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Double field theory is a manifestly T-duality invariant formulation of string theory in which the effective
theory at any order of ¢ is invariant under global O(D, D) transformations and ought to be invariant under
gauge transformations which receive «-corrections. On the other hand, the effective theory in the usual
D-dimensional formulation of string theory is manifestly gauge invariant and ought to be invariant under
T-duality transformations which receive o-corrections. We speculate that the combination of these two
constraints may fix both the 2D-dimensional and the D-dimensional effective actions without knowledge
of the o -corrections of the gauge and the T-duality transformations. In this paper, using generalized fluxes,

we construct arbitrary O(D, D)-invariant actions at orders o and o, and then dimensionally reduce
them to the D-dimensional spacetime. On the other hand, at these orders, we construct arbitrary
covariant D-dimensional actions. Constraining the two D-dimensional actions to be equal up to
noncovariant field redefinitions, we find that both actions are fixed up to overall factors and up to field

redefinitions.

DOI: 10.1103/PhysRevD.98.066008

I. INTRODUCTION

One of the most exciting discoveries in string theory is
T-duality [1,2]. This duality may be used to construct the
effective field theory at low energy. One approach for
constructing this effective action is the double field theory
(DFT) approach [3-7]. The DFT is a constraint field
theory which doubles the spacetime coordinates, i.e.,
adds to the usual D-dimensional spacetime coordinates
which correspond to the momentum excitations, another
D-dimensional coordinates which correspond to the wind-
ing excitations. However, a solution to the constraint in its
strong form [7] is that the 2D-dimensional dynamical
fields to be independent of the winding coordinates. The
T-duality is manifested in this approach as the effective
action is O(D, D)-invariant by constructions. The effective
action is also constrained to satisfy some gauge trans-
formations. The appropriate gauge transformations at the
leading order of o are the generalized diffeomorphisms
and double-Lorentz transformations [7,8], however, one
of them receive o-corrections at the higher orders of
o [9,10]. The form of these corrections at order o have
been found in [9,10], however, it is hard to find them at the
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higher orders. Using the 2D-dimensional field redefinitions
freedom, the effective action may appear in different
schemes. The DFT effective action at order « in one
particular scheme has been constructed in [10,11].

Another T-duality based approach for constructing the
effective action at higher orders of o/, is to use the
constraint that the dimensional reduction of the effective
action on a circle must be invariant under the T-duality
transformations [12]. In this approach, one begins with the
most general gauge invariant action in the D-dimensional
spacetime. The dimensional reduction of this action on the
circle must be invariant under the T-duality transforma-
tions. The gauge transformations in this approach are the
standard coordinate transformations, the B-field gauge
transformations and the nonstandard Lorentz transforma-
tion of the B-field which is required for anomaly cancella-
tions. The T-duality transformations at the leading order of
« are the Buscher rules [13,14], however, they receive o'-
corrections at the higher orders of o' [15,16]. The form of
these corrections at order o' have been found in [15—17],1
however, it is hard to find them at higher orders of . Using
the T-duality approach, the standard gravity and dilaton
couplings in the effective actions at orders o/, &2, &> have
been reproduced in [19,20].

Since the higher derivative corrections to the gauge
transformations in the DFT approach and the «-corrections

Tt has been observed in [18] that the renormalization
group flows is covariant under the T-duality transformations at
order o'
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to the Buscher rules in the T-duality approach are hard to
find in general, it is desirable to find constraints which
do not receive «-corrections. Merging the above two
approaches, one may finds such constraints as follows:
Using the strong constraint, one can reduce the 2D-
dimensional effective action in the DFT approach to
the D-dimensional effective action. This action should
then be the same as the D-dimensional effective action in
the T-duality approach. The field variables in the two
approaches, however, are not the same. Noncovariant field
redefinitions are required to relate the two field variables
[21]. The T-duality transformations in the DFT approach
are the standard Buscher rules [7] whereas the gauge
transformations are not the standard gauge transformations.
On the other hand, the gauge transformations in the
T-duality approach are the standard gauge transformations
whereas the T-duality transformations are not the standard
Buscher rules. As a result, the two D-dimensional actions
must be the same up to noncovariant field redefinitions.
Therefore, the effective actions should satisfy the following
constraints:

(1) The 2D-dimensional action is constrained to be
invariant under the O(D, D) transformations and
under the generalized diffeomorphisms which do not
receive o’ -corrections. However, it is not constrained
to be invariant under the double-Lorentz transfor-
mations which receive o'-corrections.

(2) After reducing it to the D-dimensional spacetime and
using noncovariant field redefinitions, the action
is constrained to be the same as a D-dimensional
action which is invariant under the standard
coordinate transformations, the B-field gauge
transformations and the nonstandard Lorentz trans-
formation of the B-field, however, it is not invariant
under the T-duality transformations which receive
o' -corrections. We speculate that the above two
constraints can fix both the 2D-dimensional and
D-dimensional effective actions. We confirm this
idea in this paper by explicit calculations at orders
a” and .

The outline of the paper is as follows: In Sec. II, we
perform the calculations at order o°. In particular, in
subsection I A, we use generalized metric and dilaton as
dynamical fields which are invariant under the double-
Lorentz transformations, to construct the most general
O(D, D)-invariant action at order o°. Using the strong
constraint, we then reduce it to the D-dimensional action.
Then, using the D-dimensional metric, B-field and dila-
ton, we construct the most general covariant action at
order o®. Constraining the two actions to be identical, we
fix both effective actions. Up to an overall factor, they are
exactly the known effective actions in the literature. In
Sec. II B, we use the generalized frame and dilaton as the
dynamical fields. Using the generalized fluxes, which are
invariant under the generalized diffeomorphisms, we

construct the most general O(D, D)-invariant action at
order o, and then reduce it to the D-dimensional
action. Comparing it with the covariant D-dimensional
action, we fix both the effective actions. The 2D-
dimensional effective action is the same as the action
in the literature.

In Sec. III, we extend the calculations to the order . In
particular, using the generalized fluxes, we first construct
the most general O(D, D)-invariant action at order o
without fixing its field redefinitions freedom, and then
reduce it to the D-dimensional action. To convert the
noncovariant field variables in the resulting action to the
covariant variables, we use the most general noncovariant
field redefinitions. We then compare it with the most
general covariant action at order o' up to covariant field
redefinitions. The constraint that the two D-dimensional
actions must be identical, fixes both actions. Up to an
overall factor, the D-dimensional action is exactly the
same as the action in the literature. Since the field
redefinitions freedom is not fixed in the 2D-dimensional
action, we have found the 2D-dimensional action with
some arbitrary parameters. In one particular scheme in
which dilaton appears as an overall factor, we write the
effective action.

II. EFFECTIVE ACTION AT ORDER «”

Using the strong constraint in the DFT formalism, the
effective action of string theory at order & can be written
as O(D, D)-invariant and invariant under 2D-dimensional
gauge transformations which are generalized diffeomor-
phisms and local double-Lorentz transformations. If one
uses the generalized metric and dilaton as dynamical
fields which are invariant under the double-Lorentz trans-
formations, then the gauge transformations are the gen-
eralized diffeomorphisms [8]. On the other hand, if one
uses the generalized frame and dilaton as the dynamical
fields, then the action can be written in terms of gener-
alized fluxes which are invariant under the generalized
diffeomorphisms [7]. Hence, the nontrivial gauge
transformations in this case is the double-Lorentz
transformations. Using these gauge transformations,
the 2D-dimensional effective actions have been found
in [8,22].

In this section we are going to find these actions
by comparing the most general O(D,D)-invariant
action with the most general D-dimensional covariant
action.

A. Generalized metric formulation

We begin with the case that the generalized metric H,,
and dilaton d are the dynamical fields. They are invariant
under the double-Lorentz transformations as they carry
no index in this space, however, the generalized metric
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H,, is a matrix that transforms under the O(D, D) trans-
formations as’

H — OHOT (1)

The D-dimensional coordinate x“ conjugated to the
momentum excitations and the D-dimensional coordinate
X, conjugated to the winding excitations, transforms as
vector, 1.e.,

2

S():— 2‘7

K

e=(@)-o() 2=()-e() @

and the 2D-dimensional dilaton d is invariant under the
O(D, D) transformations [8]. Using these O(D, D) tensors,
one can write the most general O(D, D)-invariant action at
two-derivative level as’

/ dxdfce‘Zd(@H"ﬂé‘ad@ﬂd + c3H“ﬁ8/;8ad + CIH“VHﬁ‘Sa},(?aH,;ﬂ + CzHayHﬂéayagHa/}

+ CSHaéHﬁeHysaaHﬁyagHeg + C6H“5Hﬂ€H”£8ﬂHw35Hﬁ. + cllH“‘sHﬁJ’ayH,,ﬁ&;d + CSH"‘sHﬂeH”&;H{EGEHﬁY
+ c1oHHP 0, H,50s5d + c;HOHPH 05 H ., 05 Hoe + ca H* HPEH 0, H5, 0. Hop) (3)

where H* is inverse of the generalized metric and
V= | dx. Since there is no double-Lorentz index in the
couplings (3), this action is invariant under the local
double-Lorentz transformations as well.

There is also a O(D, D)-invariant metric

ﬂ,w—<(1) (1)>; 17"”—((1) (1)> (4)

which raises and lowers the 2D-indicies, i.e.,

HMZ/ = ’1’“7'(@; H = rl”arlyﬁHaﬁ; 0= ”aﬂaﬂ (5)

The symmetry of the effective action under B, - —B,,
requires the couplings to have even number of
constant metric # [8]. The couplings involving odd
number of x are antisymmetric under B,, — —B,,.
At two derivative level, one can convince oneself that
any term which is independent of the winding coor-
dinates and contains two constant metrics, is identical to
the couplings in (3). For example, using the constant
metric to raise and lower the indices, the term
O H 0, H /H# can be written as 0,H”0,H"Hyg,.

2Our index conversion is that the Greek letters (u,v, ...) are
the indices of the curved 2D-dimensional space, the Latin
letters (a, d, c, ...) are the indices of the curved D-dimensional
spacetime, the letters (A, B, C,...) are the indices of flat 2D-
dimensional tangent space, and the letters (i, j, k, ...) are the flat
D-dimensional tangent space.

*We use the Mathematica package XAcCT [23] for performing
the calculations in this paper.

The latter coupling can be written as the couplings in
(3) using the identity

HP Py, = (6

At higher derivative level, however, there are couplings
involving the metric # which can not be written in terms of
only generalized metric, e.g., ,H"30, H",;0,H*0,HP.

The couplings in (3) with coefficients c4, ¢7, c;o become
zero using the above identity. Using this identity and total
derivative terms, one can relate the coefficients of some
of the above terms. One may either use these relations to
write (3) in terms of independent couplings and then
compare them with the D-dimensional gauge invariant
action, or one may fix them after comparing the noninde-
pendent couplings with the D-dimensional gauge invariant
action. In the latter case that we are going to do in this
paper, they appear as free parameters which can be chosen
arbitrarily.

The reduction of the generalized metric and its inverse
in terms of the D-dimensional metric and the B-field
are [8]

Gab _Gachb
My = b d ;
BaCGC Gab - BacGC Bdb
G — B,.G“By, B, G
HH — ( b . db ) (7)
—Gec Bch Guh

The reduction of the 2D-dimensional dilaton to the
D-dimensional dilaton and metric is e 2¢ = ¢72®/—G.
Using the strong constraint that fields do not depend on the
coordinate X, one can reduce (3) to the following
D-dimensional action:
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2 1
SO = —2/ dxe_w \Y4 —G <09G”b8ad)3bcb + c3G“h8b80(I) - ZC3G""G”‘1808“GW, + 2(6’1 + Cs)GadGhchfaaBbcadBef
K

1 1
+ <C2 + C6)GadGbeGCf8bBaCadBef - chlG“dGbeGCfﬁbecadGae + Z <8C1 + C3 + 805)G"dGbeGCfaaGbcadGef

1 1
+ C6G“dGbeGCf0bGa68dGef - 5 C9G“‘1Gb“8aGcb3d® + cllG“dGbcﬁcGabadd) + RCgGaebeGCdaaGdcaerb

+ <—C2 - Cg)GadGbchfadBaeafBbc + CSGadGbchfadGaeabec + chachd(?CadGab) (8)

Note that the coefficients ¢y, c7, c1¢ do not appear in above
D-dimensional action, so they appear in the final action as
arbitrary parameters which can be set to zero.' It is
interesting to note that even though the generalized
metric contains no derivative on the B-field, the above
D-dimensional action contains only terms which have
derivative on the B-field. It turns out that the dimensional
reduction of any O(D, D)-invariant coupling produces no
B-field without derivative on it. The above O(D, D) and
double-Lorentz invariant action is not invariant under the
generalized diffeomorphism for arbitrary parameters. We
do not impose this constraint for finding the unknown
coefficients in this paper.

|

We now construct the most general D-dimensional
action at two-derivative level which is invariant under
the coordinate transformations and under the B-field gauge
transformations, i.e.,

2
S¢ = _F/ dxe™2*/=G <a1R + a,V,dVidD — %HZ),

©)

where H ;. = 0,Bp. + 0.Byy, + 0B, and ay, a,, as are
three constants. Since the action (8) is in terms of metric
and B-field, we rewrite the above covariant action in terms
of metric and B-field, i.e.,

2 1 .
S(L] = — ;/ dxe_z‘b V-G (azG“baaq)@be — alG"CdeacaaGdb + alG“CdeacﬁdGab - Za3G”dGhchf5aBbcadBef

1 3
+ §a3G“dGbeGCf8bBaC8dBef + alG“dGbeGCfabecadGae + ZalG“dGbeGCfaaGbcadGef

1 1
- 5Cl]GadGhchfabGucadGef - ZalG“ethG“daqucaeGﬂ, - alG“‘lGh“G"fadGaeabec> . (10)

The two D-dimensional Lagrangians (8) and (10) are not
equal for any nonzero parameters. However, to compare the
two actions, one should take into account noncovariant
total derivative terms as well. There are three total deriva-
tive terms, 1.€.,

2
J = —p/ dx@a(e_zq’ V —G[f3G“b8bd) +f2GCbGdaaCGdb

+ [1GG™"0,G ) (11)

where f, f5, f3 are three arbitrary parameters. Now adding
these total derivative terms to (10), the two actions can be
equated, i.e., Sy = S§ + J, for the following constraints on
the parameters:

*One can check that the above couplings are invariant under
the Buscher rules, i.e., if one compactifies the theory on a circle
and assumes fields are independent of that directions, then the
above couplings would be invariant under the Buscher rules.

laz =4a,, az = ay,

c3 =2a; — ¢y —2c,, cs =—a;/8—cy,

ce =a;/2—cy, g = —C», cg =2c¢y; +4c,,
fi=ai/24c/4+ /2, fr=—a; +c,
f3=2a;—c; —2c, (12)

The equations in the last line gives the coefficients of the
total derivative terms that are needed to equate the two
actions.

The equations in the first line constrain the D-
dimensional action (9) to be

2 1
S¢ = — U | 4xe /=G R + 4V, 0V® — — H? |,
0 K> 12
(13)

which is the standard effective action at order o, up to an
overall factor. The overall factor must be a; = 1 to be the
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effective action of string theory. The equations in the
second line constrain the O (D, D)-invariant action (3) to be

2 1
SO = - Kza‘ﬁl}'/ d.Xdie_Zd <2H”ﬁ8ﬁ8{,d + gH(lﬁaaH/jyagHﬂy
1
- Eﬂaéaﬂmyamﬂr> (14)

where we have also used the identity O, H* =
—H""H 9, Hg,. The terms with coefficients ¢,, ¢y are
total derivative terms, and terms with coefficient ¢, i.e.,

cH*HYP0,0,Hyy — ¢/ HOHPHT O My, O5He  (15)

become zero using the identity (6), so we have discarded
them. The O(D, D)-invariant action (14) is the one has
been found in [8]. Therefore, the requirement that the
O(D, D)-invariant action and the covariant D-dimensional
action to be identical, fixes both actions, up to an overall
factor.

The action (14) has been found in [8] by requiring the
O(D, D)-invariant couplings (3) to be invariant under the
generalized diffeomorphisms which are

B(e) = 0, (£ve-2)
5H/4u = CpapH;w + 2(6(”0) - apg(y)Hu)p (16)

Unlike the terms in (9) which are invariant under the
D-dimensional diffeomorphisms, none of the terms in (3) is
invariant under the above 2D-dimensional generalized
diffeomorphisms. Only the combination of terms
in (14) is invariant under these transformations [8]. This
combination may be defined as the definition of 2D-
dimensional scalar curvature [8]. It is hard to extend the
couplings (14) to the higher order of & because the
conventional 2D-dimensional Riemann curvature does
not transform covariantly under the generalized diffeo-
morphisms [4,24-27].

B. Generalized frame formulation

A convenient frame work for constructing the higher
derivative couplings in DFT is the generalized frame
construction of the DFT [3,7]. The generalized frame
EﬂA is defined to relate the generalized metric 'H,, to
the flat generalized metric 45 and the O(D, D)-metric 77,,,
to flat metric #,p, i.e.,

H/w = EMAHABEDB Mw = MAWABEDB (17)
In terms of the generalized dilaton d, the generalized frame
E”A and its transverse E¥,, one can construct flat space

tensors which transform as scalar under the generalized
diffeomorphisms. They are

-FA - ZaAd - E”BaBEMA
Fapc = 38[AE”BEDC]77;U/ (18)

where the flat space derivative is d4 = E*40,. These
tensors transform as scalar under the generalized diffeo-
morphisms [7], i.e.,

OF p = {10, F 4 0F apc = 80, F apc ~ (19)
The flat space derivatives of these tensors transform as
scalar under the generalized diffeomophisms as well [7].
However, these tensors do not transform covariantly under
local double-Lorentz transformations. It has been shown in
[10,11] that these transformations receive o corrections
as well.’

One may construct O(D, D)-invariant and the general-
ized diffeomorphism invariant effective actions by consid-
ering all contractions of these tensors with constant metric
B and HAB, i.e., at two-derivative level they are

2
Sg = —2—‘7/dxdfce_2d(c3.7:A]:A +C43A.7:A
K

+ CI.FAFBHAB + C26A.FBHAB + C7FABC\FABC
+ ceHABF P Fpep + csHABHL F 4 E Fypr
+ s HABHPHEE F ycp Fppr) (20)

The flat indices are raised by the flat metric 75, ie.,
FA = n*BFp. This action is invariant under the generalized
diffeomophisms for arbitrary parameters cy, ..., cg, however,
it is not invariant under the local double-Lorentz transforma-
tions. Imposing the invariance under the double-Lorentz
transformations, one can fix these parameters [11,22].
However, we are not going to fix the parameters in this way.

To fix the parameters cy, ..., cg, instead, we constrain
the reduction of this action to be identical with the D-
dimensional covariant action (9). The reduction of the
metric 745, HA® and the generalized frame E,* are [11]:

J
e (O0) (0,
s 0) 0 ni)’
A e“,- O
EM B <_€biBba eai (21)

where e, is the D-dimensional frame, i.e., e,'e,n;; = G 4p.
Using the constraint that fields in the 2D-dimensional
action (20) do not depend on the coordinate X, one can
reduce it to the following D-dimensional action:

If one uses the generalized metric and dilaton as the
dynamical fields which are invariant under the double-Lorentz
transformations, then the «o'-corrections would appear in the
generalized diffoemorphisms [9].
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2 . . . )
Sg = ——2/ dxe_zq) —G(ch“dGbcnﬁed’aaacebl + 401G“b6a®8b® + 202G“b8b8a(13 + 6C8GaCde7]ﬁ8a€bjacedt
K

—4¢1G°G"njie, 0,0, ¢4 — 6c3GGPni0pe, 0 ey + 4c1 GGy e, 0, DD e f' — c,GUGy e, 0.0,

+ 3CgGadGbeGCf6aBbCadB€f - 6CgGadGbeGCf8bBacadBef + 4c5G‘“’GbeG"fnj,-effaaB,,cadeei
—4csGUG* G e 0B 04, + (—cy 4 4c6) GG Gy mye f e Dpe Dy,

- 2¢1GGP G me Ll e Oy 0ge, + 4esGUUGP G e 10, B pOge, — 2¢,GG e/ e, 0P

+ (€2 = 2¢6)G“ G Gyt e D, e /Do + 1 GG G nimyjent e Dge Do

— ,GUG G e e D4e, 006 + GGG ek e Dge Do

= 2¢6GGP G et e 040, 0y + ¢ GGG e fe e, Drey) (22)

The terms with coefficients c3, ¢4, ¢7, which have no
HAB, vanish when reducing the couplings (20) to the
D-dimensional spacetime. Hence, these terms are zero
by the strong constraint. Note that even though the
generalized frame contains no derivative on the B-field,
the above D-dimensional action contains only terms which
have derivative on the B-field. The above D-dimensional
|

2611

Sl =
0 K

|
action must be equal to (10) plus some D-dimensional total
derivative terms. To compare the two actions, one has to
rewrite the derivatives of metric in the action (10) in terms
of derivatives of the frame e,’. The comparison then fixes
both the effective actions (9) and (20) up to an overall
factor. The action (9) is fixed as in (13) and the action (20)
is fixed as

1 1
2‘7/dXd’~‘e_2d <_]:A~7:BHAB + 200 FBH g +ZHAB]:ACD]:BCD _EHABHCDHEF]:ACE]:BDF 4 ) (23)

where dots represent the terms which vanish after using the strong constraint. The above action is the action has been found
in [22]. In the next section we consider this approach to find both D-dimensional and 2D-dimensional effective actions at

order o'.

III. EFFECTIVE ACTION AT ORDER «'

The most general four-derivative action which is O(D, D)-invariant and is invariant under generalized diffeomorphisms
can be constructed by all possible contractions of the following tensors with constant metric 748 and HA5:

FaFpFcFp~+ FaFpFcFper + FaFpFcoeF roun + FaF seF ercF uir + F apcF perF eurF ixe
+ FepeF rau0aF s + FperOaOpF ¢ + 0p0p0cF p + 0400cF ppr + FaF perOpF ¢ + F a00cFp
+ Fa080cF per + FaF 0cF p + OsFg0cFp + FaF gOcF per + OaF pOcF per + FapcOpOeF ron
+ FaF epOeF ron + 0aF sepOeF rou + F apcF perOcF uis (24)

It produces 275 terms, i.e.,

2
S{ = —Kz‘,.,//ddee_Zd(ClHABHCDFAFB.Fch
+C2fAFAFBfB+"') (25)
where ¢y, ..., cy75 are parameters. The terms which have no

tensor HAB, e.g., c,-term, are zero after using Bianchi
identities [28] and the strong constraint. There are 34 such
terms. There are also 91 terms with other structures that

become zero under these constraints.” The remaining 150
terms are in five classes. One class includes terms that
cancel each others after using the strong constraint, one

®One may use the Bianchi identities found in [28] to demon-
strate the vanishing of some of these 125 terms. However, the
more convenient way to impose the Bianchi identities and the
strong constraint is to reduce the couplings to the D dimensions
using the reduction (21) and then use the strong constraint. The
above 125 terms vanish when we write the D-dimensional
couplings in terms of independent expressions.
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class includes terms that are total derivatives, one class
includes terms that become zero using appropriate identities,
one class includes terms that are reproduced by field
redefinitions at order o of the fields in (23), and the last
class includes all other terms in which we are interested. One
may examine all terms in details to exclude all terms
except the terms in the last class, and then imposes the D-
dimensional gauge symmetry. Alternatively, one may impose

|

the D-dimensional gauge symmetry on all 150 terms. In this
case, the terms in the first four classes appear in the final action
with free parameters which can be chosen arbitrarily.

Using the relation (18), one can write the couplings (25)
in terms of dilaton and the generalized frame. Then using
the dimensional reduction (21), one can reduce the 2D-
dimensional action (25) to the D-dimensional action, e.g.,
the reduction of ¢-term is

2 . .
S/ =-5 / dxe™2®\/=G(16¢, DD, DD DD, DD’ + 32¢,De DD, DD DD e,; — 32¢,De® DD, DD DD e,
K

+ 1661De“biDeCd/D(Dde>deaieCj - 1601De“biDebCfDCIDdD(I)deaieCj + 861De“biDerjDCIDdDd)deaieCj

- 3201De“biDeCd/DCIDHDq)debieCj + 8(:1DeaCfDe“biDQDdDCI)debieCj + 16(:1De“biDeCdeQDQDd)Cebiedj

- 1661De"biDeijDedekDCI)eem»ecjedk + SClDe”biDerjDed"qu)eeaiecjedk + 861DeaCjDe“biDede"DCI)eeb,-ecjedk
+ 16¢1De“’' De,“ De* D® e e, je o — 8¢1De™? De ,/ De* DD e e je o — 8¢ De, T De” De® DD e e je
+4c1De® De, I De%* De, e e je e sy — 4c1De® De, I De?“*Del e e jeqre

+ ¢1De® De i De¥ De’ e e jegpe sy — 4ciDe, T De®" De?* De ey, e gre

+2¢iDe, " De® De¥ Del leyie, e gie s + c1De,TDe De S De¥ epie e e + - -) (26)

where De,,' = d,e,' and D®, = 9,®. The above action is
manifestly invariant under T-duality as its parents (25) are
invariant under the O(D, D) transformations, however, it is
not invariant under the usual D-dimensional gauge trans-
formations for arbitrary parameters. We are going to find these
parameters by comparing them with a D-dimensional action
at order @ which is not invariant under the T-duality, but is
invariant under the conventional gauge transformations, i.e.,
the standard coordinate transformations, the B-field gauge
transformations and the nonstandard Lorentz transformation
of the B-field which is required for anomaly cancellations.
The most general D-dimensional action which is invari-
ant under the conventional gauge transformations has four
class of terms. One class contains terms that are zero by
Bianchi identities, one class contains terms that are total
derivative terms, one class contains terms that are repro-
duced by the field redefinitions at order o of the fields in
(13), and the last class contains all other terms in which we
are interested. One may choose the couplings to be [29]

-2
Si = —za’ / dd+1xe_2d) —G(blRadeRade
K
+ byRypeaH P H , + b3H ;o HY [P HI, H"
+ b4Hf"ngabe”’chh + bs (HZ)2
+ boH yoyH , A0 ®O° D + b, H?0, DO D
+ bS(aacDaacD)z + leabCQabc) (27)

where b, b,, ..., by are eight parameters. The field rede-
finitions freedom allows us to choose the eight arbitrary

|

couplings in (27) in many different schemes. The above is
one particular scheme. The last term is zero for the bosonic
string theory because the B-field gauge transformation
is the standard transformation, i.e., By, = By + Ojudy)-
This term is nonzero for the heterotic string theory and
its coefficient is d; = —a,/6 in this case. This term is
a result of nonstandard gauge transformation of B-field
which is

Bab - Bab + 8[a/1b] + a/a[aAijwb]ji (28)

where A;/ is the matrix of the Lorentz transformations and
wp,;’ is spin connection.” The Chern-Simons three-form Q
which is defined as

— k .
Qahc - w[zti]abwL']jl + ga)[ai'la)bj wc]kl’

- b iy
a)ai"l - 8aeb'le i 1—‘abcec']e i (29)

makes H,,, + &’Q,;. to be invariant under the Lorentz
transformations, i.e., Hyp + & QRupe = Hype + A Qupe-
The action (27) is not invariant under T-duality for arbitrary
parameters by, b,, ..., bg. However, one expects for
some specific values for these parameters, the couplings
become invariant under T-duality. We are going to find

At order o, there is a scheme in which the appearance of the
B-field in the effective action simplifies through extending the
spin connection to the spin connection with torsion [30]. Since we
are working with the most general covariant action (27), we do
not assume such simplification.
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these parameters by comparing them with the manifestly
T-duality invariant action (26). To compare the two actions,
one has to rewrite the couplings in (27) in terms of frame
e, and B-field. If one compares the above D-dimensional
action with the reduced action (26), one would find zero
value for all parameters. So the actions are not the same. Let
|

us check their Lagrangians. So we have to include some
total derivative terms.

To construct all D-dimensional total derivative terms in
terms of frame e¢,’, B-field and dilaton ®, we have to
construct all contractions of the following tensors with
metric G* to produce the current I%:

0,0,0,B g, + 0,0,0.€4° + 0,0,0,® + 0,0,P0.e,° + 0,0,P0, P + 0,90, PO, P
+ 0,Bc040,Byy + 0,Bp.040,€ 7 + 0,Bpc040,® + 0,0,B g0, + 0,020,
+ 0,0,Bq0.P + 0,0,€.90,® 4 8,B. 0,90, P + 0,6, 03P, P + 0,Bp.04B .10y Bup
+ 0,Bpc04B, 0,0, + 0,Bp.04e,/ e, + 0,6, 0ge,” 0,0 + 0,Bpc0yB, 0,

+ 8aBb68deefagq) + Gaebcadeefagd)

where  0,e,¢ = e,0,e,', 0,0,e,¢ = e;0,0,e, and
0,040r€,° = €°,0,0,0r€,'. Then the following expression
produces all total derivative terms:

J= _—22a’/dx8a(e‘2‘b\/—GI“) (31)
K

One may extend the list of currents in (30) by including
terms d,e,'0.e,4 and 0,0,e,.'0,4¢e,; as well, however, they
do not produce independent total derivative terms in J. We
have examined the equality S{ =S¢ + J and again found
zero result for all parameters. This is an indication of the
observation made in [21] that fields in the conventional
D-dimensional action (27) are not the same as the fields
defined in the reduction of the 2D-dimensional fields. In
particular, the fields B, e,’ in (21) are not the same as the
dynamical B-field and frame used in (27). So we have to
use field redefinitions on the D-dimensional fields in (13),
(27) and then compare them with (26).

The variation of action (13), for a; = 1, under field
redefinition G, > G, +6G,y,, By, = By, +0B,;, and © —
D + 60 is

2 1
8¢ = —= | dxe?®*V-G||=R+2V VD
0 K? 2
1
— OV, VD — ﬂH2> (GG, — 450)

1
- <Rab +2VPViD — ZHaCdecd> 6G

1

4= (V.He — 2VC<DH“’”)6Bah] (32)

NS}

where we have also ignored some covariant total derivative
terms. 6G,;,, 6® and 6B, can be constructed by all
contractions of the following tensors with metric G:

(30)

[
aaabBcd + 8a8becd + aaabq) + 8a(I)ab(I) + 8aBbcadBef
+ aaBbcadeef + aaebcadeef + 8aBbcadq) + 6aebcadq)
(33)

We then examine the following equality:
S =S¢+ J + 88§ (34)

It produces many algebraic equations for the parameters
with nonzero result for them.

The most important part of the result is that they fix
uniquely all eight parameters in the D-dimensional action
(27) in terms of by, i.e.,

=2

Si — za’/dd“xe‘m -G
K

g 1 .
X |:bl <RabcdRude - ERabcdHabeHLde
1 f bygh cpyg a 1 ab fegrgh
+ﬁHfth o H',) HY, _§Hf Hy,H“9H",
+ d] Habcgabc:| (35)

In the scheme (27), the effective action (35) then has no
derivative of dilaton. Up to the overall factor b, the above
couplings are the standard effective action of the bosonic
and heterotic string theories which has been found in [29]
by the S-matrix calculations. This action now is invariant
under T-duality. Since we have used field redefinitions to
relate the manifestly T-duality invariant action (26) to the
manifestly gauge invariant action (27), the T-duality trans-
formations rules in above action would be the Buscher rules
plus their o/-corrections. They have be found directly by
using the T-duality approach [15,16].
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The parameters in the 2D-dimensional action (25), how-
ever, are not fixed uniquely in terms of by, d;. There remain
many parameters in (25) to be arbitrary. They reflect the four
classes of terms in (25) that we did not removed them from
the list of independent couplings in (25). Choosing different
values for the arbitrary parameters correspond to different
scheme in which the 2D-dimensional action can be written.
One particular choice for the parameters should reproduce
the 2D-dimensional couplings found in [11] which include
derivatives of the generalized dilaton and frame. However, as
|

—2b,

in the D-dimensional action (35), we choose a scheme in
which the 2D-dimensional dilaton appears only as an overall
factor. Since the derivative of the dilaton appears in the flux
F 4, we choose the arbitrary parameters to have no terms in
(25) which has F4 or its derivatives. Using this constraint,
there are still some residual parameters in this scheme. We
further constrain the scheme to have no terms with structure
8A838C.7:DEF, 8A83FCDE, nor 3A]:BCD85.7:EFH. Then the
effective action in this scheme for the bosonic string theory
becomes

e - 1 1
S{ = 2‘7 a’/dxdxe 2d <—8HABHCDHEFHGHHHHKLfACEFBDng[KFHJL ‘I—ZHABHCDFAEFfBGHFCE[FFG]DH

K

4

2
1

2

1

- HABHCDHEFHGH-FACE}-BDGFF”]:HIJ HABHCD-FACE}-BFG}-DFH}-EGH

1 3

_ HABHCDJ:ACE]:BEF}-D GHfFGH g HABHCDHEFHGH]:ACI}—BEJ}-DGJ}—FHI

1
HAPHEOHEFHON F y i F ! Fon’ F 1y + 55 MO HEFHOU M HKL F o F s F pia P

- 2HABHCDFACEFBFG({)[F?E]DG + HABHCDHEFHGHfACEfBGla(Hf])DF + - > (36)

where dots represent terms that are zero under the strong
constraint. Our notation for antisymmetrization is L4 Pp =
(LyPg— LgP,)/2, similarly for symmetrization. This
action now must be invariant under double-Lorentz trans-
formations. Since we have used field redefinitions to relate
the manifestly T-duality invariant action (26) to the man-
ifestly Lorentz invariant action (27), the double-Lorentz
transformations in above action would be the standard
|

|
Lorentz transformations plus their «'-corrections. The
above action is even under B — —B. It should be the same
as the even part of the action has been found in [11] up to
the terms that are zero under the strong constraint and up to
2D-dimensional field redefinitions.

The 2D-dimensional effective action of the heterotic
string theory at order o contains the above action plus the
following terms which are odd under B — —B:

—2d 1 1
S{U :—szla’/dxdfce_zd <§HABHCDHEF.FACG]:BDIJ:EGH.FFIH —gHABHCDHEFHGIHHJfACEFBGHFDIK]:FJK

1
1
1
T3
1

3
_ gHABHCDHEFfACGfEGHaHfBDF + .- )

where dots represent terms that are zero under the strong
constraint. While the action (36) has even number of HA2,
the above action has odd number of H*2. The above action
should be the same as the odd part of the action has been
found in [11] up to the terms that are zero under the strong
constraint and up to 2D-dimensional field redefinitions.

1
HABHCDHEFFACG}—BEI'FDFH}_GIH + 54 HABHCDHEFFACEfBDGfFIHfGIH
1
HABHCDHEFfACGfEGHaB]:DFH _ § HABHCDHEF]:ACE]:BGHa[D]:G]FH

1
_ZHABHCDHEFHGIHHJ?ACEfBGHaDFFIJ _gHABHCDHEFFACGFEGHaFfBDH

(37)

The algebraic equations fix also the non-covariant
field redefinitions and total derivative terms required to
relate the two D-dimensional actions. The total derivative
terms in the bosonic theory have structures ddedde,
00edede, OOBOBOe, OBOBOOe, OBOBOede, 0DPIele,
00®OD®Oe, 0DOedde, OPODIede, ODPIedede and
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0®0edBIB. They indicate that the current I¢ contain
terms with structure 00ede, Oedede, OPOede and
0e0BOB. The reason that there is no current with structure
00D0e, 00DOD, OOBIB is that they produce terms in J
|

with structures QO0DIOP, 00POJe, 0OBOOB which are not
in the D-dimensional action (27). There are too many total
derivative terms to be able to write them explicitly here. The
field redefinitions for the bosonic theory however are

8GE, = b (2De, " Dep; — 4ADe, ' De y); + 2De yiDe,' + 8De, " DD e ,); — 8De (,' DD e,); —4DDe(,C e,
+4DDe e, —ADe .,/ DeYiee,; 4+ 4De“ Dege ey + 4De, " De? e e ; — 4De ('De ey e
+2De,“ " De Ve, e 4 — 6De Y Dec e, ey — 2De (" De ey jeq; + 6D (S De ey ey,

+2De,"DeyYe jeq; — 4De(, ' Deyyie, je i+ 2Dec ;' De e jeq; — ADe(,“'De Y ey e 4; + 4De Y Dec ey ey

+4De (" De? Jey)eq; —4Dec (' De Jey) e )
1
508 = GoGE,

OB, = b H |, (wpje. e + epiDecy’)

where DDe ./ =0,0,e.', De,,' =0, e, and D®, = 0,®.
The curved indices are raised with metric G’ and flat
indices are lowered by #,;. The above o’-corrections must
be added to the metric, dilaton and the B-field in the
reductions of 2D-dilaton, i.e., ¢ 2¢ = ¢72®y/—G and the
generalized metric (7) in order to make them identical to
the corresponding covariant fields in the D-dimensional
action (27). The resulting new 2D-dilaton d and general-
ized metric H, then should transform covariantly as (16).
The above field redefinition for dilaton, however, is such
that 6d = 6® — 1 G**6G,,;, = 0. So the generalized dilaton
remains invariant under the field redefinitions at order «’.
Using the o -corrections to the generalized metric, one may
find the o-corrections to the generalized diffeomorphisms
for the fields that are transformed by the Buscher rules
|

(SG(IZI? = 5G§h + leCd(aeb),-Decd"

Lok

(38)

|
under T-duality. Alternatively, one may add the above o'-
corrections, with a minus sign, to the D-dimensional
covariant fields G, ®, B, in order to make them identical
to the corresponding 2D-dimensional fields e =
e~2®/—G and (7) which are transformed by Buscher rules
under T-duality [7]. In this way one may find the o'-
corrections to the Buscher rules for the D-dimensional
covariant fields.

The total derivative terms in the heterotic theory have the
same structures as in the bosonic theory as well as the
structures 00e0OB, 00ededB, OededOB, 0eledPOB,
0e0DPIOB, 00e0DPOB, O0PIDIedB and 0edODOB.
They indicate that the current I¢ contain terms with
structure 00edB, 0ededB, and De0POB. The field rede-
finitions for the heterotic theory are

1
4

GsGH,

5B£{b = 5ng =+ dl (De[(,h]iDe"ci + DDe[uCCieb]i - 4D€[ah]iD(DC€L.i —+ DDe[ac.,,}ieC"
+ De “IDe e, e — 2Dey, " De Jey e 4y + DeC (' Ded Jey ey,

+ 2Dey ' De“Ye jey; — De,“'Ded e ey + 2De, ' DeVe e ) (39)

Here also the field redefinition for the generalized dilaton
od is zero. While the field redefinition terms in the bosonic
theory do not change the symmetry under B — —B, the
field redefinition terms corresponding to the Chern-Simons
term in the heterotic theory change the symmetry of fields
under B — —B. This is as expected because the field
redefinitions should produce odd terms under B — —B
from the even terms in (32). It is interesting to note that in
both heterotic and bosonic theories the total derivative term
are zero when the D-dimensional frame e,’ is constant.

I
Moreover, the T-duality covariant fields and the gauge
covariant fields are identical when e,’ is constant, i.e.,
0G =6® = 6B =0.

We have found the T-duality invariant 2D-dimensional
actions (36) and (37) by constraining them to be invariant
under the generalized diffeomorphism and by constraining
them to be invariant under the D-dimensional gauge
transformations after using appropriate field redefinitions
(38) and (39) on the leading order action (14). These
actions must be invariant under the double-Lorentz
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transformations as well. However, the transformations are
the standard double-Lorentz transformations pulse their
corresponding «-corrections [10,11]. Since we have used
the 2D-dimensional field redefinitions freedom to write the
o'-order actions (36) and (37) in a scheme in which the
dilaton appears only as an overall factor, the field redefi-
nitions (38) and (39) and the corresponding «’-corrections
to the double-Lorentz transformations are then fixed
uniquely. If we have chosen a different scheme for the
2D-dimensional actions, then the field redefinitions (38)
and (39) would be different. The form of the corrections to
the double-Lorentz transformations might be different
from those have been found in [10,11], because the 2D-
dimensional actions in [10,11] is written in a different
scheme in which the derivative of dilaton also appears in
the actions. Unlike our approach that the 2D-dimensional
action is fixed first, in [10,11] the authors first fix the
a'-corrections to the double-Lorentz transformations
and then find the corresponding 2D-dimensional actions.
It would be interesting to find the «-corrections to
the double-Lorentz transformations corresponding to the
actions (36) and (37) and then compare them with the
transformations found in [10,11] under the appropriate field
redefinitions that change the actions (36) and (37) to the
corresponding actions in [10,11].

Using the generalized frame and dilaton as the dynamical
fields, we have found the 2D-dimensional actions (36) and
(37). One may wish to use the generalized metric and
dilaton as the dynamical fields to find the 2D-dimensional
action at order o/, i.e., extension of the action (14) to the
order o. We have done this calculation. We have found that
for the case that B-field is zero there are nonzero D-
dimensional and 2D-dimensional actions, however, in the
presence of the B-field one would find no effective action at

order o'. In fact, when we write the couplings (27) in terms
of B-field and metric, for instance, the second coupling in
(27) produces, among other things, the following terms:

—2G190,G4,0°B*0,B*0.G,;
+ GfgaaBdeathcabGdgacGef (40)

None of them is reproduced by any 2D-couplings, any
noncovariant field redefinition or any total derivative term
at order o. This confirms the observation that there is no
manifestly background independent and duality invariant
formulation of the bosonic theory at order « in terms of the
generalized metric, however, there is such formulation in
terms of generalized frame [31]. So one expects the
convenient framework for studying the higher derivative
couplings in the D-dimensional string theory and in DFT is
the framelike formulation of DFT.

The gravity and dilaton couplings in the effective actions
of string theories at orders o> and o> are known in the
literature. Using the T-duality approach, it has been shown
in [19,20] that they are invariant under the T-duality
transformations which are the Buscher rules and their -
corrections. However, the B-field couplings at these orders
are not known in the literature. It would be interesting to
use the method in this paper to find these couplings as well
as their corresponding 2 D-dimensional actions. The B-field
couplings at order o> for Hohm-Siegel-Zwiebach double
field theory [32] have been found in [33].

ACKNOWLEDGMENTS

This work is supported by Ferdowsi University of
Mashhad under Grant No. 1/46948(1397/04/05).

[1] A. Giveon, M. Porrati, and E. Rabinovici, Target space
duality in string theory, Phys. Rep. 244, 77 (1994).

[2] E. Alvarez, L. Alvarez-Gaume, and Y. Lozano, An intro-
duction to T duality in string theory, Nucl. Phys. B, Proc.
Suppl. 41, 1 (1995).

[3] W. Siegel, Two vierbein formalism for string inspired
axionic gravity, Phys. Rev. D 47, 5453 (1993).

[4] W. Siegel, Superspace duality in low-energy superstrings,
Phys. Rev. D 48, 2826 (1993).

[5] W. Siegel, Manifest duality in low-energy superstrings,
arXiv:hep-th/9308133.

[6] C. Hull and B. Zwiebach, Double field theory, J. High
Energy Phys. 09 (2009) 099.

[7] G. Aldazabal, D. Marques, and C. Nunez, Double field
theory: A pedagogical review, Classical Quantum Gravity
30, 163001 (2013).

[8] O. Hohm, C. Hull, and B. Zwiebach, Generalized metric
formulation of double field theory, J. High Energy Phys. 08
(2010) 008.

[9] O. Hohm and B. Zwiebach, Double field theory at order o/,
J. High Energy Phys. 11 (2014) 075.

[10] D. Marques and C. A. Nunez, T-duality and «'-corrections,
J. High Energy Phys. 10 (2015) 084.

[11] W. H. Baron, J. J. Fernandez-Melgarejo, D. Marques, and C.
Nunez, The Odd story of o'-corrections, J. High Energy
Phys. 04 (2017) 078.

[12] M.R. Garousi, Duality constraints on effective actions,
Phys. Rep. 702, 1 (2017).

[13] T. H. Buscher, A symmetry of the string background field
equations, Phys. Lett. B 194, 59 (1987).

[14] T. H. Buscher, Path integral derivation of quantum duality in
nonlinear sigma models, Phys. Lett. B 201, 466 (1988).

066008-11


https://doi.org/10.1016/0370-1573(94)90070-1
https://doi.org/10.1016/0920-5632(95)00429-D
https://doi.org/10.1016/0920-5632(95)00429-D
https://doi.org/10.1103/PhysRevD.47.5453
https://doi.org/10.1103/PhysRevD.48.2826
http://arXiv.org/abs/hep-th/9308133
https://doi.org/10.1088/1126-6708/2009/09/099
https://doi.org/10.1088/1126-6708/2009/09/099
https://doi.org/10.1088/0264-9381/30/16/163001
https://doi.org/10.1088/0264-9381/30/16/163001
https://doi.org/10.1007/JHEP08(2010)008
https://doi.org/10.1007/JHEP08(2010)008
https://doi.org/10.1007/JHEP11(2014)075
https://doi.org/10.1007/JHEP10(2015)084
https://doi.org/10.1007/JHEP04(2017)078
https://doi.org/10.1007/JHEP04(2017)078
https://doi.org/10.1016/j.physrep.2017.07.009
https://doi.org/10.1016/0370-2693(87)90769-6
https://doi.org/10.1016/0370-2693(88)90602-8

MOHAMMAD R. GAROUSI

PHYS. REV. D 98, 066008 (2018)

[15] E. Bergshoeff, B. Janssen, and T. Ortin, Solution generating
transformations and the string effective action, Classical
Quantum Gravity 13, 321 (1996).

[16] N. Kaloper and K. A. Meissner, Duality beyond the first
loop, Phys. Rev. D 56, 7940 (1997).

[17] A.A. Tseytlin, Duality and dilaton, Mod. Phys. Lett. A 06,
1721 (1991).

[18] P.E. Haagensen and K. Olsen, T duality and two loop
renormalization flows, Nucl. Phys. B504, 326 (1997).

[19] H. Razaghian and M. R. Garousi, T-duality invariant effec-
tive actions at orders o, o2, J. High Energy Phys. 02 (2018)
056.

[20] H. Razaghian and M. R. Garousi, R* terms in supergravities
via T-duality constraint, Phys. Rev. D 97, 106013 (2018).

[21] K. A. Meissner, Symmetries of higher order string gravity
actions, Phys. Lett. B 392, 298 (1997).

[22] D. Geissbuhler, Double field theory and N =4 gauged
supergravity, J. High Energy Phys. 11 (2011) 116.

[23] T. Nutma, xTras: A field-theory inspired xAct package for
mathematica, Comput. Phys. Commun. 185, 1719 (2014).

[24] O. Hohm and S. K. Kwak, Frame-like geometry of double
field theory, J. Phys. A 44, 085404 (2011).

[25] O. Hohm and B. Zwiebach, On the Riemann tensor in
double field theory, J. High Energy Phys. 05 (2012) 126.

[26] I.Jeon, K. Lee, and J. H. Park, Stringy differential geometry,
beyond Riemann, Phys. Rev. D 84, 044022 (2011).

[27] A. Coimbra, C. Strickland-Constable, and D. Waldram,
Supergravity as generalised geometry I: Type II theories,
J. High Energy Phys. 11 (2011) 091.

[28] D. Geissbuhler, D. Marques, C. Nunez, and V. Penas,
Exploring double field theory, J. High Energy Phys. 06
(2013) 101.

[29] R.R. Metsaev and A. A. Tseytlin, Order alpha-prime (two
loop) equivalence of the string equations of motion and the
sigma model Weyl invariance conditions: Dependence on
the dilaton and the antisymmetric tensor, Nucl. Phys. B293,
385 (1987).

[30] E. A. Bergshoeff and M. de Roo, The quartic effective
action of the heterotic string and supersymmetry, Nucl.
Phys. B328, 439 (1989).

[31] O. Hohm, Background Independence and Duality
Invariance in String Theory, Phys. Rev. Lett. 118, 131601
(2017).

[32] O. Hohm, W. Siegel, and B. Zwiebach, Doubled
a'-geometry, J. High Energy Phys. 02 (2014) 065.

[33] E. Lescano and D. Marques, Second order higher-derivative
corrections in double field theory, J. High Energy Phys. 06
(2017) 104.

066008-12


https://doi.org/10.1088/0264-9381/13/3/002
https://doi.org/10.1088/0264-9381/13/3/002
https://doi.org/10.1103/PhysRevD.56.7940
https://doi.org/10.1142/S021773239100186X
https://doi.org/10.1142/S021773239100186X
https://doi.org/10.1016/S0550-3213(97)00496-3
https://doi.org/10.1007/JHEP02(2018)056
https://doi.org/10.1007/JHEP02(2018)056
https://doi.org/10.1103/PhysRevD.97.106013
https://doi.org/10.1016/S0370-2693(96)01556-0
https://doi.org/10.1007/JHEP11(2011)116
https://doi.org/10.1016/j.cpc.2014.02.006
https://doi.org/10.1088/1751-8113/44/8/085404
https://doi.org/10.1007/JHEP05(2012)126
https://doi.org/10.1103/PhysRevD.84.044022
https://doi.org/10.1007/JHEP11(2011)091
https://doi.org/10.1007/JHEP06(2013)101
https://doi.org/10.1007/JHEP06(2013)101
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/0550-3213(89)90336-2
https://doi.org/10.1016/0550-3213(89)90336-2
https://doi.org/10.1103/PhysRevLett.118.131601
https://doi.org/10.1103/PhysRevLett.118.131601
https://doi.org/10.1007/JHEP02(2014)065
https://doi.org/10.1007/JHEP06(2017)104
https://doi.org/10.1007/JHEP06(2017)104

