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Aims Soil organic carbon (SOC) is contemplated as a crucial proxy to manage soil quality, 
conserve natural resources, monitoring CO2 and preventing soil erosion within the landscape, 
regional, and global scale. Therefore, the main aims of this study were to (1) determine the 
impact of terrain derivatives on the SOC distribution and (2) compare the different algorithms 
of topographic wetness index (TWI) calculation for SOC estimation in a small-scale loess 
hillslope of Toshan area, Golestan province, Iran. (3) Comparison between multiple linear 
regression (MLR) and artificial neural networks (ANN) methods for SOC prediction.
Materials & Methods total of 135 soil samples were taken in different slope positions, i.e., 
shoulder (SH), backslope (BS), footslope (FS), and toeslope (TS). Primary and secondary terrain 
derivatives were calculated using digital elevation model (DEM) with a spatial resolution of 10 
m × 10 m. To SOC estimation (dependent variable) was applied two models, i.e., MLR and ANN 
with terrain derivatives as the independent variables.
Findings The results showed significant differences using Duncan’s test in where TS position 
had the higher mean value of SOC (25.90 g kg−1) compared to SH (5.00 g kg−1) and BS (12.70 g 
kg−1) positions. The present study also revealed which SOC was more correlated with TWIMFD 
(Multiple-Flow-Direction) and TWIBFD (Biflow-Direction) than TWISFD (Single Flow Direction). 
The MLR and ANN models were validated by additional samples (25 points) that can be explain 
65% and 76% of the total variability of SOC, respectively, in the study area.
Conclusion These results indicated that the use of terrain derivatives is a beneficial method for 
SOC estimation. In general, an accurate understanding of TWIMFD is needed to better estimate 
SOC to evaluate soil and ecosystem related effects on global warming of as this hilly region at a 
larger scale in a future study.
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Introduction
Knowledge of variability of soil properties 
is necessary for precision planning 
and management of agricultural lands. 
Environmental factors, i.e., land use,[1] 
climate, parent material,[2] topography, 
and anthropogenic management effected 
on soil organic carbon (SOC).[3-5] SOC is a 
crucial proxy as one of the main parameters 
to evaluate soil quality[6] and management 
practices to conserve eco environment, 
monitoring CO2,

[2] climate change, and global 
warming. Karchegani et al.[7] pointed out 
that correct management of agricultural 
operation and maintenance of SOC are 
important factors in sustainable agriculture. 
Lal[6] also revealed that reducing of SOC is 
one of the major reasons of greenhouse 
gases and soil can store around 1500 Pg 
organic carbon (OC) in the 0–100 cm of soil.
The effect of topography on SOC variability 
is well documented.[5-9] As Bou Kheir 
et al.[10] expressed terrain derivatives may 
help estimation of SOC that due to a great 
influence on soil formation.
Digital elevation model (DEM) is an useful 
tool to derive terrain attributes for SOC 
mapping which have been used widely in 
soil studies[11] and SOC mapping where they 
can be incorporated in statistical methods 
and used as secondary variables and also 
enhance SOC map quality and reduce the 
cost of sampling.[12,13]

Mueller and Pierce[14] introduced soils 
with high moisture content have usually 
high SOC, consequently, it can be modeled 
quantitatively by useful terrain derivatives as 
topographic wetness index (TWI)[15] through 
the landscape positions.[16] Furthermore, 
there is a significant positive correlation 
between TWI and SOC[16] in steep slope 
lands.[8]

Several techniques have been used to 
understand the relationships between terrain 
derivatives and soil properties, especially 
SOC in different scales, i.e., multiple linear 
regression (MLR),[17] principal component 
analysis,[18] classification and regression 
tree,[19] and artificial neural networks 
(ANN).[17,20] In addition, Karchegani 

et al.[20] expressed that the integration of 
the intelligent models such as ANN with the 
use of auxiliary data including the remotely 
sensed data and terrain derivatives could 
be used for SOC estimation in the landscape 
scale. The results of Parvizi et al.[19] and 
Mahmoudabadi et al.[21] confirmed the ability 
of ANN in prediction of SOC, using terrain 
derivatives as independent parameters.
Loess material has a high amount silt particle 
that results in soil erosion and SOC loss, 
acquire an insight view of SOC can improve 
soil fertility, water holding capacity, and crop 
production, etc. Results of researches Maleki 
et al.[22] and Bameri et al.[9] showed that an 
important factor is topography with regard 
to SOC variations in surface loessial soils of 
cultivated lands. Regional scale estimations 
of SOC were calculated for Toshan 
watershed, including hills and plains with 
the high slope fluctuation and loess deposit 
material.[5] To the best of our knowledge, 
while no attempts have been done to 
estimate SOC using topography derivatives 
and low sampling intervals (As will be 
discussed in section 3.1). There is a strong 
correlation between moisture and SOC as 
done by Pei et al.[16] and Maleki et al.[22] There 
is, however, almost no data of soil surface 
and subsurface moisture available for 
different areas. There is, therefore, a need 
analysis and algorithms of moisture to 
bridge wetness to SOC to acquire detailed 
information and accurate understanding on 
flow distributions. Hence, we used the TWI 
relationships on the identification of SOC 
as proposed by Pei et al.[16] would provide a 
better vision of changes SOC and moisture 
first time which have a main role in future 
studies, i.e., land management, assessment 
of erosion potential, and digital soil mapping 
in this steep hillslope area.
In addition, findings of our study can be used 
for comparing and monitoring SOC data 
relation to global warming projects in other 
regions of Asian in future researches that are 
limited data on SOC in Asia.[23] Therefore, this 
study carried out to (1) assess the effect of 
slope position on SOC and soil properties, 
(2) compare the relationships of SOC and 
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TWI which calculated by different algorithms, 
(3) evaluate capability of MLR and ANN to 
predict SOC using terrain derivatives and 
comparing the efficiency of two models.

Materials & Methods
Description of study area and data 
collection
The study area is located in Toshan region 
(270259.77 to 270585.53 E and 4077096.87 
to 4077101.19 N) with an elevation range 
of 171–246 m a.s.l. in a small catchment of 
Golestan Province, Northern Iran [Figure 1]. 
It should be noted that the elevation range of 
total area of Toshan watershed is 40–1500 m 
a.s.l. Soil moisture and temperature regimes 
are Xeric and Thermic, respectively, with 
mean annual precipitation, 620 mm and 
temperature, 16°C.
The locations of 135 soil samples were 
determined by fishnet strategy which the 
grid interval of soil samples was 24 m × 
20 m. The locations of the soil samples were 
recorded by portable Global Positioning 
System. Soil samples were taken from 0 to 
30 cm at four slope positions, i.e., shoulder 
(SH) (44 soil samples), backslope (BS) 
(39 soil samples), footslope (FS) (29 
soil samples), and toeslope (TS) (23 soil 

samples) in a cultivated (agriculture land 
use) hillslope that is often grown wheat 
with a total area of 12 ha. Figure 2 shows the 
wireframe map with soil sampling locations 
in U shape landscape of the study area.
Laboratory analysis
After air-drying, all of the soil samples 
were homogenized and sieved <2 mm. The 
soil physical and chemical properties were 
analyzed including particle size distribution 
(the Bouyoucos hydrometer method),[24] 
bulk density (BD) (paraffin method),[24] 
SOC (Walkley-Black method),[24] equivalent 
calcium carbonate (CCE) (titration with 
acid),[24] mean weight diameter (MWD) 
(Kemper and Rosenau method),[24] soil pH 
(saturated paste), and electrical conductivity 
(EC) (saturated extract at 25°C).[24]

To determine the effect of slope positions 
on soil physical and chemical properties, 
one-way analysis of variance was applied 
with post hoc test (Duncan’s test with P 
< 0.05). Levene’s test was also used for 
determining equality of variances. For 
identification of all the terrain parameters 
and SOC components used the Kolmogorov–
Smirnov test normal distribution. The SPSS 
software (version 22.0) was utilized for all 
of the analysis. Furthermore, the correlation 

Figure 1: Location of the study area in Golestan province and Iran
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between soil properties and terrain 
derivatives was assessed with using Pearson 
correlation coefficients.
Analysis of DEM
Primary terrain derivatives including 
profile curvature, plan curvature, tangential 
curvature, slope, aspect, and elevation were 
directly extracted from the DEM with a spatial 
resolution of 10 m × 10 m using ArcGIS 
Desktop 10.2 and SAGA GIS (version 2.2) 
software. Primary terrain derivatives were 
used for calculation of secondary terrain 
attributes including TWI, stream power 
index, and sediment transport index (LS). 
Definitions of the terrain derivatives are 
presented in Table 1.
TWI indirectly shows the runoff distribution 
and moisture through landscape as shown in 
Equation 1 which affects the SOC.[26]

TWI =In
tan

 a
 b 

� (1)

Where the parameters of Equation 1 
are a, the specific catchment area (SCA) 
and tanb, the local slope gradient.[16] SCA 
indicates the potential flow accumulation to 
a unique location, and tanb shows the ability 
of local drainage.
According to Hass,[27] the three groups of 
algorithms have been proposed for TWI 
calculation are single flow direction (SFD), 

biflow direction (BFD), and multiple flow 
direction (MFD). SFD algorithms limit the 
surface and subsurface runoff from a single 
grid cell to only one other cell without 
considering any other neighbor cells.[27] The 
D8 (deterministic eight-node) is the simplest 
SFD algorithm that only flows in steep slope 
gradient.[28] Hass[27] expressed D8 method 
works well in valleys but produces many 
parallel flow lines and problems near 
catchment boundaries. RHO8 is another 
SFD algorithm introduced by Fairfield and 
Leymarie[29] that can prevent production of 
parallel flow lines. In BFD algorithms, flow 
in cells is broken into two parts. 2D-Lea, 
2D-Jensen, and D-Infinity are species of BFD 
algorithms which were used D-Infinity in 
this study.
SFD and BFD algorithms have a main problem 
that cannot find the correct flow sides in flat 
areas. However, MFD algorithm allows diffuse 
flow from one grid cell proportionately to all 
of surrounding cells. FRho8 and FD8-Quinn 
algorithms are species of MFD algorithms 
and calculated in this study.
MLR and ANN
MLR and ANN with multilayer perceptron 
(MLP) with back propagation learning 
method were used for simulating the 
relationships of selected terrain derivatives 
with SOC in this study. It should be noted 

Figure 2: Wireframe map of the study area (unit of x- and y: UTM) showing locations of soil samples 
(redpoint)
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that the common models of ANN is MLP as 
many researchers in soil science have been 
used it, e.g., Bodaghabadi et al.[11] Parvizi 
et al.,[19] and Karchegani et al.,[20] Equation 
(2) was used for calculation of input value in 
every neuron.[30]

m
n n n-1
i ji j

i=1

net = w .O∑

( ) ( )

( ) ( )

2

2 1

2

1

*
1 =

=

 − 
= −

 − 

∑

∑

n

i
n

i

Z Xi Z Xi
R

Z Xi Z Xi
� (2)

Where n
inet  is the input value of ith neuron 

in nth layer., n
jiw  is the connection weight 

between ith neuron in nth layer and jth 
neuron in the (n−1)th layer., 1n

jO − is the 
output of jth neuron in the (n−1)th layer, m is 
the number of neurons in the (n−1) the layer.
Furthermore, Equation (3) showed the 
sigmoid function for activation of each 
neuron. Marquardt Levenberg learning 
rule[30] was used for iterations that achieve 
calibration test and an acceptable error.

n
i n

i

1Sig(net )=
(1+EXP(-net )) � (3)

Models of MLR and ANN were done using 
SPSS (version 22.0) and MATLAB (2011) 
software, respectively. Four parameters were 
used in both of data mining methods that are 
including of terrain derivatives of elevation, 
plan curvature, slope, and TWIMFD based on 
FD8-Quinn method as independent variable 
and SOC as the dependent variable.
Finally, terrain derivatives were used to 
designing the ANN in the case of 60% of 
data sets and were used for the learning 
process and 20% for testing that the 
remaining of data sets (20%) were applied 
for verification. The data sets for learning, 
testing, and verification processes were 
selected randomly of different soil samples 
of the study area to avoid bias in estimation.
To identify the most important terrain 
derivatives affecting SOC, sensitivity analysis 
was done using SPSS software for ANN model. 
Bodaghabadi[11] said suitable model is a model 
with the highest performance and the least 
number of input data. To remove unimportant 
auxiliary data, sensitivity analysis was 

Table 1: The terrain derivatives, abbreviations, units, definitions, and their equations
Parameter Abbreviation unit Definition
Elevation Elv m Height over sea level[25]

Slope Slp % Gradient of line is changing of elevation 
in the direction and steepness[11]

Aspect Asp rad Direction of the line of the steepest 
descent[25]

Profile curvature Profc m−1 Rate of change of slope down a slope 
line[11]

Plan curvature Planc m−1 Rate of change of aspect along a 
contour[11]

Tangential 
curvature

Tangc m−1 Multiplication of the sine of the slope 
angle in Planc[11]

Topographic 
wetness index

TWI ‑ A measure of the topographic control on 
soil wetness or the ratio[25]

Sediment 
transport 
capacity index

LS ‑ A measure of the topographic control 
on the sediment transport which 
is equivalent to the LS factor in the 
universal soil loss equation (USLE’s LS 
factor)[25]

Stream power 
index

SPI ‑ The topographic index for stream forming 
power of flow[25]

TWI: Topographic wetness index, LS: Length slope



ECOPERSIA� Winter 2018, Volume 6, Issue 1

Using Terrain Derivatives to SOC Estimation� 46

applied. A greater percent implied which the 
variable made an important contribution to 
the SOC estimation.
Evaluating of Models
To evaluate the accuracy, mean error 
(ME), root mean square error (RMSE), and 
coefficient of determination (R2) were used 
as shown by Equation (4), (5), and (6):

( ) ( )
n

i=1

Z* Xi -Z Xi
ME=

n

  ∑
� (4)

( ) ( )( )2n

i=1
Z* Xi -Z Xi

RMSE=
n

∑ � (5)

( ) ( )

( ) ( )

2

2 1

2

1

*
1

n

i
n

i

Z Xi Z Xi
R

Z Xi Z Xi

=

=

 − 
= −

 − 

∑

∑
� (6)

Where Z (xi) is the measured value of SOC, 
Z*(xi) is the predicted value of SOC, is the mean 
value of SOC, and n is the number of samples.

 Findings and Discussion
Soil properties in different slope 
positions
TS and SH positions have the highest and 
the lowest SOC, respectively [Table 2]. 
Because SH is affected by high slope gradient 
that is responsible for SOC and water loss 
of surface horizon. Consequently, SOC 
often accumulates in the lower position of 
landscapes on the steep slope that resulted 
in significant increase of SOC and vegetation 
cover. The lower SOC of the SH position is 
consistent with the findings of Khormali 
et al.[3] and Nadeu et al.[4] Furthermore, 
Bameri et al.[9] found that soils on FS and TS 

positions had larger SOC compared to soils 
in high slope positions. Therefore, careful 
evaluating of land use management is 
necessary for the enhancement of agriculture 
and natural ecosystem and soil fertility in this 
hillslope area. Remaining of straw of wheat, 
optimum fertilization especially manures 
and nitrogen fertilizer and fallow against 
direction of slope can help to increasing SOC 
and decreasing global warming.[2]

The highest clay content was also found in 
TS position [Table 2] with a silty clay texture. 
The lower amount of clay was in SH and BS 
positions which explained effect of steep 
slope gradient cause to soil erosion and the 
loss of clay of surface horizons as similar 
findings of Ajami et al.[5] Furthermore, 
Khormali et al.[3] reported the highest clay 
content in TS position. The mean value of 
sand, silt, and BD had no significant effects of 
slope positions in all of study area [Table 2]. 
The soil parent material of study area is 
loess,[9] subsequently, the most particle size is 
silt, and there were no statistically significant 
differences in different slope position. Table 2 
shows the lowest MWD (0.19 mm) and the 
highest MWD (0.36 mm) were found in the 
BS and TS positions, respectively. The higher 
slope gradient, loss of SOC, increased amount 
of silt and fallow operations in the direction of 
slope (2) and (3) were the important reasons 
for the decreased MWD in higher positions 
(SH and BS).
The highest CCE is present in SH position 
and is significantly different from TS 
position. The higher surface erosion and the 
subsequent outcropping of the underneath 
calcium carbonate-rich layer are mainly 
responsible for the higher concentration of 
CCE in the SH position.

Table 2: Comparison of the mean values of studied soil properties in different slope positions
Slope 
position

Soil 
texture

(g kg−1) (mm) (g cm‑3)
Clay Silt Sand SOC CCE MWD BD

SH SiCL 389.00ab 459.00abc 150.00a 5.00a 173.30a 0.25a 1.59a

BS SiCL 384.00b 478.00a 138.00a 12.70b 138.40a 0.19a 1.55a

FS SiCL 392.00ab 467.00ab 140.00a 15.10b 167.00a 0.30b 1.54a

TS SiC 410.00a 419.00c 170.00a 25.90c 81.40b 0.36b 1.58a

Numbers with the similar letters are not statistically significantly (P < 0.05) different. SiCL: Silty clay loam, SiC: Silty clay. SH: 
Shoulder, BS: Backslope, FS: Footslope, TS: Toeslope, SOC: Soil organic carbon, CCE: Equivalent calcium carbonate, MWD: 
Mean weight diameter, BD: Bulk density
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Relationships between terrain 
derivatives and soil properties
The negative correlation of SOC with slope 
and elevation and TWIMFD with slope and 
elevation [Table 3] show the movement 
of water and SOC in surface is affected by 
slope which higher elevation and steep 
slope result in loss SOC and water retention. 
Furthermore, the observations of Liu et al.[31] 
indicated negative correlation between SOC 
and elevation (r = −0.26) and SOC and slope (r 
= −0.36). The significant correlation between 
CCE and TWI (r = −0.41) which indicate 
higher water cause to lower CCE content. 
This means that water caused the movement 
of CCE. A positive correlation was observed 
between LS and slope [Table 3], which also 
confirm higher water flows downward and 
resulting in higher erosion.
Plan curvature showed a negative correlation 
with SOC and TWIMFD and positive correlation 
with slope and CCE [Table 3]. Furthermore, 
profile curvature showed negative 
correlation with TWI. Plan curvature is 
negative for diverging flow (on ridges) and 
positive for converging flow (in valleys), 
whereas profile curvature can differentiate 
upper slopes from lower slopes.[32] These 
results are explanatory for higher intensity 
of TWI and SOC in concave parts of slope 
with low slope which is in agreement with 
the findings of Pei et al.,[16] Liu et al.,[31] and 
Xiong et al.[33]

TWI has a significant positive association 
with SOC and MWD that areas with high 
water storage have high SOC and MWD. 
Guo et al.[32] used terrain derivatives to 
SOC prediction which showed negative 

and positive correlations between SOC and 
slope gradient (r = −0.57) and TWI and SOC 
(r = 0.30), respectively. These correlations 
indicate higher SOC present in gentle slopes 
areas with higher humidity. With regard, the 
small-scale hillslope, different algorithms 
of TWIs were calculated which select the 
best methods of TWI for SOC estimation, 
as will be discussed later [Table 4]. The 
researches of Nadeu et al.,[4] Li et al.,[18] and 
Mahmoudabadi et al.[21] introduced that SOC 
storage is dependent to topography and soil 
moisture status.
It should be noted that the lack of significant 
correlation between SOC and some terrain 
derivatives may often be a result of the low 
resolution of DEM which may be too coarse 
to model surface topographic situation at the 
small scale hillslope of study area. Because, 
DEM resolution is an important factor in 
soil-landscape modeling, but the results 
of it’s depending on scale and resolution 
which has a significant effect in predictive 
soil distribution models. Loess soils are very 
sensitive erosion which may this factor to 
cause unusual effects on the correlations in 
the study area.
Different methods and modifications of TWIs 
had different results in terms of correlation 
with SOC [Table 4] which showed D-Infinity 
(BFD) and MFD algorithms (FRHO8 and 
FD8-Quinn) had stronger correlation with 
SOC than SFD (D8 and RHO8) algorithms 
in the study area. As TWIMFD (FD8-Quinn 
algorithm) has larger coefficient compared 
to another algorithm. This result introduces 
FD8-Quinn algorithm could be better 
represent soil moisture distribution and 

Table 3: Correlation coefficients between terrain derivatives and soil properties
Parameters TWIMFD Slp LS SPI Tangc Profc Planc Elv
Clay 0.04 0.13 0.09 0.08 0.16 0.07 −0.04 0.06
Silt −0.16 0.18* −0.1 −0.12 −0.18* 0.22** 0.14 0.17*
Sand 0.19* −0.31** 0.6 0.09 0.1 −0.33** −0.14 −0.25**
CCE −0.41** 0.15 −0.12 −0.18* −0.39** −0.06 0.33** 0.16
pH −0.07 −0.07 0.01 −0.01 −0.16 −0.08 0.11 0.51
EC −0.05 0.01 −0.09 −0.05 −0.12 0.05 0.12 0.08
MWD 0.34** −0.24** 0.02 0.04 −0.28** 0.04 −0.32** −0.12
SOC 0.44** −0.31** −0.04 0.04 −0.19* 0.11 −0.25** −0.26**
*Significant at the 0.05 level and ** Significant at the 0.01 level. SOC: Soil organic carbon, CCE: Equivalent calcium carbonate, 
MWD: Mean weight diameter, BD: Bulk density, EC: Electrical conductivity, LS: Length slope
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consequently estimation of SOC variation 
than another algorithm in the study area. 
Our results are similar with findings of Pei 
et al.[16] who reported the R2 coefficient for 
D8 and FD8-Quinn algorithms 0.07 and 0.23, 
respectively. According to results of Hass,[26] 
determination of flow paths in flat areas 
with little height difference is critical issue 
of TWI. Hence, the results of MFD algorithm 
give a more realistic state of flow, especially 
in flat areas for spatial distributions of TWI. 
It should be noted that the lower correlation 
coefficients and R2 may often be a result of 
the low resolution of DEM, slope aspect, soil 
vegetation, and SOC quality are also another 
factors which effect on SOC.
MLR Modeling
Finally, MLR analysis with stepwise 
regression method was developed for SOC 
estimation in the study area (Equation (7)). 
AS illustrated in Figure 3, MLR can explain 
65% of the total variability of SOC using 
terrain derivatives (Equation 7) in this 
subhumid area. The results also indicated 
TWI as a main attribute of terrain derivatives 
in controlling SOC variability [Figure 4].
SOC% = �0.92 + 0.33 (TWI)−0.009(ELV) 

−0.2(planc)−(Slp)� (7)
The findings of Parvizi et al.[19] introduced 
which MLR explained 64% of SOC variations 
in the semiarid conditions.
ANN Modeling
Theoretically, ANN model uses many hidden 
layers for SOC estimation using terrain 
derivatives that acquire suitable parameters. 
The selection of optimum number of 
hidden neurons is an important process 
in developing MLP networks. Among the 
different tests, the hidden-layer nodes and 
the optimum iteration learning rates were 
determined 8 and 10,000 for SOC estimation 

[Table 5], respectively, with tangent sigmoid 
transfer function in hidden layer. As shown in 
Figure 5, the performance of network MSE in 
different epochs which is the best validation 
performance 0.011 at epoch 6. The findings 
of Somaratne et al.[34] also confirmed that 
tangent sigmoid transfer function was a 
more suitable selection to SOC estimation in 
different land use.
Finally, the results introduced that ANN 
can be recognize 76% of the SOC variability 
in the study area using terrain derivatives 
[Figure 5]. Karchegani et al.[20] also explained 
64, 78, and 89 % of the total variability in 
SOC, for the model 1, 2, and 3, respectively, 
using auxiliary data including the land use 
types, terrain derivatives, and remotely 
sensed data in the hilly regions of western 
Iran. The results of Mirzaee et al.[35] showed 
that the ANN model with R2 = 0.63 that used 
principal components as input variables, 
performed better than the (MLR) model. 
The findings of Tiwari et al.[36] also stated 
that ANN methods had a great potential for 
estimating and mapping spatial SOC content 
using field data and remotely sensed data 
with R2 = 0.90 and RMSE = 0.07.
Comparison of MLR and ANN models 
to estimate SOC
The developed models of MLR and ANN 
were validated by additional soil samples 
(25 points) in the study region. Prediction of 
the studied models resulted in ME and RMSE 
values of −0.02, 0.23 in MLR [Table 6], and 
−0.01, 0.06 in ANN [Table 6], respectively. 
The result of comparing two models showed 
that ANN modeling was successful more than 
better of MLR in identifying SOC. Therefore, 
MLR cannot show the total SOC variability. 
This may be the result of nonlinear 
relationships between SOC and topography 

Table 4: Correlation coefficients between different TWIs and SOC and R2 of linear regression
Algorithm Correlation coefficients with SOC Equation R2

D8 0.35** y = 0.189x + 0.397 0.12
RHO8 0.25** y = 0.131x + 0.819 0.05
D‑infinity 0.44** y = 0.250x + 0.005 0.18
FRHO8 0.41** y = 0.219x + 0.235 0.16
FD8‑Quinn 0.44** y = 0.249x − 0.096 0.19
**Significant at the 0.01 level
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derivatives. This is in agreement with 
findings of 19, 20, and 21 that introduced 
ANN model can be detect successfully SOC 
variability more efficiently than the linear 
models. Moreover, Mahmoudabadi et al.[21] 
pointed out that MLR needs a large dataset 
to have a high accurate prediction, whereas 
ANN model requires smaller dataset.

Important parameters influencing 
SOC
The parameter with high percent made an 
important contribution to the variability in 
SOC. Slope and TWI were identified as the 
most important parameter for SOC [Figure 6]. 
Other important parameters for estimation 
SOC included elevation, sediment transport 

Figure 3: Relationships between measured and predicted soil organic carbon (%) by multiple linear 
regression

Figure 4: Performance of mean square error variation in network
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capacity index, and plan curvature. It should 
be noted the mentioned parameters had 
the strong correlation with SOC [Table 3] as 
previously described in section 4.2.
The results also showed that the slope and 
TWI have a large effect on SOC in this area. It is 
reported that in this region, slope gradient and 
moisture distribution have been identified as 
major processes of SOC variability. In general, 
steep slope positions have severe erosion, 
which is resulted in lower infiltration and SOC 
and greater runoff. The study was done by 
Ajami et al.[5] showed as for the significance 
of slope in SOC storage of loess hillslope. 
Therefore, erosional processes might have led 
to SOC decreasing. The LS is one of another 
most important topographic derivative in 

the ANN model that has a large effect on the 
quantity and quality of SOC.
Elevation had an important effect on SOC 
model as previously introduced in Table 3, 
it has a negative effect on SOC stabilization 
in this area. In line with our results, the 
similar relationships between SOC and 
elevation observed by Bangroo et al.,[37] and 
it included in SOC estimation equations. 
The result of sensitive analysis confirmed 
the importance of TWI in SOC distribution. 
It means that represents the processes of 
water accumulation at the soil surface as an 
indicator of the spatial distribution of soil 
moisture along the landscape. Hence, it can 
be effect on SOC variation.

Table 5: Summary of the best results structure and optimum parameters of the ANN for 
estimating SOC

ANN 
structure

Transfer function Iteration Number of hidden layer Number of hidden neurons

4‑8‑1 Tangent sigmoid 10000 1 8
ANN: Artificial neural networks, SOC: Soil organic carbon

Table 6: Trained model structures and performance
Data type Method of models R2 ME RMSE
Terrain 
derivatives 

Stepwise regression 0.65 −0.02 0.23

Terrain 
derivatives 

MLP networks with 
tangent‑ sigmoid transfer 
function

0.76 −0.01 0.06

MLP: Multilayer perceptron, ME: Mean error, RMSE: Root mean square error

Figure 5: Relationships between measured and predicted soil organic carbon (%) by artificial neural 
networks
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Conclusion
The results of present study showed 
accumulation of topsoil SOC is dependent to 
topographic position and derivatives at the 
small-scale hillslope. The overall results of 
the research show that in the natural areas 
with problems of soil sampling, analysis 
and costs of samples, there is a method; 
it can be use topographic derivatives for 
estimation SOC. On the other side, the 
correlation coefficient between SOC and 
TWIMFD confirmed that SOC distribution is 
influenced by the type of algorithm and flow 
path, since TWIMFD may be better reflect the 
flow stream. These results denoted using of 
TWIMFD is important for estimation of SOC 
and achievement decision-making about 
global warming projects in areas such as 
this hilly region with steep hillslope in 
larger scale in future studies. Furthermore, 
it suggests measurement of soil moisture 
in the field and assessing the relationships 
between soil moisture and TWI and SOC.
The result of ANN model for estimation SOC 
in the present study explained 76% of SOC 
variability somewhat better than MLR with 
65% of SOC variability that is having the same 
inputs and output, therefore, ANN produces 
promising results and its advantages can be 
utilized by developing or using new algorithms 

in future studies. To obtain a better estimation 
of SOC, in addition to terrain derivatives, 
data of remotely sensed, vegetation type, 
tillage practice, and agricultural management 
should be used as ANN input data in future 
studies. Furthermore, we suggest to apply 
other models, e.g., fuzzy logic, classification 
tree, and random forest. Besides, topography 
derivatives of UAV’s DEM may be very good in 
steep hillslope and small scale; we suggest the 
using of it to assess impact of DEM resolution 
in similar study.
In steep hillslope, especially SH and BS 
positions, SOC was lower. Considering that 
hillslopes of this area are under cultivation 
for local population of Toshan village, further 
studies should be concluded changes of SOC 
with a density of vegetation type and assessing 
of optimal management of agriculture 
ecosystems to help mutation of ecosystem and 
increasing SOC for reducing global warming.
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  چکیده

 ازی ریجلوگ خاك،ی داریپا و تیریمد در آن نقش به توجه با خاك یآل كربنی مكانی نیب شیپ: اهداف
اهدف  .است برخورداری خاص تیاهم از هوا و گرمای جهانی دكربنیكسا ید زانیم شیپا خاك، شیفرسا

اصلی این تحقیق تعیین اثر خصوصیات توپوگرافی در پراکنش مکانی کربن آلی خاک و مقایسه 
های مختلف شاخص خیسی توپوگرافی برای تخمین کربن آلی خاک در یک مقیاس کوچک از  الگوریتم

  .بود ستان، ایرانهای لسی منطقه توشن، استان گل تپه
نمونه خاک در چهار موقعیت مختلف شیب شامل شانه شیب، شیب پشتی،  ۱۳۵تعداد  ها: مواد و روش

آوری گردید. خصوصیات توپوگرافی اولیه و ثانویه با استفاده از یک مدل  پای شیب و پنجه شیب جمع
به منظور تخمین کربن آلی خاک، متر استخراج گردیدند. در نهایت  ۱۰×۱۰رقومی ارتفاع با اندازه پیکسل 

رگرسیون خطی چندمتغیره و شبکه عصبی مصنوعی بین کربن آلی به عنوان متغیر وابسته و خصوصیات 
  توپوگرافی به عنوان متغیرهای مستقل برقرار گردید.

داری با استفاده از آزمون دانکن در پنجه شیب  عنیبیشترین میزان کربن آلی با اختلاف م :ها يافته
 ۷۰/۱۲گرم بر کیلوگرم) و شیب پشتی ( ۰۰/۵گرم بر کیلوگرم) و کمترین میزان آن شانه شیب ( ۹۰/۲۹(

های چندمسیره و  ستگی بیشتری با الگوریتمگرم بر کیلوگرم) دیده شد. همچنین، کربن آلی خاک همب
ی مصنوعی عصب و شبكه یونیرگرس . مدلشتمسیره دا ت به تکمسیره شاخص خیسی توپوگرافی نسبدو

 را با استفاده از خصوصیات توپوگرافی دری آل كربنی مكان راتییتغ از% ۷۶و  ۶۵ نیز توانستند به ترتیب
  بيين نمايند.ت مطالعه مورد منطقه
دمند در تخمین کربن دهد که استفاده از خصوصیات توپوگرافی یک ابزار سو نشان می این نتایج: گیری نتیجه

های  گیری در پروژه همچنین در مطالعات آینده برای تخمین دقیق کربن آلی خاک و تصمیم .استآلی خاک 
ای  مسیره شاخص خیسی توپوگرافی در مناطق تپههای چند رن حاضر محاسبه الگوریتمگرمایش جهانی در ق

  . استشبیه به منطقه مطالعاتی در مقیاس بزرگتر ضروری 
  
   ها واژهدکلی

   ؛های مختلف جریان الگوریتم
   ؛خصوصیات توپوگرافی
   ؛شبکه عصبی مصنوعی

   ؛کربن آلی خاک
  لس

  
   




