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Abstract. In this paper an enhancement of second harmonic generation efficiency which radiated from
MoS2 monolayers embedded in one-dimensional photonic crystal structures is studied. The system con-
tains air, SiO2 and MoS2 layers in periodic manner with the same thickness of air and SiO2 layers. The
transfer matrix method is used for calculating the forward and backward second harmonic generated wave
efficiencies in undepleted pump approximation. Our results show the giant enhancement of second har-
monic generation efficiencies up to seven orders of magnitude only with N = 40 MoS2 monolayers in the
system. The results are obtained by tunning the thickness of air and SiO2 layers at about 1284 nm for fun-
damental wave of λ = 810 nm wavelength. Choosing the above thickness causes the second harmonic waves,
generated in each MoS2 monolayers, to interference constructively. Both of the fundamental and second
harmonic wavelengths are located at the photonic band gap edges where the density of electromagnetic
modes and the nonlinear interaction time are enhanced. These two mechanisms help us to improve the
second harmonic generation efficiencies. Increasing the segments numbers enhanced the overall thickness
of MoS2 nonlinear layers which affect the phase matching conditions and decreased the SH efficiencies.

1 Introduction

The discovery of graphene monolayers in recent years has shown that some 2D materials have different behavior than
its bulk state [1,2]. One of the most important group of these materials is known as transition-metal dichalcogenides
(TMDs) monolayers in which one of the transition metal atom, such as Mo and W sandwiched between two chalcogene
atoms such as S, Se and Te in hexagonal structure [3–9]. The materials in the bulk state have indirect band gap
with inversion symmetry of crystalline structure [3–6]. The crystalline inversion symmetry decreases the second-order
nonlinear optical effects such that the second-order susceptibility (χ(2)) of these materials is about 10−14 m

V in the
bulk state [10–20]. Decreasing the dimension, the 2D monolayer of TMDs behave similar to the semiconductors with
direct band gap. Also the crystalline inversion symmetry is broken [3–9,11–20]. Absence of the inversion symmetry
enhances the second-order nonlinear optical effects [10–20]. The materials can be fabricated with various methods, such
as the chemical vapor deposition (CVD) or mechanically exfoliation on the silicon substrates [10–20]. Based on the
fabrication methods, χ(2) can be enhanced up to 10−7 m

V [10]. The thickness of TMDs are about 0.65 nm [10–20]. One
of the most investigated of TMDs is molybdenum disulfide (MoS2) monolayers. Few layers of MoS2 shows excellent
linear and nonlinear optical effects such as strong photoluminescence, ultrafast carrier dynamics, saturable absorption
and bandgap tuning by varying the number of layers [3,6–11,13,15,17]. Also, the second harmonic waves from some of
2DTMDs were observed recently when subjected under the Ti:saphare laser radiations with 810 nm wavelength [10–20].
Although decreasing the dimension of TMDs enhances the second order nonlinear optical coefficient but insignificant
thickness of TMDs monolayers diminishes second harmonic generation (SHG) efficiency in comparison with the popular
nonlinear crystals such as KDP, BBO and SBN [21–24].

The aim of this paper is enhancement of second harmonic (SH) efficiency from molybdenum disulfide monolayers
by embedding them in the finite 1D photonic crystal structures. The 1D photonic crystals consist of at least two
material layers with different refractive index which arranged in a periodic manner and affect the photons motion in
similar way that crystalline lattices affect the electrons in solid state physics [25–27]. There are some mechanisms to
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Fig. 1. Finite 1D photonic crystal arrangement.

assistance the process such as external feedback, defective mode, band gap tailoring and quasi-phase matching [21–24].
In some experimental works, the above mechanisms are applied to enhance the SHG efficiency of 2DTMD layers [15,
19,28]. Here we concentrate to the phase matching of generated second harmonic waves from different MoS2 layers by
tuning the thickness of dielectric materials between them that used in 1D photonic crystal structure. The study was
done using the transfer matrix method (TMM) [21–24]. This process causes the giant enhancement of SHG efficiency
up to seven orders of magnitude for forward and backwared SH waves with only 40 MoS2 monolayers. We hope these
structures can be used as a component of nano photonic circuits and nonlinear light sources.

The paper is organized in four sections. In sect. 2, the 1D photonic crystal and the transfer matrix method are
introduced. Numerical results and discussion are presented in sect. 3. Finally, we summarized our results in sect. 4.

2 Theoretical model

To observe the second harmonic waves from MoS2 monolayers in recent works, the layers are deposited on the sil-
ica substrates [10–20]. We construct the finite 1D photonic crystal by these two components and the air films as
(Air/SiO2/MoS2)

N , with the thickness of dA, dS and dM for Air, SiO2 and MoS2 layers, respectively, where N is the
number of segments (see fig. 1).

We use the Hybrid Lorentz-Drude-Gaussian model with 6 resonance frequencies to define the complex relative
electric permittivity of the MoS2 mono layers as: εM = εLD

M + εG
M [7–9]. The Lorentz-Drude part of the frequency-

dependent electric permittivity is given by [7–9]

εLD
M (ω) = ε∞ +

5
∑

j=0

Sjω
2
P

ω2
j − ω2 − iΓjω

, (1)

where, ωP is the plasma frequency, ε∞ is the background or DC permittivity, ωj , Sj and Γj are the resonance frequency,
oscillator strength and the damping coefficient of the j-th resonance, respectively. The resonance frequencies are 0,
1.88, 2.03, 2.78, 2.91, 4.31 eV, the damping coefficients are 1.0853×10−2, 5.9099×10−2, 1.1302×10−1, 1.1957×10−1,
2.8322× 10−1, 7.8515× 10−1 eV and the oscillator strengths are 2.0089× 105, 5.7534× 104, 8.1496× 104, 8.2293× 104,
3.3130 × 105, 4.3906 × 106, respectively. The plasma frequency of MoS2 layer is 28.3

2π
meV and the ε∞ is 4.44 [7–9].

The imaginary part of the Gaussian component of the MoS2 electric permittivity is given by [7]

εG
iM (ω) = α exp

(

− (h̄ω − μ)2

2σ2

)

, (2)

where α = 23.224, μ = 2.7723 eV and σ = 0.3089 eV, respectively. The real part of the Gaussian component of the
MoS2 electric permittivity can be obtained by using the Kramers-Kronig dispersion relation [7]

εG
rM (ω) = 1 +

1

π
P.V.

∫ ∞

−∞

εG
iM (ω)′

(ω′ − ω)
dω′, (3)

which leads to

εG
rM (ω) = 1 − 2α√

π
DF

(

(h̄ω − μ)√
2σ

)

; (4)
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Fig. 2. Lattice structure of MoS2 monolayer, black circles are S atoms and yellow circles show Mo atoms.

here, DF (x) is the Dawson-Function of argument x. The refractive index and extinction coefficient of the MoS2 mono
layer are obtained from the overall complex electric permittivity as follows:

nM (ω) =

√

1

2

(

εrM +
√

ε2
rM + ε2

iM

)

,

KM (ω) =

√

1

2

(

−εrM +
√

ε2
rM + ε2

iM

)

. (5)

Also, the refractive index of SiO2 films are obtained as [29]

nS(λ) =

√

A +
Bλ2

λ2 − C
+

Dλ2

λ2 − 100
, (6)

where A = 1.28604141, B = 1.07044083, C = 1.00585997 × 10−2, D = 1.10202242 and λ is in nm unit [29]. The
refractive index of air films set equal to one.

We assume that the interface of 1D photonic crystal components laid in the xy plane (see fig. 1). The fundamental
wave (FW) of wavelength λ and electric field polarization along the x-axis is incident normally on the one dimensional
nonlinear photonic crystal (1DNPC) that propagated along the z-direction.

The MoS2 layer has hexagonal structure belong to the D3h crystalline symmetry group and the second-order

nonlinear susceptibility tensor has nonzero elements of [10]: χ
(2)
y′y′y′ = −χ

(2)
y′x′x′ = −χ

(2)
x′x′y′ = −χ

(2)
x′y′x′ , where x′, y′, z′

are crystalline coordinates. Here x′ is along the armchair direction (see fig. 2). In our 1D photonic crystal structure
the incident beam is linearly polarized along the x-direction where the x-, y-, z-directions are shown in fig. 1 and
known as lab coordinates. It can be shown that the parallel (x) and perpendicular (y) component of the SH electric
field are proportional to sin 3θ and cos 3θ, respectively, where θ is the angle between x (incident electric field direction)
and x′ (armchair direction of MoS2 monolayers) [10]. Hence, if we adjust the θ = 30, by rotating the incident light
polarization, the SH electric field has only the parallel component and we can use the scalar equation with an effective
susceptibility for generated second harmonic wave.

As known, in second-order nonlinear optical material such as MoS2 monolayer, an incident wave of frequency ω
(wavelength λ) can be converted to the second harmonic wave of frequency 2ω (wavelength of λ

2 ). In fact the incident
wave acts as a source of second harmonic wave. Also, it is is possible that the generated second harmonic wave converted
to the incident fundamental wave in the reverse process. Therefore, the second harmonic wave can also act as a source
of fundamental wave. But if the incident light intensity is sufficiently large, the intensity of fundamental wave that
generated in the reverse process can be neglected. This approximation is called the undepleted pump approximation.
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In undepleted pump approximation the FW electric field E
(1)
i (z) and the SH electric field E

(2)
i (z) in the i-th layer

satisfy the following equations [21–24]:

d2E
(1)
i (z)

dz2
+ k

(1)2
i E

(1)
i (z) = 0, (7)

d2E
(2)
i (z)

dz2
+ k

(2)2
i E

(2)
i (z) = −k2

20χ
(2)
i E

(1)2
i (z), (8)

where k
(1)
i = n

(1)
i k10, k

(2)
i = n

(2)
i k20, k20 = 2k10 and k10 = ω

c
. n

(1)
i [n

(2)
i ] is the refractive index of the i-th layer

material at the fundamental [SH] wave frequency. c is the speed of light in vacuum. χ
(2)
i is the second-order nonlinear

optical coefficient of the i-th layer.
From eq. (7), the FW electric field in the i-th layer can be expanded with forward and backward plane waves in

the z-direction as follows:

E
(1)
i (z) = Ω

(1)+
i eik

(1)
i

(z−zi−1) + Ω
(1)−
i e−ik

(1)
i

(z−zi−1). (9)

Here, Ω
(1)±
i are the forward and backward FW electric field amplitudes at the beginning of the i-th layer. zi = zi−1+di,

z0 is set to zero and di is the thickness of the i-th layer. Applying the continuous conditions of electric and magnetic
fields at each interface, we obtain

(

Ω
(1)+
i

Ω
(1)−
i

)

= t
(1)
i

(

Ω
(1)+
i−1

Ω
(1)−
i−1

)

, (10)

where t
(1)
i is defined as [23]

t
(1)
i = D−1

0 DiPiD
−1
i D0, (11)

the related matrices are

D0 =

(

1 1

n0 −n0

)

, Di =

(

1 1

n
(1)
i −n

(1)
i

)

, Pi =

⎛

⎝

eik
(1)
i

di 0

0 e−ik
(1)
i

di

⎞

⎠ , (12)

where n0 is the refractive index of the air background and is set equal to one. The overall T -matrix of the system can
be calculated by successive products of individual transfer matrix ti. The FW electric field amplitude in the left and
right side of the structure is connected with the overall T -matrix as [21–24]

(

E
(1)
t

0

)

= T

(

E0

E
(1)
r

)

. (13)

Thus the reflected and transmitted FW electric field amplitude can be obtained as E
(1)
r = −T21

T22
E0, E

(1)
t = |T |

T22
E0,

where |T | denotes the determinant of overall transfer matrix T . Also one can obtain forward and backward FW electric
field amplitudes in each layer of our 1DNPC structure, that contains three components, as follows:

(

Ω
(1)+
3i−2

Ω
(1)−
3i−2

)

= D−1
A ti−1D0

(

E0

E
(1)
r

)

,

(

Ω
(1)+
3i−1

Ω
(1)−
3i−1

)

= D−1
S (DAPAD−1

A )ti−1D0

(

E0

E
(1)
r

)

,

(

Ω
(1)+
3i

Ω
(1)−
3i

)

= D−1
M (DSPSD−1

S )(DAPAD−1
A )ti−1D0

(

E0

E
(1)
r

)

. (14)

Ω
(1)(±)
3i−k with k = 0, 1, 2 denote the forward and backward FW electric field amplitudes at the left-hand side of

MoS2 (k = 0), SiO2 (k = 1) and air (k = 2) films in i-th segment, respectively (see fig. 1).
The sub-indexes A, S, M and 0 refer to the Air, SiO2, MoS2 and background medium, respectively. t is the one

segment transfer matrix obtained from t = (DMPMD−1
M )(DSPSD−1

S )(DAPAD−1
A ).
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After calculation of the fundamental electric and magnetic fields, we investigate the generation and propagation
of second harmonic waves in our system. As known from eq. (8), the FW acts as a source of SH waves. By inserting
the FW solution (eq. (9)) into eq. (8), one can obtain the SH electric field amplitude in i-th layer as follows:

E
(2)
i (z) = Ω

(2)+
i eik

(2)
i

(z−zi−1) + Ω
(2)−
i e−ik

(2)
i

(z−zi−1) + Ai

[

Ω
(1)+
i

]2

e2ik
(1)
i

(z−zi−1)

+ Ai

[

Ω
(1)−
i

]2

e−2ik
(1)
i

(z−zi−1) + CiΩ
(1)+
i Ω

(1)−
i , (15)

where Ω
(2)±
i are forward and backward second harmonic electric field amplitudes at the beginning of the i-th layer

and Ai = − k2
20χ

(2)
i

(k
(2)2
i

−4k
(1)2
i

)
, Ci = − 2k2

20χ
(2)
i

k
(2)2
i

[21–24].

Using Maxwell’s equation as �∇× �E
(2)
i (z) = ik20

�H
(2)
i (z), we can derive the SH magnetic field as

H
(2)
i (z) = n

(2)
i

(

Ω
(2)+
i eik

(2)
i

(z−zi−1) − Ω
(2)−
i e−ik

(2)
i

(z−zi−1)
)

+ n
(1)
i

(

Ai

[

Ω
(1)+
i

]2

e2ik
(1)
i

(z−zi−1) − Ai

[

Ω
(1)−
i

]2

e−2ik
(1)
i

(z−zi−1)

)

. (16)

Applying the continuous conditions for SH electric and magnetic fields at each interface, one can acquire a relation
between forward and backward SH electric field amplitudes at the (i − 1)-th and i-th layers as follows [21–24]:

(

Ω
(2)+
i

Ω
(2)−
i

)

= t
(2)
i

(

Ω
(2)+
i−1

Ω
(2)−
i−1

)

+

(

r+
i

r−i

)

. (17)

The applied matrices are given by [21–24]

t
(2)
i = G−1

0 NiG0, Ni = GiQiG
−1
i ,

(

r+
i

r−i

)

= G−1
0

⎡

⎢

⎣
(BiFi − NiBi)Ai

⎛

⎜

⎝

[

Ω
(1)+
i

]2

[

Ω
(1)−
i

]2

⎞

⎟

⎠
+ (1 − Ni)Ci

(

Ω
(1)+
i Ω

(1)−
i

0

)

⎤

⎥

⎦
(18)

and

G0 =

(

1 1

n0 −n0

)

, Gi =

(

1 1

n
(2)
i −n

(2)
i

)

, Bi =

(

1 1

2n
(1)
i −2n

(1)
i

)

,

Qi =

⎛

⎝

eik
(2)
i

di 0

0 e−ik
(2)
i

di

⎞

⎠ , Fi =

⎛

⎝

e2ik
(1)
i

di 0

0 e−2ik
(1)
i

di

⎞

⎠ . (19)

Using the above recursive relation, we obtain the following relation between the SH electric field amplitudes at the
beginning of the j-th segment based on the (j − 1)-th segment

⎛

⎝

Ω
(2)+
j

Ω
(2)−
j

⎞

⎠ = G−1
0 S3G0

⎛

⎝

Ω
(2)+
j−1

Ω
(2)−
j−1

⎞

⎠

+ G−1
0

⎧

⎨

⎩

(S2BAFA − S3BA)AA

⎛

⎝

Ω
(1)+
3j−2

Ω
(1)−
3j−2

⎞

⎠+ (S2 − S3)CA

(

Ω
(1)+
3j−2Ω

(1)−
3j−2

0

)

+ (S1BSFS − S2BS)AS

⎛

⎝

Ω
(1)+
3j−1

Ω
(1)−
3j−1

⎞

⎠+ (S1 − S2)CS

(

Ω
(1)+
3j−1Ω

(1)−
3j−1

0

)

+ (BMFM − S1BM )AM

⎛

⎝

Ω
(1)+
3j

Ω
(1)−
3j

⎞

⎠+ (1 − S1)CM

(

Ω
(1)+
3j Ω

(1)−
3j

0

)

⎫

⎬

⎭

, (20)
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Fig. 3. Forward and backward SHG efficiencies versus the same thickness of air and SiO2 layers for 1DNPC contains N = 10
segments.

where S1 = NM , S2 = NMNS , S3 = NMNSNA. The above recursive relation can be served as the unit transfer
matrix of the SH field for the j-th segment. Considering the periodicity of the structure and neglecting the nonlinear

behavior of the air and SiO2 films with respect to the MoS2 mono layers (χ
(2)
A

∼= 0, χ
(2)
S

∼= 0), one can obtain the
SH electric fields radiated from the left and right sides of a multi-layered structure, containing N segments, by the
following relation:

(

E
(2)+
t

0

)

= G−1
0 SN

3 G0

(

0

E
(2)−
r

)

+
N
∑

j=1

G−1
0 SN−j

3

×

⎧

⎨

⎩

(BMFM − S1BM )AM

⎛

⎝

Ω
(1)+
3j

Ω
(1)−
3j

⎞

⎠+ (1 − S1)CM

(

Ω
(1)+
3j Ω

(1)−
3j

0

)

⎫

⎬

⎭

, (21)

where E
(2)+
t and E

(2)−
r denote forward and backward SH electric fields, respectively. Forward and backward SHG

efficiencies are defined as ηF =
|E

(2)+
t

|2

|E
(1)
0 |2

and ηB =
|E(2)−

r
|2

|E
(1)
0 |2

, respectively.

3 Numerical results and discussion

The intensity of incident FW of wavelength λ = 810 nm was set to I0 = 10 MW
m2 , corresponding to |E0| = 8.68×104 V

m , to
establish the undepleted pump approximation in all simulations. We assume the same thickness for air and SiO2 layers
(dA = dS = d) that can be changed in simulations while the thickness of MoS2 mono layers are fixed at dM = 0.65 nm.

Also the second-order susceptibility of MoS2 mono layers was set as χ
(2)
M = 10−7 m

V and the second-order nonlinear
optical coefficients of air and SiO2 films were ignored in comparison with the MoS2 coefficient [10–20].

Figure 3 shows the calculated forward and backward SHG efficiencies versus the same thickness of air and SiO2

layers changing from 200 to 2000 nm for 1DNPC contains N = 10 segments. As shown in the figure, the SH efficiencies
are enhanced in some thicknesses. The highest forward and backward efficiencies are equal to ηF = 1.372 × 10−5 and
ηB = 9.537 × 10−6, respectively. The highest ηF occur when dA = dS = 1285.73 nm while the highest ηB is obtained
at dA = dS = 1285.17 nm.

As mentioned, the MoS2 monolayers act as a source of SH waves in our structure. A SH wave generated in one
layer travels to the other layers and can interfere with the new generated SH wave from secondary layers. As known,
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Fig. 4. Forward and backward SHG efficiencies versus the same thickness of air and SiO2 layers for 1DNPC contains: (a)
N = 1, (b) N = 10, (c) N = 20 and (d) N = 40 segments.

the interference can be constructive if the phase differences between all SH waves are an integer multiplication of SH
wavelength (Δϕ = mλ 1

2
, m is an integer and λ 1

2
is SH wavelength). The main origin of the phase difference between

two successive second harmonic generated wave source (MoS2 monolayers) comes from the optical path length of SH
wave between two MoS2 monolayers and equals: lOP ≈ (nA +nS(λ))d, if we ignore the infinitesimal optical path length
in the nonlinear layer. For highest efficiencies lOP ≈ 9λ 1

2
, where λ 1

2
= 405 nm. It seems that the difference among

all higher efficiencies comes from the effect of SH optical path length in the nonlinear layer which affects the waves
interference.

At the next step we compared the SHG efficiencies in 1DNPC containing different numbers of segments. Figure 4
shows the results for N = 1, 10, 20 and 40 segments around d = dA = dS = 1285 nm. As shown in this figure, the highest
forward efficiencies are equal to 1.566×10−8, 1.372×10−5, 4.296×10−4, 9.261×10−2 and the highest backward efficien-
cies equal to 1.560×10−8, 9.537×10−6, 3.403×10−4, 8.428×10−2 in 1D photonic crystals contains N = 1, 10, 20 and
40 segments, respectively. The optimize thicknesses of air and SiO2 layers of a structure, contains one segment, equal
df = 1304.89 nm and db = 1303.80 nm for forward and backward SH waves, respectively. Also the optimized thicknesses
of 1DNPC contains N = 10 segments equal df = 1285.73 nm and db = 1285.17 nm, for N = 20 equal df = 1284.28 nm
and db = 1284.25 nm, for N = 40 equals df = db = 1283.87 nm for forward and backward SH waves, respectively.

The results show the giant enhancement of SHG efficiencies up to three order of magnitude in 1D photonic crystals
contains sub wavelength MoS2 monolayers including N = 10 segments and about seven order of magnitude for N = 40
segments with respect to N = 1. The results can be obtained by carefully tunning the thickness of air and SiO2 layers
to satisfy the phase matching conditions.

To more understanding the physics behind the enhancement of the second harmonic efficiencies, the transmission
spectra of different engineered structures around the FW and SH wavelength are demonstrated in figs. 5 and 6,
respectively. The figures show that both FW and SH waves are located at the photonic band gap edges for all
engineered structures. As known at the photonic crystal band gap edges, the density of electromagnetic fields is large
and the group velocity is low [30,31]. Therefore the field amplitudes can be enhanced and the nonlinear interaction
time become much larger.

Benefit the phase matching conditions and the band gap tailoring causes the giant enhancement of second harmonic
generation efficiencies in 1D photonic crystals contains 2D transition-metal dichalcogenide mono layers. It should be
noted that the total width of a system contains N = 40 segments is about 102.73 μm and the SHG efficiencies are
near the 0.03 percent. Therefore it is expected that these small structures can be used as the nonlinear light sources.
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Fig. 5. Transmission spectra around the FW wavelength in 1DNPC contains: (a) N = 10, (b) N = 20, (c) N = 40 segments.

400 402 404 406 408 410 412 414 416 418 420
0

0.5

1

λ (nm)

(a)

T
ra

n
s
m

is
s
io

n

 

 

N=10

400 402 404 406 408 410 412 414 416 418 420
0

0.5

1

λ (nm)

(b)

T
ra

n
s
m

is
s
io

n

 

 

N=20

400 402 404 406 408 410 412 414 416 418 420
0

0.5

1

λ (nm)

(c)

T
ra

n
s
m

is
s
io

n

 

 

N=40

Fig. 6. Transmission spectra around the SH wavelength in 1DNPC contains: (a) N = 10, (b) N = 20, (c) N = 40 segments.

Figure 7 shows the SHG intensity versus the FW intensity in 1DNPC containing a different number of segments.
Figures 7(a)–(d) indicate the quadratic dependence of SH to FW intensity. As known from eq. (9) the source of second

harmonic wave depends quadratically to fundamental wave amplitude (S ∝ E
(1)2

i ).

At the end, we investigated the optimal structure to reach the highest SH efficiencies by calculating the ηF and ηB

versus the segment numbers. Figure 8 shows the results. The figure shows the highest efficiencies for each structure
containing a different number of segments. As can be seen, the structure contains N = 40 segment (equal to N = 40
MoS2 monolayers) and shows the highest SH efficiencies. Increasing the segment numbers above N = 40 diminished
the SH efficiencies. We assumed the fixed thickness for MoS2 monolayers (dM = 0.65 nm) in all simulations. At low
segment numbers, the sub nano meter thickness of MoS2 monolayers have no significant effects on phase matching
conditions. Increasing the segments numbers enhanced the overall thickness (and optical path length of SH wave) of
2D nonlinear layers that affect the phase matching conditions and decreased the SH efficiencies.

In this experiment it is possible to realize the proposed air-gap photonic crystal in saw tooth structures. Our
numerical results show that the optimal thickness of air and SiO2 films are about 1300 nm or 1.3μm. Therefore, it
is possible to apply the nano or micro positioner to adjust the air gap thickness on the saw tooth structure. Also it
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Fig. 7. Intensity dependence of forward second harmonic generation, with the solid line indicating the expected quadratic
dependence.for 1DNPC contains: (a) N = 1, (b) N = 10, (c) N = 20 and (d) N = 40 segments.
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Fig. 8. Forward and backward SHG efficiencies versus the segment numbers (N) in logarithmic scale.

should be noted that it is straightforward to replace the air films with other materials such as Si, SiN, ZnS and TiO2

with a determined dispersion relation in our calculations. We hope the structures can be used as a nonlinear light
source to produce the coherent light wave at half wavelength.

4 Conclusion

The second harmonic generation efficiencies from finite 1D photonic crystal containing MoS2 monolayers (as a two-
dimensional transient metal dichalcogenide structures), air and SiO2 films are calculated. We used the transfer matrix
method in undepleted pump approximation for calculating the forward and backward second harmonic generation
efficiencies. The enhancement up to the seventh order of magnitude is obtained for forward and backward second
harmonic wave efficiencies in photonic crystals contain N = 40 segments. The results are obtained by carefully tuning
the same thickness of air and SiO2 layers at about 1284 nm for fundamental wave of λ = 810 nm wavelength. We
utilize the phase matching and photonic band gap edge mechanisms to this end. Meanwhile, increasing the segment
numbers, above N = 40, causes the increasing overall thickness of MoS2 layers which destroyed the phase matching
conditions and decreased the SHG efficiencies.
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