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ABSTRACT Feedback analysis on the rate region of multi-user channels is a problem of great importance
in information and communication theory. In this paper, the Slepian-Wolf multiple access relay channel
(SW-MARC) with relay-sources feedback is studied as a more general model of MARC where feedback
outputs are taken into consideration. First, an inner bound on the capacity region of the discret alphabet and
memoryless (DM) model of this channel (DM-SW-MARC) is obtained using partial decode and forward
strategy. Second, an outer bound on the capacity region is derived by applying Fano’s inequality. Third,
the DM results are extended to the continuous alphabet version, where an inner bound on the capacity region
of the GaussianMARC (GMARC) with relay-sources feedback is derived. Fourth, it is shown that our results
include the important previous works on multiple-access channel with feedback (Cover-Leung rate region)
and without feedback (Slepian-Wolf (SW) rate region, etc.) as special cases. Finally, we investigate the
effect of feedback and show that the presence of feedback enables the sources to understand each other’s
messages, which in turn allows the sources to cooperate to resolve the residual uncertainty at the receiver in
an efficient way and at the same time, independent fresh information from the sources is superimposed upon
the resolution information.

INDEX TERMS Achievable rate region, partial feedback, regular encoding/ backward decoding, Slepian-
Wolf multiple access relay channel.

I. INTRODUCTION
Multiple access relay channel (MARC) is the combination of
the MAC and relay channel (RC) which was first introduced
and studied by Kramer and Wijngaarder [1]. In this channel,
the relay helps the sources to communicate simultaneously
with one destination. An example of such a channel model
is cooperative uplink communications in the cellular network
in which mobile users send their own data to the base station
with the help of the relay station. Sankar [2] has proposed dif-
ferent strategies such as compress and forward (CF), amplify
and forward (AF) and decode and forward (DF) for discrete
memoryless (DM) MARC. An achievable rate region for
DM-MARC with a common message was derived in [3]
using a regular block Markov encoding/backward decoding
scheme which was then extended to the continuous alphabet
version. Moreover, a general inner bound on the capacity
region for Slepian-Wolf MARC (SW-MARC) was analyzed
in [4]. Murin et al. [5] obtained an achievable source-channel
rate for arbitrarily correlated sources over MARC with

correlated side information at both relay and the destina-
tion. Sattar et al. [6] have proposed two relay cooperation
schemes to be applied in MARC with interference cancel-
lation and compute and forward strategy. Performance anal-
ysis for transmission of correlated sources over orthogonal
and non-orthogonal MARC was carried out in [7] and [8]
respectively. A quantize and forward strategy for interleave
division multiple access relay channel was investigated in [9].
Also, energy efficiency in the MARC with optimal power
allocations minimizing the energy consumption at the desired
communication rates has been studied in [10] and [11].

The relay channel has been widely studied since its ini-
tiation by Van der Meulan [12] in 1971. Cover and El.
Gamal [13] have studied the relay channel, where a general
inner bound on the capacity is obtained using a combina-
tion of partial decode and forward (PDF) and compress and
forward (CF) strategies. Subsequently, an extensive study on
some special classes of the relay channel, such as the relay
channel with full feedback, degraded and reversely degraded
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relay channel [13], orthogonal relay channel [14] and semi-
deterministic relay channel [15], have proven that strategies
of Cover and El. Gamal is optimal and achieves capacity.
A unified capacity theorem for the relay channel has been
obtained in [16].

Feedback, as one of the most important research areas
in network information theory, can increase achievable rate
region of several multiuser channels although it does not
change the achievable rate of discrete alphabet and memo-
ryless point to point channels. It is interesting to investigate
the impact of feedback on the achievable rate region of the
MARC. The relay channel with full feedback (receiver to
source, receiver to relay and relay to source feedbacks) was
proved to be a physically degraded channel in [13] based
on which DF has worked as a capacity achieving strategy in
this case. Two other partial feedback configurations for the
relay channel with relay-source feedback and receiver-source
feedback via CF strategy were obtained in [17] and [18].
Moreover, two new generalized noisy feedback configura-
tions were investigated in [19]. Hou et al. [20] have derived
the achievable rate region through applying regular coding in
a general MARC with relay-source feedback.

A. OUR MOTIVATION AND WORK
The problem of sending correlated sources over a channel is
an important issue in multiuser information theory. Depen-
dency between the sources can be taken into account by
splitting each source message into two parts: private message
and common message, as introduced by Slepian-Wolf for the
MAC with common message [21]. On the other hand, it was
shown that relay can facilitate communications between the
sources and the destination by increasing the transmission
rate and coverage area. Moreover, feedback can cause to
resolve residual uncertainty at the receiver.

The main objective of this paper is to derive a general inner
bound on the capacity region for DM-MARC with relay-
sources feedback by applying regular encoding/backward
decoding strategy where there is a common message between
the sources that might be considered as a generalization
of SW-MAC capacity theorem to the MARC with relay-
sources feedback. Furthermore, by applying Fano’s inequal-
ity, an outer bound for DM-MARC with relay-sources feed-
back is obtained. In addition, the SW-GMARCwhich is a full
duplex Gaussian model of the SW-MARC is introduced and
the results of the DM model are extended to a discrete time
continuous alphabet model. Through relay-sources feedback,
cooperation among the sources and the relay is set up to
resolve residual uncertainty at the receiver. All related pre-
vious works are special cases of our results.

B. PAPER ORGANIZATION
The rest of the paper is organized as follows: In the next
section, the systemmodel under consideration and definitions
are presented. In section III, we present our main theorems
on inner and outer bounds for multiple access relay channel
with relay-sources feedback. Proof of the achievability rate

FIGURE 1. Multiple access relay channel with relay-sources feedback.

region and outer bound region is described in section IV and
the conclusion is drawn in section V.

II. SYSTEM MODEL AND NOTATIONS
A. NOTATION
Random variables are denoted by capital letters, while their
realizations are shown by respective lower case letters.When-
ever the dimension of a random vector is clear from the
context, the random vector is denoted by a bold-face letter,
that is, X denotes the random vector (X1, X2, . . . , Xn), and
x = (x1, x2, . . . , xn) shows a specific sample value of it.
However, in those cases where it is important to emphasize
explicitly the dimension of a random vector X i denotes the
random vector (X1, X2, . . . , Xi), and x i = (x1, x2, . . . , xi)
shows a specific sample value of X i. The alphabet of a scalar
random variable X is designated by a calligraphic letter X .
The n-fold Cartesian power of a generic alphabet V, that is,
the set of all n-vectors over V, are denoted by Vn. An

ε(X )
denotes the set of all ε-typical n-sequences according to p(x).
Furthermore, h(X ) and h(X |Y ) denote differential entropy of
X and differential entropy of X given Y , respectively; I (X;Y )
denotes the mutual information between X and Y . For X ∼
N (0, σ 2

X ), h(X ) =
1
2 log(2πeσ

2
X ). For simplicity in notation,

let C(x) = 1
2 log(1+ x), for x ≥ 0 and ᾱ = 1− α.

B. SYSTEM MODEL
As shown in Fig. 1, a discrete memoryless multiple access
relay channel with relay-sources feedback consists of source
1, source 2, a relay and a receiver. The channel is defined
by tuple (X1 × X2 × XR, p(yD, yR|x1, x2, xR),YD × YR)
where (X1,X2,XR) are finite sets corresponding to the input
alphabets of source1, source 2 and the relay, respectively; the
finite sets (YD,YR) are the output alphabets of the relay and
the receiver, respectively; and p(yD, yR|x1, x2, xR) denotes the
collections of probabilities of the channel outputs (yR, yD) ∈
(YR,YD) which might be received on the conditions that
channel inputs (x1, x2, xR) ∈ (X1×X2×XR) are transmitted.
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The channel is assumed to be memoryless like the following

p(yR,k , yD,k |xk1 , x
k
2 , x

k
R, y

k
R, y

k
D)

= p(yR,k , yD,k |x1,k , x2,k , xR,k ) (1)

where x1,k , x2,k , xR,k , yR,k , yD,k denote the inputs and
outputs of the channel at time instant k , respectively. A
((2nR0 , 2nR1 , 2nR2 ), n) code for the multiple access relay
channel with casual partial feedback from the relay to the
sources consists of three sets of integers W0,W1,W2 where
(W0,Wi) = [1 : 2nR0 ] × [1 : 2nRi ], (i = 1, 2), is defined as
follows:
1)A set of encoding functions at the sources,{

f1,k : (W0,W1)× Yk−1
R → X1, k = 1, 2, . . . , n

f2,k : (W0,W2)× Yk−1
R → X2, k = 1, 2, . . . , n

(2)

where fi,k (w0,wi, y
k−1
R ), i = 1, 2, is the symbol transmit-

ted at time instant k by the sender iwhen attempting to convey
messages (w0,wi) to the receiver after obtaining the previous
k − 1 output symbols yk−1R = (yR,1, yR,2, . . . , yR,k−1) which
is already set as feedback from the relay.
2) A set of relaying functions at the relay

fR,k : Yk−1
R → XR, k = 1, 2, . . . , n (3)

After obtaining the previous k − 1 output symbols yk−1R =

(yR,1, yR,2, . . . , yR,k−1), fR,k (y
k−1
R ) will be prepared to be

transmitted at time instant k by the relay.
3) A decoding function at the destination

g : Yn
D→ (W0 ×W1 ×W2) (4)

The probability of error is defined under the uniform distri-
bution of messages over the product set (W0×W1×W2) as
follows:

pne =
1

2n(R0+R1+R2)∑
(w0,w1,w2)∈
(W0,W1,W2)

Pr{g(Y nD) 6= (w0,w1,w2)|(w0,w1,w2)sent}

(5)

A rate triple (R0,R1,R2) is said to be achievable for the
DM-MARC with relay-sources feedback, if a sequence of
codes ((2nR0 , 2nR1 , 2nR2 ), n) exists for which Pne approaches
0 as n→∞.

III. MAIN THEOREMS
In this section, an inner bound on the capacity region of the
DM-SW-MARC with relay-sources feedback is proved to be
achievable by applying regular encoding/ backward decoding
strategy as Theorem 1. Next, the outer bound is derived in
Theorem 2. Finally, inner bound of the DMmodel is extended
to the Gaussian case in Theorem 3. Note that in the proposed
MARC with relay-sources feedback, the relay is a generic
relay performing PDF strategy to aid transmission between

the sources and the destination while there is a common mes-
sage among the sources. Finally, it is shown that all previous
works are special cases of our theorems.
Theorem 1: For the DM-SW-MARCwith casual noiseless

relay-sources feedback, an inner bound on the capacity region
using PDF strategy is given by the union set of rate triple
(R0,R1,R2) satisfying:

R′1
≤ I (U1;YR|XR,V ′,U ′,U0,U2,V0,V1,V2)

R′2
≤ I (U2;YR|XR,V ′,U ′,U0,U1,V0,V1,V2)

R′1 + R
′

2

≤ I (U1,U2;YR|XR,V ′,U ′,U0,V0,V1,V2)

R′0 + R
′

1 + R
′

2

≤ I (U0,U1,U2;YR|XR,V ′,U ′,V0,V1,V2)

RV + R′0 + R
′

1 + R
′

2

≤ I (U ′,U0,U1,U2;YR|XR,V ′,V0,V1,V2)

R′′1
≤ I (X1;YD|XR,X2,Q,V ′,V0,V1,V2,U ′,U0,U1,U2)

R′′2
≤ I (X2;YD|XR,X1,Q,V ′,V0,V1,V2,U ′,U0,U1,U2)

R′′1 + R
′′

2

≤ I (X1,X2;YD|XR,Q,V ′,V0,V1,V2,U ′,U0,U1,U2)

R′1 + R
′′

1

≤ I (X1,XR,V1,U1;YD|X2,Q,V ′,V0,V2,U ′,U0,U2)

R′2 + R
′′

2

≤ I (X2,XR,V2,U2;YD|X1,Q,V ′,V0,V1,U ′,U0,U1)

R′′0 + R
′′

1 + R
′′

2

≤ I (X1,X2,Q;YD|XR,V ′,V0,V1,V2,U ′,U0,U1,U2)

R′1 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,V1,U1;YD|Q,V ′,V0,V2,U ′,U0,U2)

R′2 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,V2,U2;YD|Q,V ′,V0,V1,U ′,U0,U1)

R′1 + R
′′

0 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,Q,V1,U1;YD|V ′,V0,V2,U ′,U0,U2)

R′2 + R
′′

0 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,Q,V2,U2;YD|V ′,V0,V1,U ′,U0,U1)

R′1 + R
′

2 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,V1,U1,V2,U2;YD|Q,V ′,V0,U ′,U0)

R′1 + R
′

2 + R
′′

0 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,Q,V1,U1,V2,U2;YD|V ′,V0,U ′,U0)

R′0 + R
′

1 + R
′

2 + R
′′

0 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,Q,V0,U0,V1,U1,V2,U2;YD|V ′,U ′)

RV + R′0 + R
′

1 + R
′

2 + R
′′

0 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,Q,V ′,U ′,V0,U0,V1,U1,V2,U2;YD)

(6)
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where the union is taken over all joint probability distribu-
tions of the form:

p(v′, v0, v1, v2, u′, u0, u1, u2, q, x1, x2, xR, yR, yD)

= p(v′)p(v0|v′)p(v1|v′, v0)p(v2|v′, v0)p(u′|v′)

p(u0|v′, v0, u′)p(q|v′, v0, u′, u0)

× (
2∏

k=1

p(uk |v′, v0, vk , u′, u0)p(xk |v′, v0, vk , u′, u0, uk , q))

× p(xR|v′, v0, v1, v2)p(yR, yD|x1, x2, xR) (7)

and RV is the feedback rate and R′k ,R
′′
k are the components of

the message rate Rk such that Rk = R′k + R
′′
k , k = 0, 1, 2.

Outline of proof: Each common message (w0) and pri-
vate message (w1,w2) are splitted into two parts w′k and
w′′k , k = 0, 1, 2, with the rates R′k and R′′k , respectively.
Note that V ′ carries the relay-sources feedback message
information for resolving receiver’s residual uncertainty, V0
is the common message information, Vk , k = 1, 2, is the
private message information,U ′ is the new feedback message
information, U0 is the new common message information,
Uk , k = 1, 2, is the private new message information. Also
Q represents all new common messages information that is
intended to be transmitted along with all new private mes-
sages information by each source. The details of the proof
are given in the next section.
Corollary 1: By setting V ′ = V0 = V1 = V2 = U ′ =

U0 = U1 = U2 = XR = ∅, the achievable rate region of
Slepian-Wolf MAC in [21] is derived.
Corollary 2: As easily seen, the inner bound on the capac-

ity region of MARC with common message in [3] is obtained
by setting V ′ = U ′ = ∅.
Corollary 3: By setting V0 = V2 = U0 = U2 = X2 =

Q = 0, and V1 = XR, U1 = X1, the achievable rate for relay
channel with relay-source feedback through DF strategy (not
studied previously) is derived.
Proposition 1: By setting U1 = X1, U2 = X2 and

Q = U0 or ∅, an achievable rate region for MARC
with a common message and relay-source feedback via
full DF strategy is given by equation (9), where the union
is obtained by taking account of all distributions of the
form:

p(v′, v0, v1, v2, u′, u0, x1, x2, xR, yR, yD)

= p(v′)p(v0|v′)p(v1|v′, v0)p(v2|v′, v0)p(u′|v′)

× p(u0|v′, v0, u′)(
2∏

k=1

p(xk |v′, v0, vk , u′, u0))

× p(xR|v′, v0, v1, v2)p(yR, yD|x1, x2, xR) (8)

R1

≤ min

{
I (X1;YR|XR,X2,U ′,U0,V ′,V0,V1,V2),
I (X1,XR;YD|X2,U ′,U0,V ′,V0,V2),

R2

≤ min

{
I (X2;YR|XR,X1,U ′,U0,V ′,V0,V1,V2),
I (X2,XR;YD|X1,U ′,U0,V ′,V0,V1),

R1 + R2

≤ min

{
I (X1,X2;YR|XR,U ′,U0,V ′,V0,V1,V2),
I (X1,X2,XR;YD|U ′,U0,V ′,V0),

R0 + R1 + R2

≤ min

{
I (X1,X2;YR|XR,U ′,V ′,V0,V1,V2),
I (X1,X2,XR;YD|U ′,V ′),

RV + R0 + R1 + R2

≤ min

{
I (X1,X2;YR|XR,V ′,V0,V1,V2),
I (X1,X2,XR;YD),

(9)

Theorem 2: An outer bound on the capacity region of a
two-user MARC with a common message and relay-sources
feedback is the union of all rate triple (R0,R1,R2) satisfying:

R1 ≤ min

{
I (X1,XR;YD|X2,U ,V ),
I (X1;YD,YR|X2,XR,U ,V ),

R2 ≤ min

{
I (X2,XR;YD|X1,U ,V ),
I (X2;YD,YR|X1,XR,U ,V ),

R1 + R2 ≤ min

{
I (X1,X2,XR;YD|U ,V ),
I (X1,X2;YD,YR|XR,U ,V ),

R0 + R1 + R2 ≤ min

{
I (X1,X2,XR;YD|V ),
I (X1,X2;YD,YR|XR,V ),

RV + R0 + R1 + R2 ≤ min

{
I (X1,X2,XR;YD),
I (X1,X2;YD,YR|XR),

(10)

where the union is taken over all joint probability distribu-
tions of the form:

p(v, u, x1, x2, xR, yR, yD)

= p(v)p(u|v)p(x1|v, u)

× p(x2|v, u)p(xR|x1, x2)p(yR, yD|x1, x2, xR) (11)

Corollary 4: As easily seen, the outer bound of MARC
with a common message and without feedback is obtained
by setting V = ∅.
Corollary 5: By setting XR = YR = V = ∅, the outer

bound of MAC without feedback is derived.
Theorem 3: An inner bound on capacity region of SW-

GMARC with relay-sources feedback is given by

R1≤maxmin{C(
α1P1
NR

),C(
α1P1+(

√
µ1 P1+

√
γRPR)2

ND
)},

R2≤maxmin{C(
α2P2
NR

),C(
α2P2+(

√
µ2 P2+

√
αRPR)2

ND
)},

R1 + R2 ≤ maxmin
C
(
α1P1+α2P2

NR

)
,

C




α1P1 + α2P2+
(
√
µ1 P1 +

√
γRPR)2+

(
√
µ2 P2 +

√
αRPR)2


ND


 ,

R0 + R1 + R2 ≤ maxmin
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

C(α1P1+α2P2+(
√
γ1 P1+

√
γ2 P2)2

NR
),

C





α1P1 + α2P2+
(
√
µ1 P1 +

√
γRPR)2+

(
√
µ2 P2 +

√
αRPR)2+

+(
√
γ1 P1 +

√
γ2 P2)2+

(
√
θ1 P1 +

√
θ2 P2 +

√
βRPR)2


ND




,

RV + R0 + R1 + R2 ≤ maxmin

C

((
α1P1 + α2P2+

(
√
γ1 P1 +

√
γ2 P2)2 + (

√
β1 P1 +

√
β2 P2)2

)
NR

)
,

C





α1P1 + α2P2+
(
√
µ1 P1 +

√
γRPR)2+

(
√
µ2 P2 +

√
αRPR)2+

(
√
γ1 P1 +

√
γ2 P2)2+

(
√
θ1 P1 +

√
θ2 P2 +

√
βRPR)2+

(
√
β1 P1 +

√
β2 P2)2+

(
√
α1 + β1 + γ1 + µ1 + θ1P1+√
α2 + β2 + γ2 + µ2 + θ2P2+√

αR + βR + γRPR)


2


ND




(12)

where the union is obtained by taking account of all param-
eters αi, βi, γi, µi, θi, αR, βR, γR ∈ [0, 1], i = 1, 2, such that
αi + βi + γi + µi + θi ≤ 1, αR, βR, γR ≤ 1.
Corollary 6: The inner bound on capacity region for

SW-GMARC without feedback via the DF strategy [3] is
obtained by setting α1+γ1+µ1+θ1 = 1, α2+γ2+µ2+θ2 =

1, αR + βR + γR = 1, β1 = β2 = 0.
Corollary 7: By setting αR = βR = P2 = θ1 = γ1 = 0,

the achievable rate for the Gaussian relay channel with relay-
source via the DF strategy is obtained. The difference of this
corollary with [17] is due to the strategies applied for the
coding (DF and CF strategies).
Corollary 8: The achievable rate region for Gaussian mul-

tiple access channel with feedback [22] is derived by setting
ND = NR,PR = 0, θ1 = γ1 = θ2 = γ2 = 0. The difference
of this corollary with [23], which achieves a higher sum rate,
is due to the coding schemes which are totally different.
Using equation (12), the achievable sum rate for Gaussian
MARC with relay-sources feedback has been computed and
shown in Fig. 2. As predicted, the achievable sum rate with
feedback is larger than the sum rate without feedback and the
feedback increases the sum rate.

IV. PROOFS
Proof of Theorem 1: The achievability proof of inner

bound consists of three parts: first, the random code book
generation is given, next, the encoding scheme is presented,
and third, the decoding scheme is provided.

Random code book generation: consider n > 0 and fix a
choice of

p(v′, v0, v1, v2, u′, u0, u1, u2, q, x1, x2, xR, yR, yD)

FIGURE 2. Achievable sum rate for Gaussian Multiple access relay
channel, with relay-sources feedback and without feedback.

= p(v′)p(v0|v′)p(v1|v′, v0)p(v2|v′, v0)p(u′|v′)p(u0|v′, v0, u′)

× p(q|v′, v0, u′, u0)

× (
2∏

k=1

p(uk |v′, v0, vk , u′, u0)p(xk |v′, v0, vk , u′, u0, uk , q))

× p(xR|v′, v0, v1, v2)p(yR, yD|x1, x2, xR) (13)

Note that V ′ carries the relay-sources feedback information
for resolving receiver’s residual uncertainty. First, as the
center of the clouds, the feedback information message
codeword, v′

n
,based on p(v′

n
) =

∏n
t=1 p(v

′
t ) is generated.

Next, for each v′
n
, the common message codeword vn0 is

generated by superposition coding. Then, for each (v′
n
, vn0),

the private message codeword vnk , k = 1, 2 is generated.
After that, for each v′

n
, the new information codeword

of feedback, u′
n
,is generated. Next, for each (v′

n
, vn0, u

′
n
),

the common new information codeword un0 is generated. For
each (v′

n
, vn0, v

n
k , u
′
n
, un0), the private new information mes-

sage codeword unk is generated. qn represents all new com-
mon information messages that is intended to be transmitted
along with all new private information messages by each
source.

• As the center of the cloud, generate 2nRV i.i.d n-sequence
v′
n
,based on p(v′

n
) =

∏n
t=1 p(v

′
t ) and index them as

v′
n
(j′), j′ ∈ [1 : 2nRV ].

• For each v′
n
(j′), by superposition coding, generate

2nR
′

0 i.i.d n-sequence vn0,based on p(vn0|v
′
n
(j′)) =∏n

t=1 p(v0,t |v
′
t (j
′)) and index them as vn0(j0, j

′), j0 ∈ [1 :
2nR

′

0 ].
• For each (v′

n
(j′), vn0(j0, j

′)), generate 2nR
′
k i.i.d n-

sequence vnk , based on p(vnk |v
′
n
(j′), vn0(j0, j

′)) =∏n
t=1 p(vk,t |v

′
t (j
′), v0,t (j0, j′)) and index them as vnk (jk ,

j0, j′), jk ∈ [1 : 2nR
′
k , k = 1, 2].

• For each v′
n
(j′), by superposition coding, generate

2nRV i.i.d n-sequence u′
n
,based on p(u′

n
|v′

n
(j′)) =∏n

t=1 p(u
′
t |v
′
t (j
′)) and index them as u′

n
(l ′, j′), l ′ ∈ [1 :

2nRV ].
• For each (v′

n
(j′), u′

n
(l ′, j′), vn0(j0, j

′)), generate 2nR
′

0

i.i.d n-sequence un0,based on p(un0|v
′
n
(j′), u′

n
(l ′, j′),

vn0(j0, j
′)) =

∏n
t=1 p(u0,t |v

′
t (j
′), u′t (l

′, j′), v0,t (j0, j′)) and
index them as un0(l0, j0, l

′, j′), l0 ∈ [1 : 2nR
′

0 ].
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• For each (v′
n
(j′), u′

n
(l ′, j′), vn0(j0, j

′), un0(l0, j0, l
′, j′),

vnk (jk , j0, j
′)), generate 2nR

′
k i.i.d n-sequence unk ,

based on p(unk |v
′
n
(j′), u′

n
(l ′, j′), vn0(j0, j

′), un0(l0, j0, l
′, j′),

vnk (jk , j0, j
′)) =

∏n
t=1 p(uk,t |v

′
t (j
′), u′t (l

′, j′), v0,t (j0, j′),
u0,t (l0, j0, l ′, j′), vk,t (jk , j0, j′)) and index them as
unk (lk , jk , l0, j0, l

′, j′), lk ∈ [1 : 2nR
′
k ], k = 1, 2.

• For each (v′
n
(j′), u′

n
(l ′, j′), vn0(j0, j

′), un0(l0, j0, l
′, j′)),

generate 2nR
′′

0 i.i.d n-sequence qn, based on p(qn|v′
n
(j′),

u′
n
(l ′, j′), vn0(j0, j

′), un0(l0, j0, l
′, j′)) =

∏n
t=1 p(qt |v

′
t (j
′),

u′t (l
′, j′), v0,t (j0, j′), u0,t (l0, j0, l ′, j′)) and index them as

qn(m0, l0, j0, l ′, j′),m0 ∈ [1 : 2nR
′′

0 ].
• For each (v′

n
(j′), u′

n
(l ′, j′), vn0(j0, j

′), un0(l0, j0, l
′, j′),

vnk (jk , j0, j
′), unk (lk , jk , l0, j0, l

′, j′), qn(m0, l0, j0, l ′, j′),
generate 2nR

′′
k i.i.d n-sequence xnk , based on p(xnk |v

′
n
(j′),

u′
n
(l ′, j′), vn0(j0, j

′), un0(l0, j0, l
′, j′), vnk (jk , j0, j

′), unk (lk , jk ,
l0, j0, l ′, j′), qn(m0, l0, j0, l ′, j′) =

∏n
t=1 p(xk,t |v

′
t (j
′),

u′t (l
′, j′), v0,t (j0, j′), u0,t (l0, j0, l ′, j′), vk,t (jk , j0, j′), uk,t

(lk , jk , l0, j0, l ′, j′), qt (m0, l0, j0, l ′, j′) and index them as
xnk (mk ,m0, lk , jk , l0, j0, l ′, j′),mk ∈ [1 : 2nR

′′
k ], k = 1, 2.

• For each (v′
n
(j′), vn0(j0, j

′), vn1(j1, j0, j
′), vn2(j2, j0, j

′)),
choose an xnR with p(xnR|v

′
n
(j′), vn0(j0, j

′), vn1(j1, j0, j
′),

vn2(j2, j0, j
′)) =

∏n
t=1 p(xR,t |v

′
n

t (j
′),

vn0,t (j0, j
′), vn1,t (j1, j0, j

′), vn2,t (j2, j0, j
′)) and index them

as xnR(j
′, j0, j1, j2).

Encoding: Encoding is performed in B + 1 blocks. The
messages wv,wk ′ and w′′k are split into B equally sized blocks
wv,b,wk,b′ and w′′k,b, k = 0, 1, 2 and b = 1, 2, . . . ,B.

• At source terminals: In block b = 1, 2, . . . ,B+ 1, the
k th encoder sends xnk,b(w

′′
k,b,w

′′

0,b,w
′
k,b,w

′

0,b,wv,b,w
′

k,b−1,

w′0,b−1,wv,b−1) over the channel, where wv,0 = w′0,0 =
w′1,0 = w′2,0 = wv,B+1 = w′0,B+1 = w′1,B+1 =
w′2,B+1 = w′′0,B+1 = w′′1,B+1 = w′′2,B+1 = 1.

• At relay terminal:The relay knowswv,b,w′0,b,w
′

1,b,w
′

2,b
from previous decoding step at the relay and transmits
xnR,b+1(wv,b,w

′

0,b,w
′

1,b,w
′

2,b) in block b+ 1.

The rest of the proof, including decoding and eroror analysis,
are given in Appendix A.

Proof of Theorem 2: Auxiliary random variables Ui
1
=

W0 and Vi
1
= Wv are defined.

nR1 = H (W1) = I (W1;Y nD)+ H (W1|Y nD)

≤ I (W1;Y nD)+ nεn

≤ I (W1;Y nD,Y
n
R )+ nεn

(a)
→

nR1 ≤ I (W1;Y nD,Y
n
R |W0,W2,Wv)+ nεn

=

n∑
i=1

I (W1;YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,W2,Wv)+ nεn

=

n∑
i=1

H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,W2,Wv)

−H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv)

+ nεn
(b)
→

nR1 ≤
n∑
i=1

H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,W2,Wv,X2,i,XR,i)

−H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv,X1,i,

X2,i,XR,i)+ nεn
(c)
→

nR1 ≤
n∑
i=1

H (YD,i,YR,i|X2,i,XR,i,Ui,Vi)

−H (YD,i,YR,i|X1,i,X2,i,XR,i,Ui,Vi)+ nεn

=

n∑
i=1

I (X1,i;YD,i,YR,i|X2,i,XR,i,Ui,Vi)+ nεn (14)

where (a) follows from the fact that (W1) is independent from
(W0,W2,Wv), (b) is due to X1,i,X2,i are deterministic func-
tions of (Y i−1R ,Wv,W0,W1), (Y

i−1
R ,Wv,W0,W2), respec-

tively, and deterministic relation between XR,i and Y i−1R ,

(c) follows from removing conditioning, and the Markovity
of (Y i−1D ,Y i−1R ,Wv,W0,W1,W2) ⇔ (X1,i,X2,i,XR,i) ⇔
(YD,i,YR,i). The rest of the proof, including the other bounds,
are given in Appendix B

Proof of Theorem 3: In this sub-section, we focus on
theGaussianmultiple access relay channel with relay-sources
feedback which is described as follows: In this channel,
the input symbols sequences {X1}, {X2} and {XR} are sub-
jected to the following average power constraints:

1
n

n∑
k=1

E(|Xi,k |2) ≤ Pi, i = 1, 2

1
n

n∑
k=1

E(|XR,k |2) ≤ PR, (15)

where E denotes as an expectation operator. For each slot k ,
X1,X2,XR are sent and channel outputs are:

YR,k = X1,k + X2,k + ZR,k ,

YD,k = X1,k + X2,k + XR,k + ZD,k , (16)

where ZR = (ZR,1, . . . ,ZR,n) and ZD = (ZD,1, . . . ,ZD,n) are
sequences of independent identically distributed (i.i.d) nor-
mal random variables with zero mean and variances NR,ND
which model the noise on the relay and the receiver respec-
tively.

The discrete alphabet achievable rate results can be
extended to memoryless channels with discrete time and con-
tinuous alphabet [24]. Achievability is established following
the proof of Theorem 1 by substituting U1 = X1,U2 = X2
and Q = ∅ or U0. The resulting information rates suggest
that the rate region is achievable if it satisfies (9). We set:

V0 =
√
η0L +

√
η0V ′

V1 =
√
η1,1T1 +

√
η1,2L +

√
(η1,1 + η1,2)V ′

V2 =
√
η2,1T2 +

√
η2,2L +

√
(η2,1 + η2,2)V ′

U ′ =
√
η3P+

√
η3V ′

U0 =
√
λ1M +

√
λ2P+

√
λ3L +

√
λ1 + λ2 + λ3V ′
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X1 =
√
P1(
√
α1N1 +

√
β1P+

√
γ1M +

√
µ1T1 +

√
θ1L

+

√
(α1 + β1 + γ1 + µ1 + θ1)V ′)

X2 =
√
P2(
√
α2N2 +

√
β2P+

√
γ2M +

√
µ2T2 +

√
θ2L

+

√
(α2 + β2 + γ2 + µ2 + θ2)V ′)

XR =
√
PR(

√
βRL +

√
γRT1 +

√
αRT2

+

√
(αR + βR + γR)V ′) (17)

where V ′,L,T1,T2,P,M ,N1,N2 are all Gaussian ran-
dom variables with zero mean and unit variance and
η0, η1,1, η1,2, η2,1, η2,2, η3, λ1, λ2, λ3, αi, βi, γi, µi, θi, αR, βR,

γR ∈ [0, 1], i = 1, 2, such that η1,1+η1,2 ≤ 1, η2,1+η2,2 ≤
1, λ1+λ2+λ3 ≤ 1, αi+βi+γi+µi+θi ≤ 1, αR+βR+γR ≤ 1.

Considering the relation the channel inputs- channel out-
puts relation in equation (16), the rates are bounded as fol-
lows:
• At the relay:

R1 ≤ I (X1;YR|XR,X2,U ′,U0,V ′,V0,V1,V2)

= h(YR|XR,X2,U ′,U0,V ′,V0,V1,V2)

− h(YR|XR,X1,X2,U ′,U0,V ′,V0,V1,V2)

= h(X1+X2+ZR|XR,X2,U ′,U0,V ′,V0,V1,V2)−h(ZR)

= h(
√
P1(
√
α1N1 +

√
β1P+

√
γ1M +

√
µ1T1 +

√
θ1L

+

√
(α1 + β1 + γ1 + µ1 + θ1)V ′)+ ZR|XR,X2,

U ′,U0,V ′,V0,V1,V2)− h(ZR)
(a)
⇒

= h(
√
α1P1N1 + ZR)− h(ZR)

=
1
2
log(2πe(α1P1 + NR))−

1
2
log(2πeNR)

=
1
2
log(1+

α1P1
NR

) = C(
α1P1
NR

) (18)

Where (a) follows since knowing (U ′,U0,V ′,V0,V1),
reveals L,T1,P,M . Similarly we obtain:

R2 ≤ C(
α2P2
NR

) (19)

R1 + R2 ≤ C(
α1P1 + α2P2

NR
) (20)

R0 + R1 + R2 ≤ C(
α1P1 + α2P2 + (

√
γ1 P1 +

√
γ2 P2)2

NR
)

(21)

RV + R0 + R1 + R2 ≤ C




α1P1 + α2P2+
(
√
γ1 P1 +

√
γ2 P2)2+

(
√
β1 P1 +

√
β2 P2)2


NR

 (22)

the rest of the proof, including the other Gaussian bounds, are
given in Appendix C.

V. CONCLUSION
In this paper, inner and outer bounds for the capacity of the
DM-SW-MARC with relay-sources feedback configuration
were investigated. Moreover, by extending discrete alphabet

results to the continuous alphabet version, an achievable rate
region for the Gaussian multiple access relay channel with
relay-sources feedback was derived. The derived achievable
rate region was shown to resolve the residual uncertainty
of the receiver in an efficient way due to the impact of the
feedback, and our results, while including the previous works
as special cases, show that the proposed coding strategy
enhances the correlation among the sources and the relay
encoder and therefore improves the best known one-way
achievable rate.

APPENDIX A
THE ACHIEVABILITY PROOF OF INNER BOUND
• Decoding and error analysis at the relay terminal:
At the end of block b, after determining xnR from ynR,
the relay looks for (w̃v,b, w̃′0,b, w̃

′

1,b, w̃
′

2,b) in a way that

(v′
n

b (wv,b−1), v
n
0,b(w

′

0,b−1,wv,b−1),

vn1,b(w
′

1,b−1,w
′

0,b−1,wv,b−1),

vn2,b(w
′

2,b−1,w
′

0,b−1,wv,b−1), u
′
n

b (w̃v,b,wv,b−1),

un0,b(w̃
′

0,b,w
′

0,b−1, w̃v,b,wv,b−1),

un1,b(w̃
′

1,b,w
′

1,b−1, w̃
′

0,b,w
′

0,b−1, w̃v,b,wv,b−1),

un2,b(w̃
′

2,b,w
′

2,b−1, w̃
′

0,b,w
′

0,b−1, w̃v,b,wv,b−1),

xnR,b(wv,b−1,w
′

0,b−1,w
′

1,b−1,w
′

2,b−1), y
n
R,b)

∈ Anε(V
′,V0,V1,V2,U ′,U0,U1,U2,XR,YR) (23)

The relay uses joint decoding strategy to find (wv,b,w′0,b,w
′

1,b,

w′2,b) by using typicality decoding of equation (23). This can
be done if:

R′1 ≤ I (U1;YR|XR,V ′,U ′,U0,U2,V0,V1,V2)

R′2 ≤ I (U2;YR|XR,V ′,U ′,U0,U1,V0,V1,V2)

R′1 + R
′

2 ≤ I (U1,U2;YR|XR,V ′,U ′,U0,V0,V1,V2)

R′0 + R
′

1 + R
′

2 ≤ I (U0,U1,U2;YR|XR,V ′,U ′,V0,V1,V2)

RV+R′0+R
′

1+R
′

2≤ I (U
′,U0,U1,U2;YR|XR,V ′,V0,V1,V2)

(24)

• Decoding and error analysis at the destination ter-
minal: The receiver uses backward decoding by waiting
until the last block’s transmission is received. It then
jointly decodes wv,b−1,w′0,b−1,w

′

1,b−1,w
′

2,b−1,w
′′

0,b,

w′′1,b,w
′′

2,b for b = B + 1,B, . . . , 2 by using
yD,b and considering that its previously decoded
messages are correct. The receiver tries to find
w̃v,b−1, w̃′0,b−1, w̃

′

1,b−1, w̃
′

2,b−1, w̃
′′

0,b, w̃
′′

1,b, w̃
′′

2,b in a
way that

(v′
n

b (w̃v,b−1), v
n
0,b(w̃

′

0,b−1, w̃v,b−1),

vn1,b(w̃
′

1,b−1, w̃
′

0,b−1, w̃v,b−1), v
n
2,b(w̃

′

2,b−1, w̃
′

0,b−1, w̃v,b−1),

u′
n

b (wv,b, w̃v,b−1), u
n
0,b(w

′

0,b, w̃
′

0,b−1,wv,b, w̃v,b−1),

un1,b(w
′

1,b, w̃
′

1,b−1,w
′

0,b, w̃
′

0,b−1,wv,b, w̃v,b−1),
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un2,b(w
′

2,b, w̃
′

2,b−1,w
′

0,b, w̃
′

0,b−1,wv,b, w̃v,b−1),

qnb(w̃
′′

0,b,w
′

0,b, w̃
′

0,b−1,wv,b, w̃v,b−1),

xnR,b(w̃v,b−1, w̃
′

0,b−1, w̃
′

1,b−1, w̃
′

2,b−1),

xn1,b(w̃
′′

1,b, w̃
′′

0,b,w
′

1,b, w̃
′

1,b−1,w
′

0,b, w̃
′

0,b−1,wv,b, w̃v,b−1),

xn2,b(w̃
′′

2,b, w̃
′′

0,b,w
′

2,b, w̃
′

2,b−1,w
′

0,b,

w̃′0,b−1,wv,b, w̃v,b−1), y
n
D,b)

∈ Anε(V
′,V0,V1,V2,U ′,U0,U1,U2,Q,XR,X1,X2,YD)

(25)

The relay uses joint decoding strategy to find w̃v,b−1, w̃′0,b−1,

w̃′1,b−1, w̃
′

2,b−1, w̃
′′

0,b, w̃
′′

1,b, w̃
′′

2,b by using typicality decoding
of equation (25). This can be done if:

R′′1
≤ I (X1;YD|XR,X2,Q,V ′,V0,V1,V2,U ′,U0,U1,U2)

R′′2
≤ I (X2;YD|XR,X1,Q,V ′,V0,V1,V2,U ′,U0,U1,U2)

R′′1 + R
′′

2

≤ I (X1,X2;YD|XR,Q,V ′,V0,V1,V2,U ′,U0,U1,U2)

R′1 + R
′′

1

≤ I (X1,XR,V1,U1;YD|X2,Q,V ′,V0,V2,U ′,U0,U2)

R′2 + R
′′

2

≤ I (X2,XR,V2,U2;YD|X1,Q,V ′,V0,V1,U ′,U0,U1)

R′′0 + R
′′

1 + R
′′

2

≤ I (X1,X2,Q;YD|XR,V ′,V0,V1,V2,U ′,U0,U1,U2)

R′1 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,V1,U1;YD|Q,V ′,V0,V2,U ′,U0,U2)

R′2 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,V2,U2;YD|Q,V ′,V0,V1,U ′,U0,U1)

R′1 + R
′′

0 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,Q,V1,U1;YD|V ′,V0,V2,U ′,U0,U2)

R′2 + R
′′

0 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,Q,V2,U2;YD|V ′,V0,V1,U ′,U0,U1)

R′1 + R
′

2 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,V1,U1,V2,U2;YD|Q,V ′,V0,U ′,U0)

R′1 + R
′

2 + R
′′

0 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,Q,V1,U1,V2,U2;YD|V ′,V0,U ′,U0)

R′0 + R
′

1 + R
′

2 + R
′′

0 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,Q,V0,U0,V1,U1,V2,U2;YD|V ′,U ′)

RV + R′0 + R
′

1 + R
′

2 + R
′′

0 + R
′′

1 + R
′′

2

≤ I (X1,X2,XR,Q,V ′,U ′,V0,U0,V1,U1,V2,U2;YD)

(26)

Due to the distribution equation (7), the Markov chain
(V ′,V0,V1,V2,U ′,U0,U1,U2,Q) ⇔ (X1,X2,XR) ⇔
(YD,YR) is used to simplify the aforementioned inequalities.

APPENDIX B
THE OUTER BOUND PROOF

nR1 = H (W1) = I (W1;Y nD)+ H (W1|Y nD)

≤ I (W1;Y nD)+ nεn
(a)
→

nR1 ≤ I (W1;Y nD|W0,W2,Wv)+ nεn

=

n∑
i=1

I (W1;YD,i|Y
i−1
D ,W0,W2,Wv)+ nεn

(a)
→ =

n∑
i=1

I (W1;YD,i|Y
i−1
D ,Y i−1R ,W0,W2,Wv)+ nεn

=

n∑
i=1

H (YD,i|Y
i−1
D ,Y i−1R ,W0,W2,Wv)

−H (YD,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv)+ nεn

(b)
→ nR1 ≤

n∑
i=1

H (YD,i|Y
i−1
D ,Y i−1R ,W0,W2,Wv,X2,i)

−H (YD,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv,X1,i,

X2,i,XR,i)+ nεn

(c)
→ nR1 ≤

n∑
i=1

H (YD,i|X2,i,Ui,Vi)

−H (YD,i|X1,i,X2,i,XR,i,Ui,Vi)+ nεn

=

n∑
i=1

I (X1,i,XR,i;YD,i|X2,i,Ui,Vi)+ nεn (27)

where (a) follows from the fact that (W1) is independent
from (W0,W2,Wv,Y

i−1
R ), (b) is due toX1,i,X2,i are determin-

istic functions of (Y i−1R ,Wv,W0,W1), (Y
i−1
R ,Wv,W0,W2),

respectively, and deterministic relation between XR,i
and Y i−1R , (c) follows from removing conditioning,
and the Markovity of (Y i−1D ,Y i−1R ,Wv,W0,W1,W2) ⇔
(X1,i,X2,i,XR,i)⇔ (YD,i,YR,i).

n(R1 + R2) = H (W1,W2)

= I (W1,W2;Y nD)+ H (W1,W2|Y nD)

≤ I (W1,W2;Y nD)+ nεn

≤ I (W1,W2;Y nD,Y
n
R )+ nεn

(a)
→

n(R1 + R2) ≤ I (W1,W2;Y nD,Y
n
R |W0,Wv)+ nεn

=

n∑
i=1

I (W1,W2;YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,Wv)

+ nεn

=

n∑
i=1

H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,Wv)

−H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv)

+ nεn
(b)
→

n(R1 + R2) ≤
n∑
i=1

H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,Wv,XR,i)

−H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,

VOLUME 6, 2018 45841



E. M. Taghavi, G. A. Hodtani: MARC With Relay-Sources Feedback

Wv,X1,i,X2,i,XR,i)+ nεn
(c)
→

n(R1 + R2) ≤
n∑
i=1

H (YD,i,YR,i|XR,i,Ui,Vi)

−H (YD,i,YR,i|X1,i,X2,i,XR,i,Ui,Vi)+ nεn

=

n∑
i=1

I (X1,i,X2,i;YD,i,YR,i|XR,i,Ui,Vi)+ nεn

(28)

where (a) follows from the fact that (W1,W2) is independent
from (W0,Wv), (b) is due to X1,i,X2,i are deterministic func-
tions of (Y i−1R ,Wv,W0,W1), (Y

i−1
R ,Wv,W0,W2), respec-

tively, and deterministic relation between XR,i and Y i−1R ,

(c) follows from removing conditioning, and the Markovity
of (Y i−1D ,Y i−1R ,Wv,W0,W1,W2) ⇔ (X1,i,X2,i,XR,i) ⇔
(YD,i,YR,i).

n(R1 + R2) = H (W1,W2)

= I (W1,W2;Y nD)+ H (W1,W2|Y nD)

≤ I (W1,W2;Y nD)+ nεn
(a)
→

n(R1 + R2) ≤ I (W1,W2;Y nD|W0,Wv)+ nεn

=

n∑
i=1

I (W1,W2;YD,i|Y
i−1
D ,W0,Wv)+ nεn

(a)
→ =

n∑
i=1

I (W1,W2;YD,i|Y
i−1
D ,Y i−1R ,W0,Wv)

+ nεn

=

n∑
i=1

H (YD,i|Y
i−1
D ,Y i−1R ,W0,Wv)

−H (YD,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv)

+ nεn
(b)
→

n(R1 + R2) ≤
n∑
i=1

H (YD,i|Y
i−1
D ,Y i−1R ,W0,Wv)

−H (YD,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv,

X1,i,X2,i,XR,i)+ nεn
(c)
→

n(R1 + R2) ≤
n∑
i=1

H (YD,i|Ui,Vi)−

H (YD,i|X1,i,X2,i,XR,i,Ui,Vi)+ nεn

=

n∑
i=1

I (X1,i,X2,i,XR,i;YD,i|Ui,Vi)+ nεn (29)

where (a) follows from the fact that (W1,W2) is independent
from (W0,Wv,Y

i−1
R ), (b) is due to X1,i,X2,i are determin-

istic functions of (Y i−1R ,Wv,W0,W1), (Y
i−1
R ,Wv,W0,W2),

respectively, and deterministic relation between XR,i
and Y i−1R , (c) follows from removing conditioning,
and the Markovity of (Y i−1D ,Y i−1R ,Wv,W0,W1,W2) ⇔
(X1,i,X2,i,XR,i)⇔ (YD,i,YR,i).

n(R0 + R1 + R2)

= H (W0,W1,W2)

= I (W0,W1,W2;Y nD)+ H (W0,W1,W2|Y nD)

≤ I (W0,W1,W2;Y nD)+ nεn

≤ I (W0,W1,W2;Y nD,Y
n
R )+ nεn

(a)
→

n(R0 + R1 + R2)

≤ I (W0,W1,W2;Y nD,Y
n
R |Wv)+ nεn

=

n∑
i=1

I (W0,W1,W2;YD,i,YR,i|Y
i−1
D ,Y i−1R ,Wv)+ nεn

=

n∑
i=1

H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,Wv)

−H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv)+ nεn

(b)
→

n(R0 + R1 + R2)

≤

n∑
i=1

H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,Wv,XR,i)

−H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,

Wv,X1,i,X2,i,XR,i)+ nεn
(c)
→

n(R0 + R1 + R2)

≤

n∑
i=1

H (YD,i,YR,i|XR,i,Vi)

−H (YD,i,YR,i|X1,i,X2,i,XR,i,Ui,Vi)+ nεn

=

n∑
i=1

I (X1,i,X2,i;YD,i,YR,i|XR,i,Vi)+nεn (30)

where (a) follows from the fact that (W0,W1,W2) is indepen-
dent from (Wv), (b) is due to X1,i,X2,i are deterministic func-
tions of (Y i−1R ,Wv,W0,W1), (Y

i−1
R ,Wv,W0,W2), respec-

tively, and deterministic relation between XR,i and Y i−1R ,

(c) follows from removing conditioning, and the Markovity
of (Y i−1D ,Y i−1R ,Wv,W0,W1,W2) ⇔ (X1,i,X2,i,XR,i) ⇔
(YD,i,YR,i).

n(R0 + R1 + R2)

= H (W0,W1,W2)

= I (W0,W1,W2;Y nD)+ H (W0,W1,W2|Y nD)

≤ I (W0,W1,W2;Y nD)+ nεn
(a)
→

n(R0 + R1 + R2)

≤ I (W0,W1,W2;Y nD|Wv)+ nεn

=

n∑
i=1

I (W0,W1,W2;YD,i|Y
i−1
D ,Wv)+ nεn

(a)
→

=

n∑
i=1

I (W0,W1,W2;YD,i|Y
i−1
D ,Y i−1R ,Wv)+ nεn

=

n∑
i=1

H (YD,i|Y
i−1
D ,Y i−1R ,Wv)

−H (YD,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv)

+ nεn
(b)
→
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n(R0 + R1 + R2)

≤

n∑
i=1

H (YD,i|Y
i−1
D ,Y i−1R ,Wv)

−H (YD,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,

Wv,X1,i,X2,i,XR,i)+ nεn
(c)
→

n(R0 + R1 + R2)

≤

n∑
i=1

H (YD,i|Vi)

−H (YD,i|X1,i,X2,i,XR,i,Ui,Vi)+ nεn

=

n∑
i=1

I (X1,i,X2,i,XR,i;YD,i|Vi)+ nεn (31)

where (a) follows from the fact that (W0,W1,W2) is indepen-
dent from (Wv,Y

i−1
R ), (b) is due to X1,i,X2,i are determin-

istic functions of (Y i−1R ,Wv,W0,W1), (Y
i−1
R ,Wv,W0,W2),

respectively, and deterministic relation between XR,i
and Y i−1R , (c) follows from removing conditioning,
and the Markovity of (Y i−1D ,Y i−1R ,Wv,W0,W1,W2) ⇔
(X1,i,X2,i,XR,i)⇔ (YD,i,YR,i).

n(RV + R0 + R1 + R2)

= H (Wv,W0,W1,W2)

= I (Wv,W0,W1,W2;Y nD)+ H (Wv,W0,W1,W2|Y nD)

≤ I (Wv,W0,W1,W2;Y nD)+ nεn
≤ I (Wv,W0,W1,W2;Y nD,Y

n
R )+ nεn

=

n∑
i=1

I (Wv,W0,W1,W2;YD,i,YR,i|Y
i−1
D ,Y i−1R )+ nεn

=

n∑
i=1

H (YD,i,YR,i|Y
i−1
D ,Y i−1R )

−H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv)+ nεn

(a)
→

n(RV + R0 + R1 + R2)

≤

n∑
i=1

H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,XR,i)

−H (YD,i,YR,i|Y
i−1
D ,Y i−1R ,

W0,W1,W2,Wv,X1,i,X2,i,XR,i)+ nεn
(b)
→

n(RV + R0 + R1 + R2)

≤

n∑
i=1

H (YD,i,YR,i|XR,i)

−H (YD,i,YR,i|X1,i,X2,i,XR,i,Ui,Vi)+ nεn

=

n∑
i=1

I (X1,i,X2,i;YD,i,YR,i|XR,i)+ nεn (32)

where (a) is due to X1,i,X2,i are deterministic func-
tions of (Y i−1R ,Wv,W0,W1), (Y

i−1
R ,Wv,W0,W2), respec-

tively, and deterministic relation between XR,i and Y i−1R ,

(b) follows from removing conditioning, and the Markovity
of (Y i−1D ,Y i−1R ,Wv,W0,W1,W2) ⇔ (X1,i,X2,i,XR,i) ⇔

(YD,i,YR,i).

n(RV + R0 + R1 + R2)

= H (Wv,W0,W1,W2)

= I (Wv,W0,W1,W2;Y nD)+ H (Wv,W0,W1,W2|Y nD)

≤ I (Wv,W0,W1,W2;Y nD)+ nεn

=

n∑
i=1

I (Wv,W0,W1,W2;YD,i|Y
i−1
D )+ nεn

(a)
→

≤

n∑
i=1

I (Wv,W0,W1,W2;YD,i|Y
i−1
D ,Y i−1R )+ nεn

=

n∑
i=1

H (YD,i|Y
i−1
D ,Y i−1R )

−H (YD,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv)+ nεn

(b)
→

n(RV + R0 + R1 + R2)

≤

n∑
i=1

H (YD,i|Y
i−1
D ,Y i−1R )

−H (YD,i|Y
i−1
D ,Y i−1R ,W0,W1,W2,Wv,X1,i,X2,i,XR,i)

+nεn
(c)
→

n(RV + R0 + R1 + R2)

≤

n∑
i=1

H (YD,i)

−H (YD,i|X1,i,X2,i,XR,i,Ui,Vi)+ nεn

=

n∑
i=1

I (X1,i,X2,i,XR,i;YD,i)+ nεn (33)

where (a) follows from the fact that (Wv,W0,W1,W2) is
independent from (Y i−1R ), (b) is due to X1,i,X2,i are determin-
istic functions of (Y i−1R ,Wv,W0,W1), (Y

i−1
R ,Wv,W0,W2),

respectively, and deterministic relation between XR,i
and Y i−1R , (c) follows from removing conditioning,
and the Markovity of (Y i−1D ,Y i−1R ,Wv,W0,W1,W2) ⇔
(X1,i,X2,i,XR,i)⇔ (YD,i,YR,i).

APPENDIX C
GAUSSIAN INNER BOUND
• At the destination:

R1 ≤ I (X1,XR;YD|X2,U ′,U0,V ′,V0,V2)

= h(YD|X2,U ′,U0,V ′,V0,V2)

− h(YD|XR,X1,X2,U ′,U0,V ′,V0,V2)

= h(X1+X2 + XR+ZD|X2,U ′,U0,V ′,V0,V2)− h(ZD)

= h(
√
P1(
√
α1N1 +

√
β1P+

√
γ1M +

√
µ1T1 +

√
θ1L

+

√
(α1 + β1 + γ1 + µ1 + θ1)V ′)

+

√
PR(

√
βRL +

√
γRT1 +

√
αRT2

+

√
(αR + βR + γR)V ′)+ ZD|X2,U ′,U0,V ′,V0,V2)

− h(ZD)
(b)
⇒
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= h(
√
α1P1N1 + (

√
µ1P1 +

√
γRPR)T1 + ZD)− h(ZD)

=
1
2
log(2πe(α1P1 + (

√
µ1P1 +

√
γRPR)2 + ND))

−
1
2
log(2πeND)

=
1
2
log(1+

α1P1 + (
√
µ1P1 +

√
γRPR)2

ND
)

= C(
α1P1 + (

√
µ1P1 +

√
γRPR)2

ND
) (34)

Where (b) follows since knowing (U ′,U0,V ′,V0,V2),
reveals L,T2,P,M . Similarly we obtain:

R2

≤ C(
α2P2 + (

√
µ2P2 +

√
αRPR)2

ND
) (35)

R1 + R2

≤ C




α1P1 + α2P2+
(
√
µ1 P1 +

√
γRPR)2+

(
√
µ2 P2 +

√
αRPR)2


ND

 (36)

R0 + R1 + R2

≤ C





α1P1 + α2P2+
(
√
µ1 P1 +

√
γRPR)2+

(
√
µ2 P2 +

√
αRPR)2+

+(
√
γ1 P1 +

√
γ2 P2)2+

(
√
θ1 P1 +

√
θ2 P2 +

√
βRPR)2


ND


(37)

RV + R0 + R1 + R2

≤ C





α1P1 + α2P2+
(
√
µ1 P1 +

√
γRPR)2+

(
√
µ2 P2 +

√
αRPR)2+

(
√
γ1 P1 +

√
γ2 P2)2+

(
√
θ1 P1 +

√
θ2 P2 +

√
βRPR)2+

(
√
β1 P1 +

√
β2 P2)2+

(
√
α1 + β1 + γ1 + µ1 + θ1P1+√
α2 + β2 + γ2 + µ2 + θ2P2+√

αR + βR + γRPR)


2


ND



(38)
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