
Journal of Sound and Vibration 434 (2018) 28–43

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage : www.elsev ier . com/ locate / jsv i

Experimental and analytical investigation on sound

transmission loss of cylindrical shells with absorbing material

Pouria Oliazadeh a, Anooshiravan Farshidianfar a,*, Malcolm J. Crocker b

a Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
b Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA

a r t i c l e i n f o

Article history:

Received 10 December 2017

Revised 6 July 2018

Accepted 8 July 2018

Available online XXX

Handling Editor: R.E. Musafir

Keywords:

SEA theory

Sound intensity method

Sound transmission loss

Transmission suite method

a b s t r a c t

In this study, sound transmission through a thin-walled cylindrical shell is investigated both

analytically and experimentally. A theoretical model based on statistical energy analysis (SEA)

is developed in order to calculate the noise reduction and sound transmission loss of the cylin-

drical shell. The procedure to obtain the parameters involved in the SEA model, such as radia-

tion efficiency and loss factors, is explained in detail. An experimental setup was constructed

in a reverberation chamber to evaluate the transmission loss of the cylinder using two exper-

imental methods. First the transmission suite method which includes measurements of the

sound pressure levels inside and outside of the cylinder using microphones was used. Then the

sound intensity method was used in which the transmitted sound intensity is measured with

a sound intensity probe. The experimental results are compared with the analytical results

obtained from the SEA theory, which shows good agreement. By comparing both experimen-

tal techniques, the transmission suite method is found to have advantages over the other

method at low frequencies. However, the sound intensity method is more applicable in the

medium and high frequency regions between the ring and critical frequencies in order to pre-

dict the noise transmission characteristics of the cylindrical shell. Another experiment was

conducted with absorbing materials placed inside the cylinder. The use of sound absorbing

material produced a significant reduction in the noise level in the cylinder specifically in the

high frequency range. The effects of the absorption coefficient on the acoustical behavior of

the cylindrical shell were also investigated theoretically.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Thin cylindrical shells have a wide variety of applications in many engineering structures such as car bodies, buildings, ship

hulls and aircraft fuselages. Therefore, abating interior noise levels has a high priority in the design of engineering structures.

Since increasing the mass of a structure for sound insulation is not easily applicable and has a direct effect on the final cost and

in some cases on fuel consumption, using light-weight sound absorbing materials such as fiberglass is helpful and effective.

The sound insulation performance of a cylinder may be evaluated from a knowledge of its sound transmission loss, which is

the ratio of the incident sound energy to the transmitted sound energy expressed in decibels [1]. Thus, a better understanding

of the acoustical properties of cylinders is essential in order to achieve good noise attenuation. Reducing the vibration of thin

cylindrical shells and interior noise levels produced is an important research topic. Analytical methods can be categorized into

methods based on infinite cylinder models and methods based on finite models.
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Koval [2–4] has presented a mathematical model for an infinitely long cylindrical shell in order to study the transmission of

airborne noise into an aircraft fuselage. Blaise et al. [5] developed Koval’s expression for an orthotropic infinite shell. Blaise and

Lesueur [6] investigated the transmission loss of two-dimensional multi-layered infinite cylindrical shells. Lee and Kim [7–9]

studied the sound transmission characteristic of single- and double-walled thin shells and stiffened structures. They used an

infinitely long circular cylindrical shell model which was subjected to an acoustic wave and analyzed the effect of different

design parameters on the sound transmission loss of the shell. Zhou et al. [10,11] modeled porous material in infinite double-

walled panels and shells and obtained the transmission loss by considering the effect of external mean flow. Their results were

then discussed by Liu and He [12]. Liu and He [13] studied sound transmission through double-walled sandwich shells with

poroelastic cores. They showed that poroelastic core can improve the sound insulation performance in the mass law region. Liu

and He [14] also showed that the air flow affects acoustic transmission across double-walled sandwich shells. The triple-walled

structures with poroelastic linings have better acoustic performance than the double-waled ones and the internal and external

gap flows can be considered as design tools to control the noise level [15,16]. Oliazadeh and Farshidianfar [17] calculated the

sound transmission loss for a triple-walled shell and compared the results obtained with a double-walled shell. The research

works presented so far have considered an infinite model for the cylindrical shell and used the wave propagation approach for

the analysis of sound transmission.

While the wave propagation approach is capable of predicting sound transmission through an infinite cylindrical shell, it

does not take into account the effects of boundary conditions and damping of the structure. The statistical energy analysis

(SEA) approach includes the effect of finite cylinder dimensions. Damping can be considered in the SEA method by modeling

the coupling between cylinder and acoustic media inside and outside. The SEA method was developed by Maidanik [18], Lyon

[19] and by Crocker and Price [20] for analyzing sound transmission through panels and partitions. They showed how a system

that consists of several subsystems can be modeled using SEA. Each subsystem may receive an input power from an external

source such as a shaker or a loudspeaker. The power flows from one subsystem to another and can also be dissipated because

of damping in each subsystem. Wang et al. [21] used the SEA method to evaluate the sound transmission loss of a light aircraft

fuselage modeled by an aluminum cylinder.

The internal loss factor, coupling loss factor and modal density are three SEA parameters required to predict the energy in

each subsystem. Internal and coupling loss factors have been investigated by researchers for the sound transmission through a

wall in between two rooms [22], across a floor [23] and through a thin cylindrical shell coupled to an end plate [24]. The modal

density has also been evaluated for unstiffened [25,26], stiffened [27,28] and composite [29] cylindrical shells.

Hynna et al. [30] developed the SEA method by using the finite element method in order to predict the structure-borne sound

transmission in large welded ship structures. Craik and Wilson [31] studied airborne transmission through a wall using the SEA

method. Chronopoulos et al. [32] presented a model for the prediction of the vibroacoustic performance of composite shells

using the SEA approach.

Besides analytical methods, experimental techniques have also been developed to measure the sound transmission loss of

structures. Wang et al. [21] previously evaluated the transmission loss of an aluminum cylinder using two experimental meth-

ods, (1) the sound intensity technique and (2) the transmission suite method and compared them with the SEA result. The sound

intensity technique has some advantages [33]. The essential parameters and conditions for the measurement of the transmission

loss have been studied by several researchers [34–36]. Chen et al. [37] presented a technique to measure damping components

of plate by the sound intensity method. Watts [38] developed an in situ method in order to determine the transmission loss

of noise barriers. He considered the traffic as the source of noise and measured the incident and transmitted sound intensity.

Praščević et al. [39] used the sound intensity method for measuring the transmission loss of lightweight partitions and compared

the results with those obtained using different theoretical models. Connelly and Hodgson [40] investigated the sound transmis-

sion of vegetated roofs experimentally using the sound intensity method. They performed a series of field tests and measured

the transmitted acoustic intensity in order to design the experimental setup. Koukounian and Mechefske [41] predicted the

vibro-acoustic response of an aircraft fuselage which is excited by a turbulent boundary layer. They verified the results using the

experimental transmission suite method following the ASTM and ANSI standards. The purpose of the current paper is to study

the sound transmission in air conditioning ducts which are modeled as cylindrical shells, experimentally and analytically.

In the present work, a theoretical model is presented based on the SEA theory that includes the effects of internal losses in the

cylindrical shell and sound absorption inside the cylinder. The sound transmission loss of the cylindrical shell is obtained analyt-

ically using SEA and experimentally by installing the cylinder in a reverberation room. The transmission loss of the cylinder was

measured using two experimental methods, the transmission suite method and the sound intensity method. The experimental

approach is similar to that of Wang et al. [21]. However, they used an aluminum cylinder as a model of small and light aircraft

cabins. With aircraft fuselages and cabins, the main object is to protect the passengers from the external powerplant noise. In

this paper, the experimental setup is conducted with a thin steel cylinder such as those used in air conditioning systems in

buildings. Steel ducts are cheaper than aluminum and in buildings the weight of the duct is not a problem. In this case, the

noise transmission from inside to outside is important since an important purpose is to prevent occupants of buildings near the

ducts from being disturbed. Since the transmission loss can be measured from inside to outside the cylinder, the interior noise

level is made very high and the sound field is almost reverberant at high frequencies. Steel cylinders are normally thinner than

aluminum ones and present much greater experimental difficulties. This is because the critical frequency is driven in higher

frequencies making the measurements much harder because at high frequency the transmission loss is increased as a result of

mass law. Although, significant difficulties occurred during the experiment because of the need for very powerful loudspeakers

to be able to produce enough sound and overcome the background noise at high frequencies, the results showed reasonable
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agreement when compared to the analytical results. A comparison is also made between the experimental techniques and the

advantages and disadvantages of each method are discussed. Another experiment was conducted in which the interior space

of the cylinder was filled with absorbing material and its effect on the interior noise level was investigated analytically and

experimentally.

2. Theoretical model

A thin circular cylindrical shell with radius R, constant wall thickness h and length L is considered for the analysis in this

paper. The material properties of the shell are defined in terms of Poisson ratio 𝜈, invacuo bulk mass density 𝜌 and invacuo

Young’s modulus of elasticity E. Simply supported boundary conditions are assumed for both ends of the cylindrical shell. The

cylindrical coordinate system (x, 𝜃, z) is used in the analytical study. The x coordinate is in the axial direction of the shell and 𝜃

and z coordinates denote circumferential and radial directions, respectively. The dimensions and coordinate system are shown

in Fig. 1.

2.1. Natural frequency of a cylindrical shell

The displacements in the longitudinal, circumferential and radial directions for a cylindrical shell, which is simply-supported

at both ends, are denoted by u(x, 𝜃, t), v(x, 𝜃, t) and w(x, 𝜃, t), respectively. They are given by Eq. (1) as follows:

u(x, 𝜃, t) = U cos(m𝜋x

L
) cos(n𝜃) cos(𝜔mnt), (1a)

v(x, 𝜃, t) = V sin(m𝜋x

L
) sin(n𝜃) cos(𝜔mnt), (1b)

w(x, 𝜃, t) = W sin(m𝜋x

L
) cos(n𝜃) cos(𝜔mnt), (1c)

where U, V and W are the amplitudes of displacements in longitudinal, circumferential and radial directions, respectively, m and

n are integers and called longitudinal and circumferential mode numbers, respectively and 𝜔mn is the angular frequency of the

(m, n) mode. Substituting the above displacement fields into the equations of motion of a cylindrical shell under a free vibration,

leads to a set of homogeneous equations having the following matrix form:

⎡⎢⎢⎢⎣
C11 C12 C13

C12 C22 C23

−C13 −C23 C33

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

U

V

W

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩

0

0

0

⎫⎪⎬⎪⎭
. (2)

The equation of motion and the coefficient matrix [Cij](i, j = 1, 2, 3) for some common cylindrical shell theories can be found

in Refs. [42] and [17]. The coefficient matrix for the Soedel theory is presented in the Appendix. For a nontrivial solution, the

determinant of the coefficient matrix in Eq. (2) must be zero.

det[Cij] = 0 ; i, j = 1, 2, 3. (3)

Fig. 1. Thin circular cylindrical shell: coordinate system and dimensions.
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The expansion of Eq. (3) yields the frequency equation for the Soedel theory, having the following form:

Ω3 − C2Ω
2 + C1Ω − C0 = 0, (4)

where Ω represents the non-dimensional frequency parameter and is given by

Ω = 𝜌(1 − 𝜈2)R2

E
𝜔2

mn
. (5)

and Ci(i = 0, 1, 2) are the characteristic coefficients. In order to obtain a closed form solution for the natural frequencies, dif-

ferent assumptions can be made. Neglect of tangential inertia terms in the equations of motion reduces the frequency equation

from a cubic form to a first order expression. By applying this procedure to the Soedel equations of motion, the following closed

form solution for the non-dimensional frequency of a cylindrical shell, which is associated with a primarily radial motion, is

obtained:

Ω = A1𝜆
2R2 + A2𝜆

4R4 + A3𝜆
6R6 + A4𝜆

8R8 + A5

A6𝜆
2R2 + A7𝜆

4R4 + A8

, (6)

where 𝜆 = m𝜋∕L and Ai(i = 1,… , 8) are functions of 𝜈, n and 𝛽 = h2∕12R2 which are expressed as follows:

A1 = 𝛽n2(3

4
𝜈2 − 1

2
𝜈 + 5

4
) + 𝛽n3(n + 1)(𝜈 − 1) − 2𝛽n6(𝜈 − 1) − 𝛽2n4 − 𝛽2n5(𝜈 + 1) + 𝛽2n6(1

4
𝜈2 − 3

2
𝜈 + 9

4
)

A2 = 𝛽n2(𝜈 − 1) − 3𝛽n4(𝜈 − 1) + 𝛽2n4(1

2
𝜈2 − 3

2
𝜈 + 3) + 1

2
(1 + 𝛽)(𝜈 − 1)𝜈2 − 2𝛽2n3

A3 = −2𝛽n2(𝜈 − 1) + 𝛽2n2(1

4
𝜈2 − 3

2
𝜈 + 5

4
)

A4 = −1

2
𝛽(1 + 𝛽)(𝜈 − 1)

A5 = 1

2
𝛽n4(𝜈 − 1) + 1

2
𝛽2n6(𝜈 − 1) − 1

2
𝛽(1 + 𝛽)n8(𝜈 − 1)

A6 = n2(𝜈 − 1) − n2𝛽(1

4
𝜈2 − 1

2
𝜈 + 5

4
)

A7 = 1

2
(1 + 𝛽)(𝜈 − 1)

A8 = 1

2
(1 + 𝛽)n4(𝜈 − 1).

(7)

Besides the natural frequencies of a cylindrical shell, there are two important frequencies that play a significant role in the

acoustical behavior of a cylinder. These frequencies are called the ring and critical frequencies. The ring frequency, fr is the lowest

frequency at which a structural breathing mode resonance can occur. The second important frequency of a cylindrical shell, the

critical frequency, fc, occurs when the trace wavenumber in the radial direction matches the circumferential wavenumber of the

shell. The ring and critical frequencies are given by Refs. [11,43]

fr = ( 1

2𝜋R
)
√

E

𝜌
, (8a)

fc =

√
12c2

a

4𝜋2hRfr

, (8b)

where ca is the speed of sound in air.

2.2. SEA model

In the SEA method, complex structures are divided into a number of subsystems which are linearly coupled together [19].

The behavior of the entire system can be predicted by modeling the coupling between subsystems. The total amount of energy

input to each of the subsystems comes from external sources, which are usually random, is equal to the energy dissipated by

mechanical damping in subsystems and transferred between them.

Consider a cylinder suspended in a reverberation room with loudspeakers placed inside the cylinder. The SEA model consists

of three coupled systems as shown schematically in Fig. 2. The SEA model is that used by Crocker and Price [20]. The source or

transmission room is the interior space of the cylinder and the receiving or reception room is the reverberant chamber in which

the cylinder is located. The source and receiving rooms may be considered as systems 1 and 3, respectively and the cylinder as

system 2. It is assumed that the flow of energy from one system to another is proportional to the modal energy difference [19].

Then the power balance equations of the three systems are [20]:

Π1 = 𝜔(𝜂1 + 𝜂12 + 𝜂13)E1 −𝜔𝜂21E2 − 𝜔𝜂31E3, (9a)
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Fig. 2. Schematic of the SEA model.

Π2 = −𝜔𝜂12E1 + 𝜔(𝜂2 + 𝜂21 + 𝜂23)E2 − 𝜔𝜂32E3, (9b)

Π3 = −𝜔𝜂13E1 − 𝜔𝜂23E2 + 𝜔(𝜂3 + 𝜂31 + 𝜂32)E3, (9c)

where 𝜔 = 2𝜋f is the circular frequency, 𝜂i is the internal loss factor of system i, 𝜂ij is the coupling loss factor between system

i and system j, Ei is the total energy stored in system i and Πi is the rate of energy flow into system i. It should be noted that the

reciprocity relationship between coupling loss factor is used in obtaining power balance equations,

𝜂ijni = 𝜂jinj, (10)

where ni and nj are the modal densities of systems i and j, respectively. Therefore Eq. (9) can be written in matrix form as

𝜔

⎡⎢⎢⎢⎣
𝜂1 + 𝜂12 + 𝜂13 −𝜂21 −𝜂31

−𝜂12 𝜂2 + 𝜂21 + 𝜂23 −𝜂32

−𝜂13 −𝜂23 𝜂3 + 𝜂31 + 𝜂32

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

E1

E2

E3

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩
Π1

Π2

Π3

⎫⎪⎬⎪⎭
. (11)

The diagonal terms of the loss factor matrix are the total damping of each system. Since the cylinder is excited by driving a

loudspeaker inside it, which is considered as system 1, the power flows Π2 and Π3 must equal zero; Π2 = 0 and Π3 = 0. Thus

with this substitution and assuming that the loss factor of a system is larger than the coupling loss factors connecting it to other

systems and ignoring the coupling loss factors in the total damping, Eq. (11) becomes

𝜔

⎡⎢⎢⎢⎣
𝜂1 −𝜂21 −𝜂31

−𝜂12 𝜂2 −𝜂32

−𝜂13 −𝜂23 𝜂3

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

E1

E2

E3

⎫⎪⎬⎪⎭
=
⎧⎪⎨⎪⎩
Π1

0

0

⎫⎪⎬⎪⎭
. (12)

The SEA matrix is solved by inverting the coefficient matrix of Eq. (12) to give the energies in each systems. Hence, the ratio of

energy in the source room (E1) to the energy in the receiving room (E3) can be obtained as

E1

E3

= 𝜂2𝜂3 − 𝜂23𝜂32

𝜂12𝜂23 + 𝜂2𝜂13

. (13)

In order to obtain the noise reduction, following the procedure presented in Ref. [20], the unknown parameters of Eq. (13) must

be calculated first. By using the reciprocity relationship, Eq. (10), Eq. (13) can be written as

E1

E3

=
𝜂2𝜂3 − ( n2

n3
)𝜂2

23

( n2

n1
)𝜂21𝜂23 + 𝜂2𝜂13

. (14)

Here 𝜂21 and 𝜂23 are the coupling loss factors that account for sound radiation from the cylinder to the transmission and the

reception spaces, respectively, which are given by Refs. [20,23]

𝜂21 = 𝜂23 = 𝜌aca𝜎rad

2𝜋f𝜌c

, (15)

where 𝜌a is the density of air, 𝜌c is the surface mass density of the cylinder and 𝜎rad is the radiation efficiency of the cylindrical

shell.
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2.3. Radiation efficiency

The radiation efficiency of a structure is a measure of how effectively its surface vibration leads to the radiation of sound to

the acoustic field. It is defined as [1]

𝜎rad = P

𝜌acaS< v >2
, (16)

where P is the acoustic power radiated by the surface area S and < v >2 is the spatially averaged mean square velocity on the

radiating surface. The radiation efficiency for cylindrical shells can be estimated using the properties of acoustically fast (AF) and

acoustically slow (AS) modes. Acoustically fast mode of a cylinder is defined as the mode for which the structural wavenumber

is less than the acoustic wavenumber at the resonance frequency of the mode [32] which can be expressed as

k2
l
+ k2

c
< k2, (17)

where kl and kc are the longitudinal wavenumber and circumferential wavenumber, respectively and k is the acoustic wavenum-

ber. On the other hand, the converse is true for the acoustically slow mode which means that either the longitudinal wavenum-

ber and/or the circumferential wavenumber are larger than the corresponding acoustic wavenumber. The cylinder’s radiation

efficiency can be calculated according to the frequency band of interest as follows.

The radiation efficiency in the case that only acoustically fast modes are present in the frequency band can be given as [44]

𝜎rad = 1

[1 −
(k2

l
+k2

c )
k2 ]

1

2

. (18)

Eq. (18) rapidly converges to unity, therefore it is approximated by 𝜎rad ≈ 1.

Since the radiation efficiency is much higher for acoustically fast modes than for acoustically slow modes [20], in the case of

existence of both acoustically fast and slow modes, all acoustically slow modes can be neglected. Thus, the radiation efficiency

may be assumed to be given by the ratio of the number of acoustically fast modes (NAF) in the frequency band to the total

number of modes in the band (N).

𝜎rad = NAF

N
. (19)

The radiation efficiency for a frequency band that has solely acoustically slow modes which occurs for a cylinder with fr∕fc <

0.52 in the frequency region 1 < f < fc∕fr is given by Ref. [44]

𝜎rad =

(hR)
1

2 [ln(
1+( f

fc
)

1
2

1−( f

fc
)

1
2

) +
2( f

fc
)

1
2

1− f
fc

]

𝜋L[12(1 − 𝜈2)]
1
4 (k2

l
+ k2

c )
1
2 (1 − f

fc
)

1
2

. (20)

Oppenheimer and Dubowsky [45] introduced correction factors for sound radiation below the critical frequency of unbaffled

plates with simply supported boundary conditions. These correction factors can be applied for cylindrical shells by knowing that

there is no corner mode radiation for a cylindrically shaped structure. Therefore, the corrected radiation efficiency is given by

𝜎cor
rad

= Fcylinder Fedge 𝜎rad, f < fc, (21)

in which Fcylinder is the correction factor because of the effect of inertial flows that surround the cylinder at frequencies where

the acoustic wavelength is more than the length of the cylinder, which is given by Ref. [45]

Fcylinder =
53( f 4S2

c4
a

)

1 + 53( f 4S2

c4
a

)
, (22)

and Fedge is the local correction factor due to the effect on radiation from edge mode when the longitudinal wavenumber and/or

the circumferential wavenumber is greater than the acoustic wavelength, which is given by Ref. [45]

Fedge = 1

2

49( f

fc
)

1 + 49( f

fc
)
. (23)

2.4. Loss factors

As mentioned in section 2.2, 𝜂21 and 𝜂23 are the coupling factors for the SEA model due to sound radiation from system 2

(cylinder structure) to system 1 (transmission space) and system 3 (reception room), respectively, which are calculated using

Eq. (15). 𝜂13 is the coupling loss factor between two acoustical spaces (systems 1 and 3), which is obtained from Ref. [23]
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𝜂13 = caS

8𝜋f V1

𝜏13, (24)

in which V1 is the volume that is occupied inside of the cylinder and 𝜏13 is the mass law transmission coefficient, which is

proportional to the mass of the cylinder and the frequency of incident acoustic wave. 𝜏13 for random incident sound waves with

different angles of incidence can be obtained by averaging the transmission coefficient for normal incidence over all possible

incident angles [9]. The random incidence mass law transmission coefficient is then given by

𝜏13 = ∫
𝛼

0

2 sin𝛼 cos𝛼

(1 + 𝜋f𝜌c

2𝜌aca
)2

d𝛼, (25)

where 𝛼 is the incidence angle. The integral interval for the diffuse sound field is chosen as [0, 78◦] [1,9,46].

𝜂3 is the dissipation loss factor of the reception chamber (system 3) that may be determined from the reverberation time

method, which is given by Refs. [1,24]

𝜂3 = 2.2

f T60

, (26)

where T60 is the reverberation time of the chamber and can be calculated using following expression [1]

T60 = 55.26V3

caS3

, (27)

in which V3 and S3 are the volume and the surface area of the reverberation chamber, respectively.

𝜂2 is the internal loss factor of the cylinder (system 2) due to radiation damping that can vary from 0.001 to 0.05 [43].

2.5. Sound transmission loss

The noise reduction (NR) of the sound pressure level from inside to outside of the cylindrical shell can be evaluated by taking

the logarithm of Eq. (13), which yields

NR = 10 log[𝜂2𝜂3 − (n2

n3

)𝜂2
23
] − 10 log[(n2

n1

)𝜂21𝜂23 + 𝜂2𝜂13]. (28)

where n1 is the modal density of the acoustical space inside the cylinder which is introduced as the transmission room and is

given by Ref. [20]

n1 = 2f 2V1

𝜋c3
a

, (29)

n3 is the modal density of the reverberation chamber (reception room), that for a room of volume V3, surface area S3 and total

edge length P3 is calculated by Ref. [19]

n3 = 4𝜋f 2V3

c3
a

+ 𝜋f S3

2c2
a

+ P3

8ca

, (30)

and n2 is the modal density of the cylinder structure that is obtained from: [47]

n2 =

⎧⎪⎪⎨⎪⎪⎩

9
√

3L( f

fr
)

1

2

8𝜋Rh
f < fr,√

3L

2h
f > fr.

(31)

The transmission loss is then expressed by Ref. [25]

TL = NR + 10 log( 1

𝜇
− 3

4
), (32)

where 𝜇 is the absorption coefficient of the cylinder and enclosed air volume.
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3. Experimental measurements

A thin-walled circular cylindrical shell was used for the experimental investigation and verification of the analytical results

obtained. The following series of tests were carried out in a reverberant chamber:

• Measurement of the reverberation time, T60, of the chamber.

• Measurement of the natural frequencies of the cylindrical shell.

• Measurement of the radiation efficiency of the cylinder structure.

• Measurement of the transmission loss of the cylindrical shell using two experimental methods: transmission suite method

and sound intensity technique.

• Measurement of the noise reduction of the cylindrical shell with and without internal sound absorbing material.

The cylindrical shell used in the experiment was made of galvanized steel with material properties; Young’s modulus E =
200 GPa, density 𝜌 = 7850 kg∕m3 and Poisson’s ratio 𝜈 = 0.28. It had an outside diameter of 0.6 m with a wall thickness of

1.27 mm and overall length of 2.06 m. Two 19 mm wide plywood disks were inserted into both ends of the cylindrical shell

and caused a 2.01 m length for the interior space of the cylinder. The disks were fastened tightly by several bolts throughout

the cylinder. The disks were made of material sufficiently massive so sound transmission through them could be neglected. The

cylinder was also completely sealed to prevent sound leakage. Therefore, the sound transmission was only considered through

the cylindrical shell. It was suspended from the ceiling inside a cubic reverberation chamber, with sides of length 3.76 m, using

nylon braided ropes and it contained two sets of loudspeakers and tweeters (Sony XS-R 1345) mounted at both ends inside the

cylinder to the plywood disks. The loudspeakers covered low to high ranges of frequency (50 Hz–24000 Hz). In the experimental

setup, a Brüel & Kjær microphone (type 4188 L1) was placed inside the cylinder in such a way that could be rotated by using

a handle from outside. The outside and inside views of the test setup of the cylindrical shell as schematics are shown in Figs. 3

and 4, respectively.

3.1. Reverberation time of the reception room

The reverberation time of a room is defined as the time needed for the sound pressure level to drop by 60 dB from a steady

level when a sound source is switched off [1,48]. It was of great importance to measure the reverberation time of the receiving

room, since it was later used to calculate the sound transmission loss of the cylinder using the transmission suite method. The

room was made of double walls of acoustically hard material with fiberglass filled in between them. The transmission suite

room used in this study was mounted on air bags in order to prevent the transmission of vibration from the ground. Therefore,

it was considered as a reverberation room with a sufficiently diffuse and reverberant sound field for doing the measurements.

The reverberation time was measured using Brüel & Kjær Pulse system for one-twelveth octave frequency bands from 1 kHz to

12 kHz. Fig. 5 shows the reverberation time of the reception room.

Fig. 3. Schematic of the setup, outside view.
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Fig. 4. Schematic of the setup, inside view.

Fig. 5. Reverberation time of the reception room.

3.2. Validation of natural frequency calculations

In order to find natural frequencies of the cylinder, two methods of excitation were utilized; contact and non-contact exci-

tation methods. For the contact approach, a modal hammer was used to excite natural frequencies of the cylinder and for the

non-contact approach, loudspeakers inside the cylinder were used to excite resonance frequencies of the cylindrical shell. It

should be considered that the mass and stiffness of the hammer tip are effective in improving the results obtained in the contact

approach. The natural frequencies were measured by a Brüel & Kjær accelerometer (type 4375) in conjunction with a transducer.

The measurements were analyzed using a Brüel & Kjær pulse multi-analyzer system (type 3560c). Fast Fourier Transforms (FFTs)

obtained by each excitation methods are shown in Fig. 6. It is observed that the contact method could excite more natural fre-

quencies in the frequency range 0–1000 Hz which can be considered as low frequency range and was not able to excite higher

modes strongly enough and natural frequencies in medium and high ranges of frequency are barely noticeable in Fig. 6a. Unlike

the hammer excitation technique which was only applicable for low frequency band, the non-contact method predicted natu-

ral frequencies in medium and high frequency bands as well as low frequency band. However, by comparing the peaks of FFT

graphs in the frequency range 0–1000 Hz in Fig. 6a and b, it can be concluded that the hammer excitation technique is more

effective in the low frequency range than the acoustical excitation technique because the peaks are more noticeable while for

finding higher natural modes, the non-contact method is suggested.

In order to validate the expression presented for the natural frequency of a thin cylindrical shell based on the Soedel theory,

the values of natural frequencies obtained theoretically compared with those obtained by two experimental techniques. The

comparison is shown in Table 1. The mode number of each natural frequency were determined by analyzing the corresponding

mode shape using MATLAB software. In order to obtain the mode shapes, several points were chosen over the perimeter of the

cylinder along the longitudinal and circumferential directions. Results were extracted from Pulse software and were imported

to the MATLAB software to analyze the mode shapes and determine the corresponding mode numbers. By knowing that the

formula in Eq. (6) is an approximate closed form expression for the natural frequency of a thin cylindrical shell, the theory and

measurements show good agreement. If more accurate values for the natural frequencies is needed, one can use the method

presented by Oliazadeh et al. in Refs. [42,49]. However, a closed form solution cannot be acquired in the exact analysis.
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Fig. 6. FFT comparisons of two excitation methods: (a) Contact excitation; (b) Non-contact excitation.

Table 1

Comparison between experimental and theoretical results of natural modes in the

frequency range 0–1000 Hz.

Mode Number Natural Frequency (Hz)

m n Contact method Non-contact method Theory

1 3 72 72 71

1 2 136 136 142

3 5 188 188 218

2 3 248 248 243

3 4 312 312 304

1 1 328 324 487

4 4 468 468 492

5 4 660 680 694

3 2 768 772 891

2 1 892 900 1256

3.3. Radiation efficiency of the cylindrical shell

As discussed in section 2.3, the radiation efficiency of the cylinder describes its acoustic radiation properties. In order to

determine the radiation efficiency experimentally, it is necessary to measure the surface velocity of the vibrating structure and

the acoustic power radiated by it. Therefore, another experiment on the cylindrical shell was conducted in the reverberation
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Fig. 7. Comparison of the experimental results of radiation efficiency ( ) with analytical calculations ( ).

chamber. The shell was excited by the loudspeakers inside the cylinder. The sound source propagated a random white noise

signal which was generated by the Brüel & Kjær Pulse system. The acoustic power radiated was measured using a sound intensity

probe scanned close over the surface of the cylinder. The probe (Brüel & Kjær, type 3599) comprised two 1∕2 inch phase-

matched microphones (type 4197) which were positioned face to face and separated by a 12 mm spacer (type UC-5269). The

measurements and the scanning procedure were performed following the international standard ISO 15186-1. Simultaneously,

the vibration data were taken at random locations over the cylindrical shell and then the mean square values at each frequency

were averaged using the Brüel & Kjær accelerometer. The measured radiation efficiency is plotted in Fig. 7 and compared with

the theoretical predictions.

It can be seen in Fig. 7 that the comparison of the experimental results with analytical calculations shows fairly good agree-

ment. The corrected radiation efficiency is plotted in Fig. 7. For the cylinder under consideration, the analytical value of the ring

and critical frequencies are 2648 Hz and 10118 Hz, respectively, therefore, the ratio fr∕fc equals 0.26, which is less than one.

Cylindrical shells with fr∕fc < 1 are classified as acoustically thin shells [50]. For this kind of shell, the radiation efficiency has

two peaks. First peak occurs at the ring frequency which is associated to the breathing mode resonance of the shell. Then the

radiation efficiency decreases until it reaches the critical frequency at which the second peak appears and the structure radiates

in a similar manner to a flat plate. Above the critical frequency, the radiation efficiency tends to unity by increasing the fre-

quency and the logarithm value of that tends to zero. These features can be observed in the radiation efficiency measurements.

The variation of the radiation efficiency values according to its definition (Eq. (16)) occurs between zero and one. Therefore,

its logarithm varies between negative values and zero. The radiation efficiency of the cylindrical shell under consideration for

frequencies below the ring frequency and between the ring and the critical frequency is between−10 dB and −20 dB and for fre-

quencies above the critical frequency is −20 dB. This means that the cylindrical shell radiates poorly except at the ring frequency

and the critical frequency which has a high radiation.

3.4. TL measurements of the cylindrical shell

The sound transmission loss of a structure may be evaluated by two experimental methods which are widely used by former

researchers, namely transmission suite method and sound intensity method. In this paper, both methods are used to measure

the transmission loss of the cylindrical shell and results are contrasted with analytical calculations.

3.4.1. Transmission suite method

The transmission suite method which is also referred as the two rooms method consists of two reverberant spaces called the

transmission room and the reception room which are separated by the structure under investigation which is the thin cylindrical

shell in the current paper. In this method, the TL is evaluated by measuring the sound pressure levels of the two spaces and the

reverberation time of the reception room.

In order to measure the TL of the cylindrical shell by the transmission suite method a set of experiments was carried out in

the reverberation chamber utilizing two Brüel & Kjær microphones (type 4188 L1) positioned inside and outside of the cylinder.

The experimental setup is shown in Fig. 8. The sound field inside the cylinder was provided by the loudspeakers which is shown

schematically in Fig. 4. The microphone placed inside the cylinder was rotated circumferentially during the measurements in

order to achieve the spatially averaged sound pressure level in the circumferential direction. Fig. 9 shows the sound pressure

levels inside the cylinder. It can be seen that the discrepancy between the measured sound pressure level at three different

locations inside the cylinder with spatially averaged sound pressure level is less than 5 dB for the frequency range of interest.

By knowing that the sound waves in a diffuse sound field are incident randomly from all directions and the magnitude of the
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Fig. 8. Schematic display of the experimental setup for the TL measurement by transmission suite method.

Fig. 9. Comparison of sound pressure levels between three points ( , , ) with spatially averaged sound pressure level ( ) inside the cylinder.

incident and reflected sound waves are the same provided the surface is rigid or heavy, the sound pressure level should be

the same everywhere in a diffuse sound field. Therefore, by looking at the results shown in Fig. 9 which shows that the sound

pressure level is approximately the same at any frequency regardless of orientation or location of the microphone, it can be

concluded that the sound field inside the cylinder is sufficiently diffuse and the assumption of the reverberant room for the

interior space of the cylindrical shell is acceptable. However, it is not always true the other way around. For example, a plane

wave can also produce the same sound pressure level everywhere.

The noise reduction is obtained by subtracting the measured sound pressure level in the transmission room from the mea-

sured sound pressure level in the reception room. Then the transmission loss is acquired by taking into account the reverberation

time which was measured previously, using the following expression [20]

TL = NR + 10 log[ ScaT60

24V3 ln(10)
]. (33)

3.4.2. Sound intensity method

The second method used in order to evaluate the sound transmission loss of the cylindrical shell is the sound intensity

technique. This method is based on determining the sound intensities inside and outside of the cylinder and calculating the
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Fig. 10. Comparison between experimental and analytical results for sound transmission loss of the cylindrical shell; Current paper ( ), Wang et al. [21] ( );

Transmission suite method ( ) and Sound intensity method ( ).

transmission loss using following expression [33]

TL = 10 log( Ii

It

), (34)

where Ii and It are the incident and transmitted intensities, respectively.

Since the interior sound field is seen in Fig. 9 to be sufficiently diffuse, the incident intensity is calculated using the measured

sound pressure results inside the cylinder which is given by Ref. [51]

Ii =
p2

rms

4𝜌aca

. (35)

where prms is the measured average sound pressure inside the cylinder. By knowing that the sound field in the receiving room

was sufficiently diffuse, the transmitted intensity was measured by moving the sound intensity probe over the surface of the

cylinder.

3.4.3. Comparison of two methods of measuring sound transmission loss

Fig. 10 shows the sound transmission loss of the cylindrical shell obtained by the two experimental methods. The internal

sound pressure levels provided by the loudspeakers were held constant for both experimental methods and also during the

measurements. The transmission loss measured by the transmission suite method is plotted in one-twelveth octave frequency

bands. Since the reverberation time was measured in one-twelveth octave bands, the transmission loss must be plotted in the

same frequency band. As expected, it shows two recognizable dips in the transmission loss curve. The first dip occurs at the ring

frequency which is predicted at 2738 Hz. Above the ring frequency, the transmission loss increases up to the critical frequency

where the second dip is observed at 10290 Hz. The percentage of error between predicted and calculated ring frequencies is

3.0% and that for the critical frequency is 1.7% which is indicative of a good agreement between the experimental and theoretical

evaluations.

In the second method the transmitted intensity through the cylinder was measured by moving the intensity probe over the

entire cylindrical shell surface. It can be seen from Fig. 10 that the transmission loss obtained by the sound intensity method

shows a similar trend to the results obtained by the transmission suite technique. The ring and critical frequencies are predicted

at 2600 Hz (1.8% error) and 10530 Hz (4.1% error), respectively which represents a good agreement between the experimental

and analytical predictions.

A comparison is also made between the experimental measurements of the transmission loss of the cylindrical shell and

theoretical SEA calculations of the present study and the work done by Wang et al. [21] which is plotted in Fig. 10. It shows that

the agreement between the analytical result of the current paper and experimental measurements is better than the Wang’s

result in the low frequency region and specifically at the ring frequency. The reason is that two correction factors have been

used for the radiation efficiency which are effective in low frequencies. The agreement between two experimental methods

is poor for the low frequency region below the ring frequency. It can be due to the fact that in the sound intensity method,

the incident intensity was obtained using the measured sound pressure results (Eq. (35)) based on the assumption of a diffuse

sound field inside the cylinder. Although it is assumed that the sound field of the interior space of the cylinder is diffuse, this

assumption in the low frequency region is not as reliable as the assumption for the medium and high frequency regions. Because

the sound pressure levels for three random locations displayed in Fig. 9 showed dissimilarity in the low frequencies which may

be the cause for the inconsistency between two experimental methods at low frequency region.
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Fig. 11. Comparison of measured transmission loss with ( ) and without ( ) absorbing material using sound intensity method.

As it was observed in Fig. 10, both experimental techniques, the transmission suite method and the sound intensity method,

agree very well in the medium and high frequency regions, between the ring and critical frequencies. At frequencies higher than

the critical frequency, the sound intensity measurement was not reliable since the sound intensity probe failed at frequencies

above 12 kHz. For frequencies between the ring and critical frequencies, Wang’s theoretical results yields better agreement

and about 5 dB to 10 dB discrepancy is observed between the results of the present study and Wang’s paper. This can be due

to ignoring coupling loss factors in comparison with total damping in the derivation of the noise reduction expression which

causes a decrement in the transmission loss trend in medium and high frequency regions. However, the analytical result of the

current paper predicts the sound transmission loss better than the Wang’s result at the critical frequency.

4. Effects of using sound absorbing material

In the previous section, the experimental measurements of sound transmission loss are compared with the theoretical

results. The value of the internal loss factor of the cylinder, 𝜂2, and its absorption coefficient, 𝜇, used in the analytical calcu-

lations according to the setup conditions when the cylinder was not lined with any absorbing materials was 0.05 and 0.001,

respectively.

It is of interest to study the effect of absorbing material such as fiberglass. As mentioned in the literature review, differ-

ent approaches have been applied in order to achieve better noise transmission characteristics with cylindrical shells. Adding

absorbing material such as fiberglass inside the cylinder is a suitable way to improve the noise reduction without a significant

change in the weight of the structure and its vibrational response. Therefore, another experiment was carried out with fiberglass

inside the cylinder. In the experiment, fiberglass was placed around the longitudinal axis of the cylinder.

It is helpful to compare the sound transmission loss measured with the absorbing material inserted into the cylinder and

without it. The comparison is shown in Fig. 11. It is observed that utilizing absorbing material has positive effects on the noise

Fig. 12. Theoretical effect of absorption coefficient on noise reduction of a cylindrical shell.
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reduction of the cylindrical shell specially at high frequencies. The noise reduction is increased about 15 dB in high frequency

bands and 35 dB at critical frequency which is a great achievement because sound transmits easily through a structure at its

critical frequency, therefore obtaining high transmission loss at this specific frequency is vital from the acoustical point of view.

The effect of absorption coefficient on the noise reduction is shown in Fig. 12. It can be concluded that use of absorbing material

with a higher absorption coefficient gives a better noise reduction performance.

5. Conclusions

In this paper an analytical model was developed based on statistical energy analysis (SEA) theory to investigate the acoustic

behavior of a thin-walled circular cylindrical shell. The noise reduction and sound transmission loss were obtained theoretically

for a finite shell model. The effects of internal loss factors were considered in the derivation. An experiment was also carried out

in a reverberation chamber in order to measure the transmission loss and compare it with the analytical results. First, natural

frequencies of the shell were measured using two excitation methods, contact method in which a modal hammer was used and

non-contact method which included an acoustical excitation using loudspeakers. It was found out that the contact method was

more efficacious in low frequency region and the non-contact method was able to excite higher natural modes much better than

the other method. A simplified expression for natural frequency based on Soedel theory was presented in the theoretical part.

The calculated natural frequencies were also compared with the experimental results and showed fairly good agreement. One

of the important SEA parameters is the radiation efficiency which was measured separately. Good agreement was obtained by

comparing the experimental results with those calculated using the expression presented for the corrected radiation efficiency.

The sound transmission loss of the cylindrical shell were measured using two experimental techniques, the transmission

suite method and the sound intensity method. The experimental results were contrasted with transmission loss values calcu-

lated using the SEA theory. It was observed that the analytical approach of obtaining sound transmission loss produced better

results in the low frequency region than the medium and high frequency regions, which is because of applying correction fac-

tors at low frequencies. The analytical result showed good agreement with the experimental methods at the ring and critical

frequencies. The errors between calculated values for the ring and critical frequencies and predicted ones were less than 4.1%

which is a satisfactory outcome. The experimental methods were also compared together which indicated some discrepancies

in low frequency region but they agreed very well in the medium and high frequency regions, between the ring and critical

frequencies. It is mainly because of the assumption of diffuse sound field for the interior space of the cylinder. The interior

noise level was almost reverberant at medium and high frequencies but it was not completely diffuse at low frequencies. There-

fore, the sound intensity method which obtained the incident intensity using the measured sound pressure levels based on the

assumption of a diffuse sound field, had some discrepancies in transmission loss results with those from the transmission suite

method at low frequencies.

The effects of absorbing material on the acoustic behavior of the cylindrical shell were also investigated using the analyt-

ical solutions and experimentally. It was found out that using sound absorbing material such as fiberglass inside the cylinder

improved its acoustical behavior at the critical frequency. Therefore, considering the light weight of fiber glass and its perfor-

mance, it is seen to be a good way to improve noise reduction in thin-walled cylindrical shells.

Appendix

The coefficients in Eq. (3) are expressed as follows:

C11 = −𝜆2R2 − 1 − 𝜈

2
n2 − 𝜌(1 − 𝜈2)

E
R2𝜔2

mn

C12 = 1 + 𝜈

2
n𝜆R

C13 = 𝜈𝜆R

C22 = −(1 + 𝛽)(1 − 𝜈

2
𝜆2R2 + n2) − 𝜌(1 − 𝜈2)

E
R2𝜔2

mn

C23 = −n[1 + 𝛽(𝜆2R2 + n)]

C33 = 1 + 𝛽(𝜆2R2 + n2)2 − 𝜌(1 − 𝜈2)
E

R2𝜔2
mn
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