systems. Therefore
by increasing the disorder strength the probability of self-trapping
is decreased. Although increasing the disorder strength enhances
the TL due to disorder but decreased the TL due to self-trapping.
Therefore it is natural to expect that when the disorder is chosen
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from a long-range correlated sequence for χ4χc, TL is enhanced in
comparison when a disorder with a uniform distribution is used
(α¼ 0). So, by increasing the long-range correlation exponent (α)
the TL is enhanced.

Fig. 6 shows the effective beamwidth versus propagation distance
for a long-range correlated (α¼ 2:0) and uniformly distributed
disordered array (α¼ 0), for different values of positive Kerr
nonlinear parameters. For χoχc the effective beamwidth for the
long-range correlated disordered array is larger than the uniformly
distributed disordered array and light could be expanded over large
number of waveguides, therefore the long-range correlation in
disorder causes the destruction of the TL at χoχc . In the case of
χ4χc, this situation is reversed and the effective beamwidth for
long-range correlated disordered array becomes lower than that of
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uniformly distributed disordered array. This figure also shows, the
long-range correlation in disorder enhances the self trapping effects.
These results confirm those which were obtained from Fig. 5.

In highly nonlinear parameters, self-trapping causes the fast
localization of light near the initially injected waveguide. The
surface modes are defined as modes propagating in edge wave-
guides ðn¼ 1; NÞ and bulk modes are defined as modes propagat-
ing in intermediate waveguides ðn≠1; NÞ. As it is expected, self-
trapping has more effect on localization of surface modes than
bulk modes, because for surface modes there is only one way (left
or right) for coupling light in other waveguides but for bulk
modes, light can be coupled to the both side waveguides. The
inverse localization length versus the nonlinear parameters for
surface and bulk modes for long range correlated disordered array
are compared in Fig. 7. As expected the surface modes are
localized faster than the bulk modes as χ is increased.
4. Conclusion

In summary, the effects of long-range correlated disorder on
transverse localization of light in arrays of linear and nonlinear
optical waveguides have been studied numerically. We see that
the long-range correlation in diagonal disorder, decreases the TL in
linear waveguide arrays. But in the presence of a positive Kerr type
nonlinearity in disordered waveguide arrays, self-trapping occurs
and light confines near the initial injected waveguide when χ4χc .
The interplay between disorder and self-trapping decreases the
probability of self-trapping at χ4χc. Although an increase in the
disorder strength enhances the TL due to disorder but decreases
the TL due to self-trapping. Therefore, it is reasonable to expect an
enhancement in the TL when the diagonal disorder is chosen from
a long-range correlated sequence at χ4χc , in comparison with the
TL when a uniformly distributed disordered system in chosen
(α¼ 0). We also see that, in the presence of the long-range
correlated disorder, the surface modes are localized faster than
bulk modes in high positive nonlinear Kerr effects, similar to the
uniform distributed arrays.
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