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Abstract In this paper, an efficient numerical method which is a combination of the varia-
tional iteration method and the spectral collocation method is developed for solving a class
of nonlinear Fredholm integral equations (NFIEs). This method is easy to implement, requir-
ing no tedious computational work and possesses the spectral accuracy. In addition, it does
not require calculating Adomian’s polynomials and Lagrange’s multiplier values. Several
numerical examples are included to demonstrate the validity and efficiency of the proposed
method. The obtained results have been compared with the exact solutions so that the high
accuracy of the results are clear.

Keywords Variational iteration method · Spectral collocation method ·Nonlinear Fredholm
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1 Introduction

Integral equations play a crucial role in many branches of science and engineering such
as biological models, mathematical economics, continuum mechanics, potential theory,
geophysics, electricity and magnetism, fluid dynamics, antenna synthesis problem commu-
nication theory, radiation, etc. [4, 32, 33]. Analytical solutions of integral equations, either
do not exist or it’s hard to compute. Eventual an exact solution is computable, the required
calculations may be tedious, or the resulting solution may be difficult to interpret. Due to
this, it is required to obtain an efficient numerical solution. There are numerous studies
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in literature concerning the numerical solution of Fredholm integral equations such as the
modified homotopy perturbation method [13], the Toeplitz matrix method [2], the Bern-
stein polynomials [25], the Harmonic wavelet method [8], the Sinc-collocation method [14],
a Chebyshev polynomials [22], the triangular function Method [24], the wavelet meshless
method [23]. The topic of variational iteration method (VIM) was proffered originally by the
Chinese mathematician J. H. He, who modified the Lagrange multiplier method into an iter-
ation scheme [20]. The VIM is an efficient method for solving linear and nonlinear ordinary
differential equations, partial differential equations and integral equations. Applications of
the method have been enlarged due to its flexibility, convenience and accuracy. Moreover the
method gives rapidly convergent successive approximations of the exact solution if such a
solution exists; otherwise a few approximations can be used for numerical purposes. Mean-
while, the variational iteration method has been modified by many authors [1, 27]. For more
applications of the variational iteration method [10, 15–19].

The aim of this paper is to propose an effective algorithm, requiring no tedious computa-
tional work, based on the VIM and the spectral collocation technique for obtaining a highly
accurate numerical solution for the following NFIE in the form:

u(t) � f (t) +

T∫

0

k(t, s)G(u(s))ds, t ∈ [0, T ], (1)

where the kerel k(t, s), f (t) andG(u(s)) are smooth functions. The existence and uniqueness
of the solution for Eq. (1) are presented in Refs. [3, 11, 21, 31].

The contents of this paper are organized as follows: Sect. 1 is the introduction; In Sect. 2
some preliminaries consisting of the standard variational iteration method (VIM) is briefly.
Section 3, is devoted to the study of the main properties of the Chebyshev polynomials and
spectral variational iteration method (SVIM). In Sect. 4, a number of examples is proposed
to illustrate the validity of suggested method and finally, a brief conclusion is presented in
Sect. 5.

2 Variational iteration method

The VIM gives rapidly convergent by using successive approximations of the exact solution
if such a solution exists, otherwise the approximations can be used for numerical purposes.
To elucidation the basic idea of the VIM, we consider Eq. (1) as below:

L[u(t)] + N [u(t)] � f (t), (2)

where L with the property Lv ≡ 0 when v ≡ 0 denotes the auxiliary linear operator with
respect to u, N is a nonlinear continuous operator with respect to u and f(t) is the source
term.

According to [12], we construct the following family of the explicit iterative processes
for (2) as:

L[uk+1(t) − uk(t)] � −A[uk(t)], (3)

where

A[uk(t)] � L[uk(t)] + N [uk(t)] − f (t) � uk −
T∫

0

k(t, s)G(uk(s))dx − f (t), (4)
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and the subscript k denotes the kth iteration. Next the successive approximations uk(t), k ≥ 0
of the VIM iterative will be readily obtained by using any selective function u0(t). The zeroth
approximation u0(t) may be freely chosen with possible unknown constants, or it can be
found from solving its corresponding linear equation (L[u0(t)] � 0 or L[u0(t)] � f (t)).
Consequently, the exact solution can be obtained by using:

u(t) � lim
k→∞ uk(t). (5)

The variational iteration formula (3), makes a recurrence sequence {uk(t)} which outlined
depends on the proper selection of the initial approximation u0(t).Obviously, the limit of the
sequence will be the solution of Eq. (1) if the sequence is convergent. The iteration process
(3) under certain conditions is convergent. Here we assume that for every positive integer
k, uk ∈ C[0,T] and {uk} is uniformly convergent.

Theorem 2.1 If the sequence {uk(t)} converges, where uk(t) is produced by the variational
iteration formulation of (3), then it must be the exact solution of (1).

Proof The proof is similar to the given [12].

3 Chebyshev polynomials and spectral variational iteration method

In this section, we give the SVIM and apply here it to problem (1). At first, we describe the
following properties of shifted Chebyshev polynomials.

3.1 Properties of shifted Chebyshev polynomials

This section is devoted to introducing Chebyshev polynomials (of the first kind), and express-
ing some basic properties of them. The Chebyshev polynomials, Tn(x), n=0, 1,…, are the
eigenfunctions of the singular Sturm–Liouville problem (1 − x2)T ′′

n (x) − xT ′
n(x) + n2Tn(x)

= 0 and are of high interest recently [5, 6].
Let Tj (x), x ∈ [−1, 1] be the standard Chebyshev polynomial of degree j. Then we have:

T0(x) � 1, T1(x) � x, Tj+1 � 2xTj (x) − Tj−1(x), j ≥ 1. (6)

In order to use these polynomials on the interval [0,T], we define the so-called shifted
Chebyshev polynomials by introducing the change of variable x � 2t

T − 1. Let the shifted
Chebyshev polynomials Tj

( 2t
T − 1

)
be denoted by TT,j(t).We infer from the aforementioned

that:

TT,j+1(t) � 2

(
2t

T
− 1

)
TT,j(t) − TT,j−1(t) j � 1, 2, . . . , (7)

where TT,0(t) � 1 and TT,1(t) � 2t
T − 1.

Assume w(t)� t (T− t). The orthogonality condition is:

T∫

0

TT,j(t)TT,k(t)w
−1
2 dt � h jδj,k, (8)
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where h j � b j
2 π, b0 �2, bj � 1, j ≥ 1 and δj,k is the Kronecker delta function. A function

u(t), square integrable in (0,T),may be expressed in terms of shifted Chebyshev polynomials
as follows:

u(t) �
∞∑
j�0

c j TT, j (t), (9)

where the coefficients cj are given by:

c j � 1

h j

T∫

0

u(t)TT, j (t)w
−1
2 dt, j � 0, 1, 2, . . . (10)

In practice, only the first (N+1)-terms shifted Chebyshev polynomials are considered.
Hence, u(t) can be expanded in the form:

uN (t) �
N∑
j�0

c j TT, j (t). (11)

Theorem 3.1.1 Let u(t) ∈ Hk(−1, 1) (Sobolev space) and uN (t) � ∑N
j�0 c j TT, j (t), then:∥∥∥u(t) − uN (t)

∥∥∥
L2

w[−1,1]
≤ C0M

−K ‖u(t)‖Hk
w(−1,1)

where C0 is a positive constant, which depends on selected norm and independent with u(t)
and M [7].

We now deal with the shifted Chebyshev–Gauss–Lobatto (SC–GL) interpolation. We
denote:

x Nj � −cos
π j

N
, 0 ≤ j ≤ N , (12)

which are the standard Chebyshev–Gauss–Lobatto points on the interval [−1, 1] and

t NT, j � T

2
(xNj + 1) � T

2

(
1 − cos

π j

N

)
, 0 ≤ j ≤ N . (13)

The nodes of the Shifted Chebyshev–Gauss–Lobatto interpolation on the interval [0,T]
are the zeros of TT,N−1(t), which are denoted by tNT,j, 0 ≤ j ≤ N.

Let PN(T) be the set of polynomials of degree at most N owing to the property of the
standard Chebyshev–Gauss–Lobatto formula, it expresses that for any ∅εP(2N−1)(0,T)

T∫

0

∅(t)w −1
2 (t)dt �

1∫

−1

∅
(
T

2
(x + 1)

)
(1 − x2)

−1
2 dx

� π

C̃jN

N∑
j�0

∅
(
T

2
(xNj + 1)

)
� π

C̃jN

N∑
j�0

∅(tNT,j). (14)

where C̃0 � C̃N �2 and C̃j �1 for j�1, 2,…, N−1.
Next, we introduce the following discrete inner product and the discrete norm,

(u, v)T,N � π

C̃jN

N∑
j�0

u(t NT,i )v(t
N
T,i ), ‖v‖T,N � (v, v)

1
2
T,N . (15)

where C̃0 � C̃N �2 and C̃j �1 for j�1, 2,…, N−1.
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3.2 Spectral variational iteration method

In general, the application of the VIM to solve the nonlinear Fredholm integral equation
leads to the calculation of terms that are not needed and more time is consumed in repeated
calculations for series solutions. Furthermore its successive iterations may be very complex,
so that the resulting integrations in its iterative relation may be impossible to perform ana-
lytically, Next to overcome these shortcomings a new spectral VIM is proposed. As will be
shown in this article later, the new method will be inherit the strengths of the VIM and will
be very simple to implement and save time and calculations. To this end, in view of (3), we
derive the following stable technique for solving (1),

L
[
uN
k+1(t

N
T, j ) − uN

k (t
N
T, j )

]
� −A

[
uN
k (t

N
T, j )

]
, 0 ≤ j ≤ N . (16)

As pointed out before, this is an explicit approach and under certain conditions has a
unique solution. Here, in order to directly calculate the unknown uN (tNT,k), we give a simple

implementation by expanding uN (t) by the shifted Chebyshev polynomials, which lead to
stable algorithm.

The polynomial:

p(t) ∼� uN (t) �
N∑
j�0

uN
j TT, j (t), (17)

interpolates the points (tNT,j, u
N
j ), 0 ≤ j ≤ N , that is, p(tNT ) � uN , The value of the integral

at the nodes is defined by
∫ T
0 k(t, s)u(s) � F ·(uN ),where F is the Fredhlom integral operator.

We remark that the Fredhlom integral operator F · (uN ) becomes after discretization with
shifted Chebyshev polynomials:

F · (uN ) �
T∫

0

k(t, s)
N∑
j�0

uN
j TT, j (s)ds �

N∑
j�0

uN
j

T∫

0

k(t, s)TT, j (s)ds

�
N∑
j�0

uN
j · Ij(t) �

N∑
j�0

uN
j ·

N∑
i�0

ki j TT,i (t) �
N∑
i�0

⎡
⎣ N∑

j�0

ki j u
N
j

⎤
⎦ TT,i (t).

Consequently, if uN
j � (uN

0 , uN
1 , . . . , uN

N )
T are the coefficients of uN , then K uN

j are the

coefficients of F · (uN ), given by the matrix K � (ki j )i, j�0,1,...,N .

The matrix K can be calculated starting from the physical values:

Ij(ts) �
T∫

0

K(ts, s)TT, j (s)ds �
N∑
i�0

wiK(ts, ti)TT, j (ti), s, j � 0, 1, . . . , N .

For more details, the interested reader may observe [9].
Generally, in order to solve problem (1) using a spectral collocation scheme, the interpolat-

ing polynomial p(t) is required to satisfy the equation at the interior nodes SC-GL. The value
of the interpolating polynomial at the interior nodes SC–GL are p(tNT,m) � (uN )m � Im,:uN ,
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(m�0 : N) where Im,: denotes them row of the identity matrix of order N + 1. For the interpo-
lating polynomial to satisfy the NFIEs of (1) at each interior node, the collocation equation:

p(tNT,m) � f (tNT,m) +

T∫

0

k(tNT , s)G(p(s))ds. (18)

Should be satisfied. Substituting the above matrix relation, the collocation Eq. (18) can
be written as:

Im,:uN � f m + Im,:(F · G(uN )), (19)

where f m � { f (t N(T,0)), . . . , f (t NT,N )}. Now in view of (3) and the definitions of L and A,
by substituting the integration matrix relation, we will have the following explicit VIM for
solving (1) which is called the spectral VIM (SVIM):

uN
k+1 � uN

k − I−1
m,: (Im,:uN

k − f m − Im,:(F · G(uN )). (20)

If we define L � Im,:, f � fm and NuN
k � Im,:(F · G(uN )), then we will have the

following explicit iterative relation for finding the solution vector uN
k+1:

uN
k+1 � uN

k − L−1(LuN
k − f − NuN

k ). (21)

Here the vector uN
k+1 is defined as u

N
k+1 � {uN

k+1(t
N
(T,0)), . . . , y

N
k+1(t

N
(T,N ))}.

Here, we may determine the initial approximation by solving the linear system LuN
0 � f .

Thus, starting from the initial approximation uN
0 , we can use the recurrence formula (20) to

successively obtain directly uN
k+1 for k ≥ 0.

4 Numerical examples

In what follows, to illustrate the performance of the SVIM method in solving nonlinear
Fredholm integral equations and justify the accuracy and efficiency of the presented method,
we consider four examples. We mention that All the computations were performed using
software Matlab with machine precision, and terminated when the current iterate satisfies∥∥uN

k+1 −uN
k

∥∥∞ ≤ 10−16,where uN
k is the solution vector of the kth SVIM iteration.Moreover

to study the convergence behavior of the SVIM method, we applied the following laws:

a. The L2-error norm of the solution which is defined by:

L2 �
√√√√ N∑

j�o

(uN (tNT,j) − uN
k (t

N
T,j))

2, 0 ≤ j ≤ N .

b. The L∞-error norm of the solution which is defined by:

L∞ � max j
∣∣∣uN (tNT,j) − uN

k (t
N
T,j)

∣∣∣ , 0 ≤ j ≤ N ,

where uN (tNT,j)and uN
k (t

N
T,j) are exact and numerical solution, respectively, and {tNT,j},

0 ≤ j ≤ N , are collocation node points. The following algorithm, based on the method
presented in Sect. 3.2 has been used to solve examples.
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Table 1 The L∞, L2 errors used for Example 4.1

N 6 8 10 12 14 16

L2 2.2525E−03 8.5824E−05 5.5129E−06 3.1698E−07 1.3148E−08 4.2019E−10

L∞ 1.0912E−03 3.6381E−05 2.1034E−06 1.1087E−07 4.2710E−09 1.2796E−10

Algorithm 4.1

Begin

1. Input N, tspan (the desired range), max iteration and max error(desired tolerance)  for NFIE.

2. Construct   the interpolation   polynomial ( ) by the shifted Chebyshev polynomials from (17).

3. Choose L[u(t)], N[u(t)] and f(t) for NFIE.

4. Determine the initial approximation by solving the linear system = .

5.Set  it=0 and unorm=1.

6. While  (it< max iteration ) and  (unorm > max error ) do

7. Compute the values of L[u(t)], N[u(t)] and f(t) at the interior nodes SC-GL(collocation points)

8. Substituting the above matrix at the collocation equation (18) . 

9.  Using the explicit  iterative relation (20) to obtaining  the solution vector .

10. Evaluate the value of unorm and Update the data of  

end while

End

Example 4.1 Consider the following NFIE [30]:

u(t) � sin(πt) +
1

5

1∫

0

cos(πs) sin(πs)u3(s)ds.

The exact solution of this problem is u(t) � sin (πt) + 1
3 (20 − √

391)cos(πt).
Table 1, illustrates the L∞,L2 errors for different values of N . Figure 1 shows that the

absolute error for N � 16 and the behavior of the exact and numerical solutions (our method)
of this example when N�16 is presented in Fig. 2. As expected, the exponential rate of
convergence is observed for the above nonlinear problem.

Example 4.2 Consider the following NFIE [29]:

u(t) � −t2 − t

3
(2

√
2 − 1) + 2 +

1∫

0

st
√
u(s)ds,

with the exact solution u(t) � 2 − t2.
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Fig. 1 Absolute error of the spectral PIM by N�16
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Fig. 2 Numerical solution of the spectral PIM by N�16

For different values ofN, the errors in Table 2 are givenwith L∞,L2 errors. Figure 3 shows
that the absolute error for N � 16 and the behavior of the exact and numerical solutions
(our method) of this example when N�16 is presented in Fig. 4. The exponential rate of
convergence is observed for the NFIE.

Example 4.3 Consider the following NFIE [28]:

u(t) � 1 + t +

(
1 − 3

2
ln 3 +

√
3

6
π

)
t2 +

1∫

0

2t2sln(u(s))ds,

with the exact solution u(t) � 1 + t + t2.
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Table 2 The L∞, L2 errors used for Example 4.2

N 6 8 10 12 14 16

L2 6.8857E−06 1.3955E−07 4.1414E−09 1.5694E−10 6.9528E−12 3.4258E−13

L∞ 4.4680E−06 7.8940E−08 2.1038E−09 7.2979E−11 2.9991E−12 1.3833E−13
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Fig. 3 Absolute error of the spectral PIM by N�16
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Fig. 4 Numerical solution of the spectral PIM by N�16

The L∞,L2 errors are given in Table 3. Figure 5 shows that the absolute error for N�16.
Figure 6 depict the exact and numerical solutions for N�16. Again, we can see spectral
accuracy for large values of N.
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Table 3 The L∞, L2 errors used for Example 4.3

N 6 8 10 12 14 16

L2 4.5781E−06 1.9484E−08 6.5911E−10 2.6549E−12 2.2998E−13 9.6786E−16

L∞ 3.3504E−06 1.2540E−08 3.8304E−10 1.4175E−12 1.1457E−13 4.4408E−16
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Fig. 5 Absolute error of the spectral PIM by N�16
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Fig. 6 Numerical solution of the spectral PIM by N�16
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Table 4 The L∞, L2 errors used for Example 4.4

N 6 8 10 12 14 16

L2 2.4981E−05 4.0865E−07 1.1040E−10 6.9346E−11 7.2906E−13 3.1165E−15

L∞ 1.6210E−05 2.3116E−07 5.6087E−11 3.2245E−11 3.1441E−13 1.3322E−15
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Fig. 7 Absolute error of the spectral PIM by N�16

Example 4.4 Consider the NFIE [26]:

u(t) � et − 1

2
t(cos(1) − cos(e)) +

1

2

1∫

0

tes sin(u(s))ds,

Which has the exact solution u(t) � et .

In Table 4, the L∞,L2errors for different values of N are demonstrated. The other results
are presented in Figs. 7 and 8 with N�16 similar to examples 1, 2 and 3.

5 Conclusion

This article introduced an efficient numerical method based on a hybrid of spectral and
variational iteration method for solving a class of nonlinear Fredholm integral equations
(NFIEs). This new method is easy and straightforward to implement and accurate when
applied to the nonlinear Fredholm integral equations. The effectiveness of this approach is
demonstrated by solving several problems. The SVIM numerical results were compared with
exact results and excellent agreement was obtained.
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Fig. 8 Numerical solution of the spectral PIM by N�16
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