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We investigate the dynamic localization of light in the sinusoidal bent squeezed-like photonic lattices, a
class of inhomogeneous semi-infinite waveguide arrays. Our findings show that, dynamic localization
takes place for the normalized amplitude of sinusoidal profile (&) above a critical value a.. In this regime,
for any normalized amplitude « > a., there is a specific spatial period (#) of waveguides, in which the
dynamical oscillation, with the same spatial period occurs. Moreover, the specific spatial period is a
decreasing function of the normalized amplitude a. Accordingly, the dynamical oscillation and self-
imaging is realized, in spite of the existence of inhomogeneous coupling coefficients and semi-infinite
nature of the squeezed-like photonic lattices. In addition, a comparison between the dynamic localiza-
tion and Bloch oscillation in squeezed-like photonic lattices reveals that for the same values of & (>a),
the variation in the width and the mean center of the Bloch oscillation profile are less than the corre-
sponding values of the dynamic localization. Also, we propose the experimental conditions to observa-
tion of dynamic localization in squeezed photonic lattices.

© 2016 Published by Elsevier B.V.

1. Introduction

Dynamic localization (DL) and Bloch oscillations (BO) are two
examples of coherent destruction of quantum tunneling for elec-
tron wave packet in a super lattice, in the presence of external
forces [1,2].

If a constant force is exerted on an electronic super lattice, the
extended Bloch wave functions are converted to the localized
Wannier states, and the energy levels of the lattice form the
equidistant Wannier-Stark ladders [1,3-5]. In this case, the elec-
trons show the periodic motion known as Bloch oscillation [1].
Similar periodic motion is also observed for light waves propaga-
tion in the array of optical waveguides owning a transverse linear
gradient in their propagation constants. In such arrays, the pro-
pagation direction plays the role of time, and hence the periodic
motion is known as the spatial Bloch oscillations [6-9].

Instead of a constant force, if a periodic electric field is applied
to an electronic super lattice, under a certain condition, the other
type of cancellation of quantum diffusion can be observed [2-5]. In
this case, for the special filed amplitudes, frequencies and the
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lattice constants, the quantum tunneling can be stopped and the
electrons oscillate, near their initial positions, with a frequency
equal to the frequency of the driven field [2-5]. This type of per-
iodic motion is known as the dynamic localization and is related to
the collapse of quasi-energy minibands in the supper lattices [3-
5,10]. This conditional periodic motion is also observed, for the
light waves, in the 1D and 2D curved photonic lattices, where the
sinusoidal bending profile of the guides plays the role of periodic
force [11-13].

In the previous works, some different aspects of DL have been
investigated [14-17], for instance, the effects of disorder, defects
and hopping to all neighbors. However, little is known on DL in
semi-infinite and inhomogeneous lattices. In a homogeneous
semi-infinite lattice, the application of the sinusoidal force can
lead to the dynamically preserved surface states [18,19], which
prevent the self collimation of beam when the wave packet
reaches the lattice boundary. In Refs. [20,21], the authors in-
troduced Glauber-Fock (GF) photonic lattice, which is a class of
semi-infinite inhomogeneous lattices. This lattice can be im-
plemented to simulate classically, some interesting phenomena in
quantum optics, such as quantum random walk, and photon
bunching and anti-bunching [21-23]. They also investigated the
DL in the GF lattice [24], and derived the condition for demon-
stration of DL, similar to the condition in homogeneous infinite
lattices.
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In our previous work [25], we introduced another type of semi-
infinite photonic lattices incorporating inhomogeneous coupling
terms. This lattice provides the classical analogs to the squeezed
intensity distribution in quantum optics, and was called squeezed
photonic lattice. In that work, we also investigated the phase
transition to the spatial BO, by adding the transverse linear gra-
dient in propagation constants of each guides of the lattice.

The aim of this paper is to investigate the conditions for DL in
sinusoidal bent squeezed photonic lattice. DL can be observed
under a certain condition on the bending profile of the guides, in
spite of the fact that the semi-infinite nature and inhomogeneity
of coupling coefficients of this lattice are similar to the GF lattice.
Moreover, we discuss how the distribution profile of a Gaussian
input is affected by DL compared with a single-site excitation. We
also address the similar features of DL and BO, while their origins
are being different. we discussed the accessible experimental
conditions to see DL.

This paper is organized in four sections. Section 2 is devoted to
the theoretical model for light propagation in curved squeezed
lattices. Numerical results and discussion are presented in Section
3. Finally, we conclude and summarize our results in Section 4.

2. Theoretical model

In our previous work [25], the squeezed photonic lattice, con-
taining two separate linear arrays of optical waveguides with the
specific coupling coefficients, were introduced to simulate classi-
cally the quantum (number and coherent) squeezed states. Here,
we consider one of these decoupled arrays, the lower one, and call
it the squeezed-like photonic lattice, since some expected phe-
nomena, such as coherent squeezed photon number distribution,
cannot be simulated classically with this array.

To investigate DL, an array of sinusoidal bending squeezed-like
photonic lattice is considered (see Fig. 1). As shown in Fig. 1, the
optical axis of waveguides has sinusoidal bending profile
x@2Z)=A cos(zL—”z) with amplitude A and spatial period L, where L>A
to ignore the radiation loss due to the bending of guides. The
adjacent waveguides are separated by the same distance d along
the x-axis, while their distance decrease along the y-axis such that
the coupling coefficients have inhomogeneous pattern similar to
the squeezed-like photonic lattice (see [24,26]).

The slowly varying envelope approximation (SVEA) is im-
plemented to write the light propagation equation in the con-
sidered curved waveguide array. In this approximation, the

18) _
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Fig. 1. Sinusoidal squeezed-like photonic lattice.

governing equation of electric field amplitude E,(z), at the n-th
waveguide (n=0,1,2,...), is reduced to the following tight-
binding (TB) model [3,27,28]:

l% + KnEp + GoEn—1 + Cur1Eng1 — nwXo(2)Eq(2) = 0,

1
where K, is the propagation constant of the n-th waveguide, and
Cp, = Cy2n(2n — 1) is the coupling coefficient between the (n—1)-
th and the n-th waveguides. Due to the exponential decay of the
coupling coefficient with increasing waveguide separation [29], to
gain this form of coupling coefficient, one must change the dis-
tances between adjacent waveguides along the y-axis as

d, =d; - % In(n(2n — 1)). Here d, and « are the distance between
1

n—1 and n waveguide along y-axis and the FWHM of single modal
field in each waveguide, respectively [28]. In our study, we con-
sider identical waveguides and assume K, = Ko,. Moreover,
= @ is the normalized frequency, where n; and A are the re-
fractive index of substrate and the wavelength of incident light,
respectively, and finally %p(z) shows the curvature of waveguides.

We introduce the new variables Z=Cz, | =CL, a = ’;—?(ZT”)Z and

E,(z) = l1”,,(Z)exp(i%2), which transform Eq. (1) to the following
dimensionless form:

i%(l) +./2n2n - H¥%_12) + J2n + 1H2n + 2)¥1(2)

+ 2na cos(zT”Z)%(Z) =0.

[0

@

In order to find the solution of Eq. (2), the following operator
relation is defined:

i‘%(Z) = - (az +a cos(zT”Z)aTa + a*z)cp(Z) = —HQ)oQ), 3
where &)= ¥ ¥n(2)2m), and 12m) represents the classical
analogue of Fock states, which denotes the optical mode of the m-
th waveguide. (It should be noticed that the squeezed-like pho-
tonic lattice is the even-labeled chain of squeezed photonic lattice
[25]; see Fig. 1.) The set {Im)} is called the waveguide number basis
and ¥%,(Z) denotes the amplitude of electric field in the m-th
waveguide at dimensionless propagation distance Z. Moreover, d
and @' are peculiar translation operators to the left and right, re-
spectively, which are defined by dlm)=vmim-1) and
@'im) = Vm + 1Im + 1) that are similar to the bosonic annihilation
and creation operators of quantum optics [25].

Applying usual orthogonality of the eigenmodes of each guides
which causes the orthogonality of waveguide number basis
((miny = 6p), it is straightforward to show that Eq. (3) is the op-
erator form of Eq. (2). Hence, we solve Eq. (3) instead of Eq. (2).

The dynamical equation appeared in Eq. (3) is a Z-dependent
Hamiltonian similar to the time dependent Hamiltonian in quan-
tum mechanics. The solution of this equation can be written as
Dyson series [30]:

o z .
dZ) = T[exp{i fo H2) dZ’}](I)(Z = 0), @

where ; denotes the Z-ordered operator. There is no general so-
lution for Z-depended Hamiltonian, while for special cases of Z-
depended operators, a solution can be found.

Applying the Lie algebra and the disentangling theorem, we
can rewrite Eq. (4) as follows [30]:
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D) = exp[ - % sin( ZT”Z]]exp[ngr(ZﬂCJ

x expl¢, (2K 1exp[h(2) K_10(Z = 0) = S,y (D)@ (Z = 0), 5)

512

Here, K, = % K = “2—2 and K, = %(ﬁ"ﬁ + %) are the SU(1, 1) Lie
generators. ¢.(Z), ¢.(Z) and ¢,(Z) are determined by the following
differential equations [30]:

W ol 420 2 ]
1z 2 = 21[¢+(Z) +a cos( i Z)¢+(Z) + 1}, ®)

dg,Z) . 2z

e 21[2¢+(Z) +a cos( " Z)] 7
dp.@) _

o =2iex[¢.@] ®
with the following initial conditions:
#,.(0)=¢(0) =¢,0 =0. €)

Let us consider the array is being excited by an input at the n-th
waveguide, the electric filed amplitude in the m-th waveguide, at

Suc@|2n)
which can be obtained by employing the evolution operator of Eq.

(5).

vz = |/(2n)12m)! exp[ - % sin(27”2) + %452(2)]

the propagation distance Z, is given by ¥{"(Z) = < 2m

I 0C0) i E0) )
2m+n=20(n — p)t(m — p)!(2p)!

p=0 (10)

According to Eq. (5), the exponential operators exp[¢,(Z yK,] are
responsible for the coupling of light to the right and left wave-
guides. If at a special dimensionless propagation distance Z, ¢.(Z)
vanish simultaneously, there is no coupling of the light to the left
and right waveguides, which is the signature of light localization.
The periodic coincidence of ¢,(Z) = 0 at each period of bending
waveguides manifests the pregence of DL, which causes light to
return to the initial injected guide periodically. In the other word
when the conditions for DL is satisfied, the group velocity dis-
persion tends to zero after each period of guides. It is straight-
forward to show that, under conditions in which ¢.(Z=m¢) =0,
then ¢,(Z=m¢) =0 and ¥ (Z = m¢) = 6p.

() wee [, 2]
2.0 — ¢ (@)
16,2 ||
1.5 »
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3. Numerical results and discussion

The system of equations (2) cannot be solved analytically. This
leads us to implement numerical simulation to study the behavior
of ¢.(Z) and ¢,(Z) for different values of normalized amplitude
and normalized spatial period .

Fig. 2(a) and (b) shows the absolute values of the solution of
equations (2), for two different values of (a, #). As shown in these
figures, for the values of (a = 6.5, # = 1.2477), ¢,(Z) and ¢,(Z) are
periodic functions of Z with spatial period ¢, while for
(a = 6.5, 7 = 0.5), this is not the case. In the latter case, the con-
dition for DL is not satisfied, ¢,(Z) # 0 for Z > 0, hence, the light is
not being localized. However, for the specific values of the nor-
malized amplitude @=6.5 and the spatial period # = 1.2477, the
condition for DL is satisfied, and light is confined in the initial
injected guide at the propagation distances Z,, =m¢#Z; m=1, 2, ...
For typical values [27] C=0.15mm"!, A=600nm, n;= 1.5 and
d = 15 pm, this situation leads to L=8.32 mm and A ~ 14.5 ym for
spatial period and amplitude of bent guides, respectively. In this
case, the condition Ls>A is satisfied.

To confirm the aforementioned results, Eq. (2) is solved nu-
merically by Runge-Kutta-Fehlberg Method (an alternative ap-
proach is given in Eq. (10)). In our simulation, the evolution of real
and imaginary parts of light amplitude are solved separately.
Figs. 3 and 4 show the light intensity distribution for two different
conditions, when light is injected into ny = 50 waveguide at the
initial plane, i.e. ¥,(Z = 0) = &y, In Fig. 3, the condition for DL is
satisfied (a = 6.5, # = 1.2477), and the light is localized dynami-
cally, after every spatial period # = 1.2477 on the sinusoidal wa-
veguides. Our investigation shows that this behavior is in-
dependent of the initial excited waveguide number .

In contrast to Fig. 3, Fig. 4 shows the propagation pattern of
light when DL is absent ( a« = 6.5, # = 0.5). In this case, by in-
creasing the normalized propagation distance Z, the width of in-
itial profile increases and the light expands to the right guides
endlessly.

Our study reveals that DL takes place under certain conditions,
which depend on the amplitude and spatial period of the wave-
guides and the frequency of the incident light, i.e., at particular
values of ( a, #). Whenever the condition is satisfied we get
$.2) = ¢.(Z + ¢) and ¢,(Z) = ¢,(Z + ¢), which leads to DL. The (red)
circles in Fig. 5 show several numerically obtained points («, #) in
which DL is occurred. In addition, the (blue) solid line displays the
fit to the numerical data points (with the least square error
R? = 0.999), which is given by the following relation:

4.11

tpr(a) = m-

amn

According to Fig. 5, for a — 2, the normalized spatial period of

6 [mus p.2) (b)
s |— 1o-@

[¢(2)]
4
3
2
1
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Z

Fig. 2. Numerical solution of the system of equations (2) for (a) « = 6.5, # = 1.2477 and (b) a = 6.5, # = 0.5.
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Fig. 3. Numerical results for light intensity distribution when DL takes place
(a=6.5, # = 1.2477) and light is injected into the waveguide labeled ng = 50 at the
initial plane.
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150 200
Site Number (n)

Fig. 4. Numerical results for light intensity distribution when DL is absent (a = 6.5,
¢ =0.5) and light is injected into the waveguide ng = 50 at the initial plane.

waveguides must tend to infinity to get DL. Our study shows that
DL is always absent whenever the normalized amplitude of sinu-
soidal waveguides (&) is lower than the critical value a. = 2. In
other words, for a < a, the condition for DL is not satisfied for any
finite value of #. This can be understood in terms of our study on
the spatial BO in squeezed photonic lattices [25]. The limit of
¢ — oo in Eq. (2), which happens for « — 2, renders straight optical
waveguides (without curvature) that corresponds to the master
equation of spatial BO in squeezed photonic lattices (Eq. (2) of Ref.
[25]).

We have also found that the number of occupied waveguides is
reduced by increasing the normalized amplitude a. Fig. 6 shows
the dynamically localized intensity distribution of light for (=10,
¢ =0.7771) and ng = 50, which illustrates less occupied wave-
guides compared with Fig. 3 for ¢=6.5. Therefore, as the nor-
malized amplitude of sinusoidal waveguides (&) is increased, the
light expands over less numbers of waveguides within a period of

o [3 o [3

2.2 | 16.4956 105 0.738
23 [112628] 11 | 0704
20 24 | 86506 | 115 | 0671
= 25 | 70878 | 12 | 0642
3 [ 39734 | 125 [ 0616
35 [ 29015 | 13 | 0se1
4 2.3323 135 0.563
15 45 | 19697 14 0.547
5 | 1713 | 145 | 0528
55 [ 15204 | 15 0.51
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10 65 | 1.2477 16 0477
7 11464 16.5 0463
75 | 1061 17 0.449

spatial period (£)

8 0.9879 175 0436
85 | 09254 18 0423
5 9 0.8696 185 0412
9.5 | 0.8208 19 0401
10 | 07771 | 195 | 0.39

0-0-0-0-0-0-0-0

0 2 5 10 15 20
normalized amplitude (o)

Fig. 5. Numerically obtained values («, #) in which DL takes place (red circles and
inset table), and a fit through these data points (blue solid line). (For interpretation
of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

0.1
0.09

0.08

Propagation distance (Z)

0.5

50 100
Site Number (n)

150 200

Fig. 6. Numerical results for light intensity distribution when DL occurs (a=10,
¢ = 0.7771) and light is injected into the waveguide ng = 50 at the initial plane.

DL. This sentence is plausible, because the DL is the result of bent
waveguides. Moreover, the maximal pattern width takes place at
the normalized propagation distances Z = 2m + 1)%.

This result can be confirmed by calculating the width of light
intensity profile at the half period of bending guides versus the
normalized amplitude «, which is defined as follow:

© o 2 1/2
wno(Z) = 3 n2|wro(2)f - [ 3n wg"m(z)z] .
n=0 n=0 (12)
Fig. 7 shows the maximal pattern width ( w0 (Z = %)) versus
normalized amplitude «a for two different initial excitation wave-
guide numbers. As can be seen in this figure, by increasing the
normalized amplitude («) of bending guides (corresponding to the
decreasing of the period), the maximum width of the light in-
tensity pattern decreases, which confirms the former results.

Due to the no-homogeneity of the coupling coefficients be-
tween neighbor waveguides as C, = C\/2n(2n — 1), the maximal
pattern width also depends on to the initial excitation waveguide
number (np). As shown in this figure, by increasing the initial
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Fig. 7. The maximal pattern width versus normalized amplitude alpha for two
initial excitation waveguide numbers ng = 30 and ng = 50.

excitation waveguide number, the maximal pattern width is also
increased.

It is also interesting to investigate the evolution of a Gaussian
beam along the waveguides, when the condition of DL is satisfied.
To this end, a Gaussian beam of width ¢ and centered at o,

_ 2
%(Z = 0) = exp[ - M:l,

442 (13)

is injected into the lattice at the initial plane. The intensity profile
of the light for the Gaussian input beam with ¢=10 and ng = 50 is
shown in Fig. 8. Comparing Fig. 8 with Fig. 6, (with the same =10
and 7 = 0.7771), manifests that, in both cases, the intensity profile
is repeated periodically after a propagation distance # = 0.7771,
although their pattern are different. In the case of single site ex-
citation, the variation in the width of the profile is stronger than
its mean center, while for the Gaussian input profile, the converse
is true.

As mentioned previously, for # — oo, Eq. (2) describes the light
evolution in a straight squeezed-like waveguide array owning a
linear transverse gradient 2« on the propagation constants. This is
a structure in which the spatial BO can occur, and was investigated
in our earlier work [25]. Hence, in order to complete our analysis,
we compare the results of present study (DL) with BO in the
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Fig. 8. Numerical results for light intensity distribution for which DL takes place
(a=10 and ¢ = 0.7771) and a Gaussian light beam centered on the np =50 and
width ¢ = 10 is injected into the initial plane.

85 (a)
80
275
=
=1
s
2 70
=
5 65
s
S
< 60
55
50/ - g
0.0 0.5 1.0 1.5 2.0
Propagation distance (2)
50
(b)
40|
o |
s
= 30}
o
=
s
= 20
=
= |
10}
0.0 0.5 1.0 1.5 2.0

Propagation distance (7))

Fig. 9. Variation of (a) the center, and (b) the width of the light intensity profile for
BO (with @=10) and DL (with =10 and ¢ = 0.7771) when light is injected into the
waveguide labeled ng = 50 at the initial plane.

squeezed-like photonic lattices. BO and DL are two models of co-
herent quantum transport phenomena with the same features of
periodic propagation pattern, while their origins are different. In
both systems, there is a critical value o, =2 at which the phase
transition is occurred. In the straight squeezed-like lattices (with a
linear transverse gradient on the propagation constants), BO ap-
pears for a > a., and the intensity profile is periodic with the

spatial period #o(a) = —— (see [25]). The comparison of #p;
2_4

with ¢ show that, fo; any « > a, the spatial period of DL is
greater than the spatial period of BO, i.e. #p;(a) > £po(a). Moreover,
we have realized that, for the same value of a > «,, the variation in
the width and the mean center of the BO profile is less than the
corresponding values for DL. All of these results are summarized in
Fig. 9, in which the center C"0(Z) = ¥ ' n |¥(2)|? and the width
w®0)(Z) of BO and DL profiles (with the same a=10 and initial
injected waveguide number ny = 50) are plotted versus the pro-
pagation distance Z.

At the end, we should emphasise that the DL in squeezed-like
photonic lattice can be observed experimentally only with few
waveguides. Fig. 10 shows the light intensity distribution for =16
and 7 = 0.477 in the lattice with 12 guides. For previous typical
values, this condition leads to L=3.18 mm and A =5.22um,
which is accessible in experiment.

4. Conclusion

We have studied the DL of light in sinusoidal bent squeezed-
like photonic lattices. Our investigation manifests that DL is
emerged for the normalized amplitude « > 2, at a specific value of
the spatial period #, which enhances by decreasing a (see Fig. 5).
Thus, by increasing the amplitude, the spatial period of sinusoidal
waveguides have to be decreased to observe DL. This dynamically
localized behavior comes from the cancellation of diffraction after
each spatial period #. Another aspect of our study is that light
expands over less numbers of guides as long as « is increased. In
addition, the comparison between BO and DL in squeezed-like
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Fig. 10. Numerical results for light intensity distribution when DL occurs (=16,
¢ = 0.477) and light is injected into the waveguide np = 6 at the initial plane.

photonic lattices reveals that in both phenomena a phase transi-
tion occurs at the critical normalized amplitude o, = 2. Moreover,
for the same value of « > «, the spatial period and the variation in
the width and the mean center of the BO profile is less than the
corresponding values for DL.

By carefully adjusting the spatial period and amplitude of
guides, the DL in sinusoidal bent squeezed-like photonic lattice
can be observed in experiment only with few guides.

DL takes place under certain condition on the sinusoidal bent
squeezed-like photonic lattices, in spite of the fact that the semi
infinite nature and inhomogeneity of coupling coefficients of these
lattices are similar to the GF lattices. We hope that, the squeezed
photonic lattices and the sinusoidal bent squeezed-like photonic
lattices can be used to simulate classically another type of quan-
tum and semi-classical Rabi oscillation (two-photon absorption),
respectively.
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