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Double field theory is a manifestly T-duality invariant formulation of string theory in which the effective
theory at any order of α0 is invariant under global OðD;DÞ transformations and ought to be invariant under
gauge transformations which receive α0-corrections. On the other hand, the effective theory in the usual
D-dimensional formulation of string theory is manifestly gauge invariant and ought to be invariant under
T-duality transformations which receive α0-corrections. We speculate that the combination of these two
constraints may fix both the 2D-dimensional and the D-dimensional effective actions without knowledge
of the α0-corrections of the gauge and the T-duality transformations. In this paper, using generalized fluxes,
we construct arbitrary OðD;DÞ-invariant actions at orders α00 and α0, and then dimensionally reduce
them to the D-dimensional spacetime. On the other hand, at these orders, we construct arbitrary
covariant D-dimensional actions. Constraining the two D-dimensional actions to be equal up to
noncovariant field redefinitions, we find that both actions are fixed up to overall factors and up to field
redefinitions.
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I. INTRODUCTION

One of the most exciting discoveries in string theory is
T-duality [1,2]. This duality may be used to construct the
effective field theory at low energy. One approach for
constructing this effective action is the double field theory
(DFT) approach [3–7]. The DFT is a constraint field
theory which doubles the spacetime coordinates, i.e.,
adds to the usual D-dimensional spacetime coordinates
which correspond to the momentum excitations, another
D-dimensional coordinates which correspond to the wind-
ing excitations. However, a solution to the constraint in its
strong form [7] is that the 2D-dimensional dynamical
fields to be independent of the winding coordinates. The
T-duality is manifested in this approach as the effective
action is OðD;DÞ-invariant by constructions. The effective
action is also constrained to satisfy some gauge trans-
formations. The appropriate gauge transformations at the
leading order of α0 are the generalized diffeomorphisms
and double-Lorentz transformations [7,8], however, one
of them receive α0-corrections at the higher orders of
α0 [9,10]. The form of these corrections at order α0 have
been found in [9,10], however, it is hard to find them at the

higher orders. Using the 2D-dimensional field redefinitions
freedom, the effective action may appear in different
schemes. The DFT effective action at order α0 in one
particular scheme has been constructed in [10,11].
Another T-duality based approach for constructing the

effective action at higher orders of α0, is to use the
constraint that the dimensional reduction of the effective
action on a circle must be invariant under the T-duality
transformations [12]. In this approach, one begins with the
most general gauge invariant action in the D-dimensional
spacetime. The dimensional reduction of this action on the
circle must be invariant under the T-duality transforma-
tions. The gauge transformations in this approach are the
standard coordinate transformations, the B-field gauge
transformations and the nonstandard Lorentz transforma-
tion of the B-field which is required for anomaly cancella-
tions. The T-duality transformations at the leading order of
α0 are the Buscher rules [13,14], however, they receive α0-
corrections at the higher orders of α0 [15,16]. The form of
these corrections at order α0 have been found in [15–17],1
however, it is hard to find them at higher orders of α0. Using
the T-duality approach, the standard gravity and dilaton
couplings in the effective actions at orders α0, α02, α03 have
been reproduced in [19,20].
Since the higher derivative corrections to the gauge

transformations in the DFT approach and the α0-corrections
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order α0.
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to the Buscher rules in the T-duality approach are hard to
find in general, it is desirable to find constraints which
do not receive α0-corrections. Merging the above two
approaches, one may finds such constraints as follows:
Using the strong constraint, one can reduce the 2D-
dimensional effective action in the DFT approach to
the D-dimensional effective action. This action should
then be the same as the D-dimensional effective action in
the T-duality approach. The field variables in the two
approaches, however, are not the same. Noncovariant field
redefinitions are required to relate the two field variables
[21]. The T-duality transformations in the DFT approach
are the standard Buscher rules [7] whereas the gauge
transformations are not the standard gauge transformations.
On the other hand, the gauge transformations in the
T-duality approach are the standard gauge transformations
whereas the T-duality transformations are not the standard
Buscher rules. As a result, the two D-dimensional actions
must be the same up to noncovariant field redefinitions.
Therefore, the effective actions should satisfy the following
constraints:
(1) The 2D-dimensional action is constrained to be

invariant under the OðD;DÞ transformations and
under the generalized diffeomorphisms which do not
receive α0-corrections. However, it is not constrained
to be invariant under the double-Lorentz transfor-
mations which receive α0-corrections.

(2) After reducing it to theD-dimensional spacetime and
using noncovariant field redefinitions, the action
is constrained to be the same as a D-dimensional
action which is invariant under the standard
coordinate transformations, the B-field gauge
transformations and the nonstandard Lorentz trans-
formation of the B-field, however, it is not invariant
under the T-duality transformations which receive
α0-corrections. We speculate that the above two
constraints can fix both the 2D-dimensional and
D-dimensional effective actions. We confirm this
idea in this paper by explicit calculations at orders
α00 and α0.

The outline of the paper is as follows: In Sec. II, we
perform the calculations at order α00. In particular, in
subsection II A, we use generalized metric and dilaton as
dynamical fields which are invariant under the double-
Lorentz transformations, to construct the most general
OðD;DÞ-invariant action at order α00. Using the strong
constraint, we then reduce it to the D-dimensional action.
Then, using the D-dimensional metric, B-field and dila-
ton, we construct the most general covariant action at
order α00. Constraining the two actions to be identical, we
fix both effective actions. Up to an overall factor, they are
exactly the known effective actions in the literature. In
Sec. II B, we use the generalized frame and dilaton as the
dynamical fields. Using the generalized fluxes, which are
invariant under the generalized diffeomorphisms, we

construct the most general OðD;DÞ-invariant action at
order α00, and then reduce it to the D-dimensional
action. Comparing it with the covariant D-dimensional
action, we fix both the effective actions. The 2D-
dimensional effective action is the same as the action
in the literature.
In Sec. III, we extend the calculations to the order α0. In

particular, using the generalized fluxes, we first construct
the most general OðD;DÞ-invariant action at order α0
without fixing its field redefinitions freedom, and then
reduce it to the D-dimensional action. To convert the
noncovariant field variables in the resulting action to the
covariant variables, we use the most general noncovariant
field redefinitions. We then compare it with the most
general covariant action at order α0 up to covariant field
redefinitions. The constraint that the two D-dimensional
actions must be identical, fixes both actions. Up to an
overall factor, the D-dimensional action is exactly the
same as the action in the literature. Since the field
redefinitions freedom is not fixed in the 2D-dimensional
action, we have found the 2D-dimensional action with
some arbitrary parameters. In one particular scheme in
which dilaton appears as an overall factor, we write the
effective action.

II. EFFECTIVE ACTION AT ORDER α00

Using the strong constraint in the DFT formalism, the
effective action of string theory at order α00 can be written
as OðD;DÞ-invariant and invariant under 2D-dimensional
gauge transformations which are generalized diffeomor-
phisms and local double-Lorentz transformations. If one
uses the generalized metric and dilaton as dynamical
fields which are invariant under the double-Lorentz trans-
formations, then the gauge transformations are the gen-
eralized diffeomorphisms [8]. On the other hand, if one
uses the generalized frame and dilaton as the dynamical
fields, then the action can be written in terms of gener-
alized fluxes which are invariant under the generalized
diffeomorphisms [7]. Hence, the nontrivial gauge
transformations in this case is the double-Lorentz
transformations. Using these gauge transformations,
the 2D-dimensional effective actions have been found
in [8,22].
In this section we are going to find these actions

by comparing the most general OðD;DÞ-invariant
action with the most general D-dimensional covariant
action.

A. Generalized metric formulation

We begin with the case that the generalized metric Hμν

and dilaton d are the dynamical fields. They are invariant
under the double-Lorentz transformations as they carry
no index in this space, however, the generalized metric
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Hμν is a matrix that transforms under the OðD;DÞ trans-
formations as2

H → OHOT ð1Þ

The D-dimensional coordinate xa conjugated to the
momentum excitations and the D-dimensional coordinate
x̃a conjugated to the winding excitations, transforms as
vector, i.e.,

xμ≡
�
x̃a
xa

�
→O

�
x̃a
xa

�
; ∂μ≡

� ∂̃a

∂a

�
→O

� ∂̃a

∂a

�
ð2Þ

and the 2D-dimensional dilaton d is invariant under the
OðD;DÞ transformations [8]. Using theseOðD;DÞ tensors,
one can write the most general OðD;DÞ-invariant action at
two-derivative level as3

S0 ¼ −
2

κ2Ṽ

Z
dxdx̃e−2dðc9Hαβ∂αd∂βdþ c3Hαβ∂β∂αdþ c1HαγHβδ∂γ∂αHδβ þ c2HαγHβδ∂γ∂δHαβ

þ c5HαδHβϵHγε∂αHβγ∂δHϵε þ c6HαδHβϵHγε∂βHαγ∂δHϵε þ c11HαδHβγ∂γHαβ∂δdþ c8HαδHβϵHγε∂δHαϵ∂εHβγ

þ c10HαδHβγ∂αHγβ∂δdþ c7HαδHβϵHγε∂βHεγ∂δHαϵ þ c4HαϵHβεHγδ∂αHδγ∂ϵHεβÞ ð3Þ

where Hμν is inverse of the generalized metric and
Ṽ ¼ R

dx̃. Since there is no double-Lorentz index in the
couplings (3), this action is invariant under the local
double-Lorentz transformations as well.
There is also a OðD;DÞ-invariant metric

ημν ¼
�
0 1

1 0

�
; ημν ¼

�
0 1

1 0

�
ð4Þ

which raises and lowers the 2D-indicies, i.e.,

Hμ
ν¼ ημαHαν; Hμν ¼ ημαηνβHαβ; ∂α¼ ηαβ∂β ð5Þ

The symmetry of the effective action under Bab → −Bab,
requires the couplings to have even number of
constant metric η [8]. The couplings involving odd
number of η are antisymmetric under Bab → −Bab.
At two derivative level, one can convince oneself that
any term which is independent of the winding coor-
dinates and contains two constant metrics, is identical to
the couplings in (3). For example, using the constant
metric to raise and lower the indices, the term
∂αHα

β∂γHγ
μHβμ can be written as ∂αHαβ∂γHγμHβμ.

The latter coupling can be written as the couplings in
(3) using the identity

HαβHβμ ¼ δαμ ð6Þ

At higher derivative level, however, there are couplings
involving the metric η which can not be written in terms of
only generalized metric, e.g., ∂αHα

β∂γHγ
λ∂μHμλ∂νHνβ.

The couplings in (3) with coefficients c4, c7, c10 become
zero using the above identity. Using this identity and total
derivative terms, one can relate the coefficients of some
of the above terms. One may either use these relations to
write (3) in terms of independent couplings and then
compare them with the D-dimensional gauge invariant
action, or one may fix them after comparing the noninde-
pendent couplings with the D-dimensional gauge invariant
action. In the latter case that we are going to do in this
paper, they appear as free parameters which can be chosen
arbitrarily.
The reduction of the generalized metric and its inverse

in terms of the D-dimensional metric and the B-field
are [8]

Hμν ¼
�

Gab −GacBcb

BacGcb Gab − BacGcdBdb

�
;

Hμν ¼
�
Gab − BacGcdBdb BacGcb

−GacBcb Gab

�
ð7Þ

The reduction of the 2D-dimensional dilaton to the
D-dimensional dilaton and metric is e−2d ¼ e−2Φ

ffiffiffiffiffiffiffi
−G

p
.

Using the strong constraint that fields do not depend on the
coordinate x̃, one can reduce (3) to the following
D-dimensional action:

3We use the Mathematica package XACT [23] for performing
the calculations in this paper.

2Our index conversion is that the Greek letters ðμ; ν;…Þ are
the indices of the curved 2D-dimensional space, the Latin
letters ða; d; c;…Þ are the indices of the curved D-dimensional
spacetime, the letters ðA; B; C;…Þ are the indices of flat 2D-
dimensional tangent space, and the letters ði; j; k;…Þ are the flat
D-dimensional tangent space.
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S0 ¼ −
2

κ2

Z
dxe−2Φ

ffiffiffiffiffiffiffi
−G

p �
c9Gab∂aΦ∂bΦþ c3Gab∂b∂aΦ −

1

4
c3GacGbd∂c∂aGdb þ 2ðc1 þ c5ÞGadGbeGcf∂aBbc∂dBef

þ ðc2 þ c6ÞGadGbeGcf∂bBac∂dBef −
1

4
c11GadGbeGcf∂bGfc∂dGae þ

1

4
ð8c1 þ c3 þ 8c5ÞGadGbeGcf∂aGbc∂dGef

þ c6GadGbeGcf∂bGac∂dGef −
1

2
c9GadGbc∂aGcb∂dΦþ c11GadGbc∂cGab∂dΦþ 1

16
c9GaeGbfGcd∂aGdc∂eGfb

þ ð−c2 − c8ÞGadGbeGcf∂dBae∂fBbc þ c8GadGbeGcf∂dGae∂fGbc þ c2GacGbd∂c∂dGab

�
ð8Þ

Note that the coefficients c4, c7, c10 do not appear in above
D-dimensional action, so they appear in the final action as
arbitrary parameters which can be set to zero.4 It is
interesting to note that even though the generalized
metric contains no derivative on the B-field, the above
D-dimensional action contains only terms which have
derivative on the B-field. It turns out that the dimensional
reduction of any OðD;DÞ-invariant coupling produces no
B-field without derivative on it. The above OðD;DÞ and
double-Lorentz invariant action is not invariant under the
generalized diffeomorphism for arbitrary parameters. We
do not impose this constraint for finding the unknown
coefficients in this paper.

We now construct the most general D-dimensional
action at two-derivative level which is invariant under
the coordinate transformations and under the B-field gauge
transformations, i.e.,

Sc
0 ¼ −

2

κ2

Z
dxe−2Φ

ffiffiffiffiffiffiffi
−G

p �
a1Rþ a2∇aΦ∇aΦ −

a3
12

H2

�
;

ð9Þ

where Habc ¼ ∂aBbc þ ∂cBab þ ∂bBca and a1, a2, a3 are
three constants. Since the action (8) is in terms of metric
and B-field, we rewrite the above covariant action in terms
of metric and B-field, i.e.,

Sc
0 ¼ −

2

κ2

Z
dxe−2Φ

ffiffiffiffiffiffiffi
−G

p �
a2Gab∂aΦ∂bΦ − a1GacGbd∂c∂aGdb þ a1GacGbd∂c∂dGab −

1

4
a3GadGbeGcf∂aBbc∂dBef

þ 1

2
a3GadGbeGcf∂bBac∂dBef þ a1GadGbeGcf∂bGfc∂dGae þ

3

4
a1GadGbeGcf∂aGbc∂dGef

−
1

2
a1GadGbeGcf∂bGac∂dGef −

1

4
a1GaeGbfGcd∂aGdc∂eGfb − a1GadGbeGcf∂dGae∂fGbc

�
: ð10Þ

The two D-dimensional Lagrangians (8) and (10) are not
equal for any nonzero parameters. However, to compare the
two actions, one should take into account noncovariant
total derivative terms as well. There are three total deriva-
tive terms, i.e.,

J¼−
2

κ2

Z
dx∂aðe−2Φ

ffiffiffiffiffiffiffi
−G

p
½f3Gab∂bΦþf2GcbGda∂cGdb

þf1GcaGdb∂cGdb�Þ ð11Þ

where f1, f2, f3 are three arbitrary parameters. Now adding
these total derivative terms to (10), the two actions can be
equated, i.e., S0 ¼ Sc

0 þ J, for the following constraints on
the parameters:

a2 ¼ 4a1; a3 ¼ a1;

c3 ¼ 2a1 − c11 − 2c2; c5 ¼ −a1=8 − c1;

c6 ¼ a1=2 − c2; c8 ¼ −c2; c9 ¼ 2c11 þ 4c2;

f1 ¼ a1=2þ c11=4þ c2=2; f2 ¼ −a1 þ c2;

f3 ¼ 2a1 − c11 − 2c2 ð12Þ
The equations in the last line gives the coefficients of the
total derivative terms that are needed to equate the two
actions.
The equations in the first line constrain the D-

dimensional action (9) to be

Sc
0 ¼ −

2a1
κ2

Z
dxe−2Φ

ffiffiffiffiffiffiffi
−G

p �
Rþ 4∇aΦ∇aΦ −

1

12
H2

�
;

ð13Þ
which is the standard effective action at order α00, up to an
overall factor. The overall factor must be a1 ¼ 1 to be the

4One can check that the above couplings are invariant under
the Buscher rules, i.e., if one compactifies the theory on a circle
and assumes fields are independent of that directions, then the
above couplings would be invariant under the Buscher rules.
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effective action of string theory. The equations in the
second line constrain theOðD;DÞ-invariant action (3) to be

S0 ¼ −
2a1
κ2Ṽ

Z
dxdx̃e−2d

�
2Hαβ∂β∂αdþ

1

8
Hαδ∂αHβγ∂δHβγ

−
1

2
Hαδ∂βHαγ∂δHβγ

�
ð14Þ

where we have also used the identity ∂αHμν ¼
−HμβHνγ∂αHβγ. The terms with coefficients c2, c11 are
total derivative terms, and terms with coefficient c1, i.e.,

c1HγαHδβ∂γ∂αHδβ − c1HδαHϵβHεγ∂αHβγ∂δHϵε ð15Þ

become zero using the identity (6), so we have discarded
them. The OðD;DÞ-invariant action (14) is the one has
been found in [8]. Therefore, the requirement that the
OðD;DÞ-invariant action and the covariant D-dimensional
action to be identical, fixes both actions, up to an overall
factor.
The action (14) has been found in [8] by requiring the

OðD;DÞ-invariant couplings (3) to be invariant under the
generalized diffeomorphisms which are

δðe−2dÞ ¼ ∂μðζμe−2dÞ
δHμν ¼ ζρ∂ρHμν þ 2ð∂ðμζρ − ∂ρζðμÞHνÞρ ð16Þ

Unlike the terms in (9) which are invariant under the
D-dimensional diffeomorphisms, none of the terms in (3) is
invariant under the above 2D-dimensional generalized
diffeomorphisms. Only the combination of terms
in (14) is invariant under these transformations [8]. This
combination may be defined as the definition of 2D-
dimensional scalar curvature [8]. It is hard to extend the
couplings (14) to the higher order of α0 because the
conventional 2D-dimensional Riemann curvature does
not transform covariantly under the generalized diffeo-
morphisms [4,24–27].

B. Generalized frame formulation

A convenient frame work for constructing the higher
derivative couplings in DFT is the generalized frame
construction of the DFT [3,7]. The generalized frame
Eμ

A is defined to relate the generalized metric Hμν to
the flat generalized metricHAB and theOðD;DÞ-metric ημν
to flat metric ηAB, i.e.,

Hμν ¼ Eμ
AHABEν

B ημν ¼ Eμ
AηABEν

B ð17Þ

In terms of the generalized dilaton d, the generalized frame
Eμ

A and its transverse Eμ
A, one can construct flat space

tensors which transform as scalar under the generalized
diffeomorphisms. They are

FA ¼ 2∂Ad − EμB∂BEμA

FABC ¼ 3∂ ½AEμ
BEν

C�ημν ð18Þ

where the flat space derivative is ∂A ¼ Eμ
A∂μ. These

tensors transform as scalar under the generalized diffeo-
morphisms [7], i.e.,

δFA ¼ ζμ∂μFA δFABC ¼ ζμ∂μFABC ð19Þ

The flat space derivatives of these tensors transform as
scalar under the generalized diffeomophisms as well [7].
However, these tensors do not transform covariantly under
local double-Lorentz transformations. It has been shown in
[10,11] that these transformations receive α0 corrections
as well.5

One may construct OðD;DÞ-invariant and the general-
ized diffeomorphism invariant effective actions by consid-
ering all contractions of these tensors with constant metric
ηAB and HAB, i.e., at two-derivative level they are

Sf
0 ¼ −

2

κ2Ṽ

Z
dxdx̃e−2dðc3FAFA þ c4∂AFA

þ c1FAFBHAB þ c2∂AFBHAB þ c7FABCFABC

þ c6HABFA
CDFBCD þ c5HABHCDFAC

EFBDE

þ c8HABHCDHEFFACEFBDFÞ ð20Þ

The flat indices are raised by the flat metric ηAB, i.e.,
FA ¼ ηABFB. This action is invariant under the generalized
diffeomophisms for arbitrary parameters c1;…; c8, however,
it is not invariant under the local double-Lorentz transforma-
tions. Imposing the invariance under the double-Lorentz
transformations, one can fix these parameters [11,22].
However, we are not going to fix the parameters in this way.
To fix the parameters c1;…; c8, instead, we constrain

the reduction of this action to be identical with the D-
dimensional covariant action (9). The reduction of the
metric ηAB, HAB and the generalized frame Eμ

A are [11]:

ηAB ¼
�

0 δji
δij 0

�
; HAB ¼

�
ηij 0

0 ηij

�
;

Eμ
A ¼

�
eai 0

−ebiBba eai

�
ð21Þ

where eai is the D-dimensional frame, i.e., eaie
j
bηij ¼ Gab.

Using the constraint that fields in the 2D-dimensional
action (20) do not depend on the coordinate x̃, one can
reduce it to the following D-dimensional action:

5If one uses the generalized metric and dilaton as the
dynamical fields which are invariant under the double-Lorentz
transformations, then the α0-corrections would appear in the
generalized diffoemorphisms [9].
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Sf
0 ¼ −

2

κ2

Z
dxe−2Φ

ffiffiffiffiffiffiffi
−G

p
ðc2GadGbcηjiedi∂a∂cebj þ 4c1Gab∂aΦ∂bΦþ 2c2Gab∂b∂aΦþ 6c8GacGbdηji∂aebj∂cedi

− 4c1GacGbdηjiebj∂aΦ∂cedi − 6c8GacGbdηji∂beaj∂cedi þ 4c1GacGbdηjieaj∂bΦ∂cedi − c2GadGbcηjiedi∂c∂beaj

þ 3c8GadGbeGcf∂aBbc∂dBef − 6c8GadGbeGcf∂bBac∂dBef þ 4c5GadGbeGcfηjiefj∂aBbc∂deei

− 4c5GadGbeGcfηjiefj∂bBac∂deei þ ð−c2 þ 4c6ÞGadGbeGcfηkjηlieakecl∂befj ∂deei

− 2c1GadGbeGcfηkiηljeakecl∂befj∂deei þ 4c5GadGbeGcfηjiefj∂cBab∂deei − 2c2GacGbdηjiebj∂ceai∂dΦ

þ ðc2 − 2c6ÞGaeGbfGcdηkjηliebkecl∂aedj∂eefi þ c1GaeGbfGcdηkiηljebkecl∂aedj∂eefi

− c2GadGbeGcfηkjηliebkecl∂deai∂eefj þ c2GadGbeGcfηkiηljebkecl∂deai∂eefj

− 2c6GadGbeGcfηkjηlieakecl∂deei∂febj þ c1GadGbeGcfηkiηljeakecl∂deei∂febjÞ ð22Þ

The terms with coefficients c3, c4, c7, which have no
HAB, vanish when reducing the couplings (20) to the
D-dimensional spacetime. Hence, these terms are zero
by the strong constraint. Note that even though the
generalized frame contains no derivative on the B-field,
the above D-dimensional action contains only terms which
have derivative on the B-field. The above D-dimensional

action must be equal to (10) plus someD-dimensional total
derivative terms. To compare the two actions, one has to
rewrite the derivatives of metric in the action (10) in terms
of derivatives of the frame eai. The comparison then fixes
both the effective actions (9) and (20) up to an overall
factor. The action (9) is fixed as in (13) and the action (20)
is fixed as

Sf
0 ¼ −

2a1
κ2Ṽ

Z
dxdx̃e−2d

�
−FAFBHAB þ 2∂AFBHAB þ 1

4
HABFA

CDFBCD −
1

12
HABHCDHEFFACEFBDF þ � � �

�
ð23Þ

where dots represent the terms which vanish after using the strong constraint. The above action is the action has been found
in [22]. In the next section we consider this approach to find both D-dimensional and 2D-dimensional effective actions at
order α0.

III. EFFECTIVE ACTION AT ORDER α0

The most general four-derivative action which is OðD;DÞ-invariant and is invariant under generalized diffeomorphisms
can be constructed by all possible contractions of the following tensors with constant metric ηAB and HAB:

FAFBFCFD þ FAFBFCFDEF þ FAFBFCDEFFGH þ FAFBCDFEFGFHIJ þ FABCFDEFFGHIF JKL

þ FCDEFFGH∂AFB þ FDEF∂A∂BFC þ ∂A∂B∂CFD þ ∂A∂B∂CFDEF þ FAFDEF∂BFC þ FA∂B∂CFD

þ FA∂B∂CFDEF þ FAFB∂CFD þ ∂AFB∂CFD þ FAFB∂CFDEF þ ∂AFB∂CFDEF þ FABC∂D∂EFFGH

þ FAFBCD∂EFFGH þ ∂AFBCD∂EFFGH þ FABCFDEF∂GFHIJ ð24Þ

It produces 275 terms, i.e.,

Sf
1 ¼ −

2

κ2Ṽ

Z
dxdx̃e−2dðc1HABHCDFAFBFCFD

þ c2FAFAFBFB þ � � �Þ ð25Þ

where c1;…; c275 are parameters. The terms which have no
tensor HAB, e.g., c2-term, are zero after using Bianchi
identities [28] and the strong constraint. There are 34 such
terms. There are also 91 terms with other structures that

become zero under these constraints.6 The remaining 150
terms are in five classes. One class includes terms that
cancel each others after using the strong constraint, one

6One may use the Bianchi identities found in [28] to demon-
strate the vanishing of some of these 125 terms. However, the
more convenient way to impose the Bianchi identities and the
strong constraint is to reduce the couplings to the D dimensions
using the reduction (21) and then use the strong constraint. The
above 125 terms vanish when we write the D-dimensional
couplings in terms of independent expressions.
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class includes terms that are total derivatives, one class
includes terms that become zero using appropriate identities,
one class includes terms that are reproduced by field
redefinitions at order α0 of the fields in (23), and the last
class includes all other terms in which we are interested. One
may examine all terms in details to exclude all terms
except the terms in the last class, and then imposes the D-
dimensional gauge symmetry. Alternatively, one may impose

theD-dimensional gauge symmetry on all 150 terms. In this
case, the terms in the first four classes appear in the final action
with free parameters which can be chosen arbitrarily.
Using the relation (18), one can write the couplings (25)

in terms of dilaton and the generalized frame. Then using
the dimensional reduction (21), one can reduce the 2D-
dimensional action (25) to the D-dimensional action, e.g.,
the reduction of c1-term is

Sf
1 ¼ −

2

κ2

Z
dxe−2Φ

ffiffiffiffiffiffiffi
−G

p
ð16c1DΦaDΦaDΦbDΦb þ 32c1DeabiDΦbDΦcDΦceai − 32c1DeabiDΦaDΦcDΦcebi

þ 16c1DeabiDecdjDΦbDΦdeaiecj − 16c1DeabiDebcjDΦdDΦdeaiecj þ 8c1DeabiDecbjDΦdDΦdeaiecj

− 32c1DeabiDecdjDΦaDΦdebiecj þ 8c1DeacjDeabiDΦdDΦdebiecj þ 16c1DeabiDecdjDΦaDΦcebiedj

− 16c1DeabiDebcjDedekDΦeeaiecjedk þ 8c1DeabiDecbjDedekDΦeeaiecjedk þ 8c1DeacjDeabiDedekDΦeebiecjedk

þ 16c1DeabiDebcjDedekDΦdeaiecjeek − 8c1DeabiDecbjDedekDΦdeaiecjeek − 8c1DeacjDeabiDedekDΦdebiecjeek

þ 4c1DeabiDebcjDedekDeefleaiecjedkefl − 4c1DeabiDebcjDedekDefeleaiecjedkefl

þ c1DeabiDecbjDedekDefeleaiecjedkefl − 4c1DeacjDeabiDedekDeeflebiecjedkefl

þ 2c1DeacjDeabiDedekDefelebiecjedkefl þ c1DeacjDeabiDedflDedekebiecjeekefl þ � � �Þ ð26Þ

whereDeabi ≡ ∂aebi and DΦa ≡ ∂aΦ. The above action is
manifestly invariant under T-duality as its parents (25) are
invariant under the OðD;DÞ transformations, however, it is
not invariant under the usual D-dimensional gauge trans-
formations for arbitraryparameters.Wearegoing to find these
parameters by comparing them with a D-dimensional action
at order α0 which is not invariant under the T-duality, but is
invariant under the conventional gauge transformations, i.e.,
the standard coordinate transformations, the B-field gauge
transformations and the nonstandard Lorentz transformation
of the B-field which is required for anomaly cancellations.
The most general D-dimensional action which is invari-

ant under the conventional gauge transformations has four
class of terms. One class contains terms that are zero by
Bianchi identities, one class contains terms that are total
derivative terms, one class contains terms that are repro-
duced by the field redefinitions at order α0 of the fields in
(13), and the last class contains all other terms in which we
are interested. One may choose the couplings to be [29]

Sc
1 ¼

−2
κ2

α0
Z

ddþ1xe−2Φ
ffiffiffiffiffiffiffi
−G

p
ðb1RabcdRabcd

þ b2RabcdHabeHcd
e þ b3HfghHf

a
bHg

b
cHh

c
a

þ b4Hf
abHgabHfchHg

ch þ b5ðH2Þ2
þ b6HacdHb

cd∂aΦ∂bΦþ b7H2∂aΦ∂aΦ

þ b8ð∂aΦ∂aΦÞ2 þ d1HabcΩabcÞ ð27Þ

where b1; b2;…; b8 are eight parameters. The field rede-
finitions freedom allows us to choose the eight arbitrary

couplings in (27) in many different schemes. The above is
one particular scheme. The last term is zero for the bosonic
string theory because the B-field gauge transformation
is the standard transformation, i.e., Bab → Bab þ ∂ ½aλb�.
This term is nonzero for the heterotic string theory and
its coefficient is d1 ¼ −a1=6 in this case. This term is
a result of nonstandard gauge transformation of B-field
which is

Bab → Bab þ ∂ ½aλb� þ α0∂ ½aΛi
jωb�ji ð28Þ

where Λi
j is the matrix of the Lorentz transformations and

ωbi
j is spin connection.7 The Chern-Simons three-form Ω

which is defined as

Ωabc ¼ ω½aij∂bωc�ji þ
2

3
ω½aijωbj

kωc�ki;

ωai
j ¼ ∂aebjebi − Γab

cecjebi ð29Þ

makes Habc þ α0Ωabc to be invariant under the Lorentz
transformations, i.e., Habc þ α0Ωabc → Habc þ α0Ωabc.
The action (27) is not invariant under T-duality for arbitrary
parameters b1; b2;…; b8. However, one expects for
some specific values for these parameters, the couplings
become invariant under T-duality. We are going to find

7At order α0, there is a scheme in which the appearance of the
B-field in the effective action simplifies through extending the
spin connection to the spin connection with torsion [30]. Since we
are working with the most general covariant action (27), we do
not assume such simplification.
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these parameters by comparing them with the manifestly
T-duality invariant action (26). To compare the two actions,
one has to rewrite the couplings in (27) in terms of frame
eai and B-field. If one compares the above D-dimensional
action with the reduced action (26), one would find zero
value for all parameters. So the actions are not the same. Let

us check their Lagrangians. So we have to include some
total derivative terms.
To construct all D-dimensional total derivative terms in

terms of frame eai, B-field and dilaton Φ, we have to
construct all contractions of the following tensors with
metric Gab to produce the current Ia:

∂a∂b∂cBde þ ∂a∂b∂cede þ ∂a∂b∂cΦþ ∂a∂bΦ∂cede þ ∂a∂bΦ∂cΦþ ∂aΦ∂bΦ∂cΦ

þ ∂aBbc∂d∂eBfg þ ∂aBbc∂d∂eefg þ ∂aBbc∂d∂eΦþ ∂a∂bBcd∂eefg þ ∂a∂becd∂eefg

þ ∂a∂bBcd∂eΦþ ∂a∂becd∂eΦþ ∂aBbc∂dΦ∂eΦþ ∂aebc∂dΦ∂eΦþ ∂aBbc∂dBef∂gBhhh

þ ∂aBbc∂dBef∂gehhh þ ∂aBbc∂deef∂gehhh þ ∂aebc∂deef∂gehhh þ ∂aBbc∂dBef∂gΦ

þ ∂aBbc∂deef∂gΦþ ∂aebc∂deef∂gΦ ð30Þ

where ∂aebc ≡ eci∂aebi, ∂a∂debc ≡ eci∂a∂debi and
∂a∂d∂febc ≡ eci∂a∂d∂febi. Then the following expression
produces all total derivative terms:

J ¼ −2
κ2

α0
Z

dx∂aðe−2Φ
ffiffiffiffiffiffiffi
−G

p
IaÞ ð31Þ

One may extend the list of currents in (30) by including
terms ∂aebi∂cedi and ∂a∂beci∂deei as well, however, they
do not produce independent total derivative terms in J. We
have examined the equality Sf

1 ¼ Sc
1 þ J and again found

zero result for all parameters. This is an indication of the
observation made in [21] that fields in the conventional
D-dimensional action (27) are not the same as the fields
defined in the reduction of the 2D-dimensional fields. In
particular, the fields B, eai in (21) are not the same as the
dynamical B-field and frame used in (27). So we have to
use field redefinitions on the D-dimensional fields in (13),
(27) and then compare them with (26).
The variation of action (13), for a1 ¼ 1, under field

redefinition Gab→GabþδGab, Bab→BabþδBab and Φ →
Φþ δΦ is

δSc
0 ¼ −

2

κ2

Z
dxe−2Φ

ffiffiffiffiffiffiffi
−G

p ��
1

2
Rþ 2∇c∇cΦ

− 2∇cΦ∇cΦ −
1

24
H2

�
ðGabδGab − 4δΦÞ

−
�
Rab þ 2∇b∇aΦ −

1

4
HacdHb

cd

�
δGab

þ 1

2
ð∇cHcab − 2∇cΦHcabÞδBab

�
ð32Þ

where we have also ignored some covariant total derivative
terms. δGab, δΦ and δBab can be constructed by all
contractions of the following tensors with metric Gab:

∂a∂bBcd þ ∂a∂becd þ ∂a∂bΦþ ∂aΦ∂bΦþ ∂aBbc∂dBef

þ ∂aBbc∂deef þ ∂aebc∂deef þ ∂aBbc∂dΦþ ∂aebc∂dΦ

ð33Þ

We then examine the following equality:

Sf
1 ¼ Sc

1 þ Jþ δSc
0 ð34Þ

It produces many algebraic equations for the parameters
with nonzero result for them.
The most important part of the result is that they fix

uniquely all eight parameters in the D-dimensional action
(27) in terms of b1, i.e.,

Sc
1 ¼

−2
κ2

α0
Z

ddþ1xe−2Φ
ffiffiffiffiffiffiffi
−G

p

×

�
b1

�
RabcdRabcd −

1

2
RabcdHabeHcd

e

þ 1

24
HfhgHf

a
bHh

b
cHg

c
a −

1

8
Hf

abHhabHfcgHh
cg

�

þ d1HabcΩabc

�
ð35Þ

In the scheme (27), the effective action (35) then has no
derivative of dilaton. Up to the overall factor b1, the above
couplings are the standard effective action of the bosonic
and heterotic string theories which has been found in [29]
by the S-matrix calculations. This action now is invariant
under T-duality. Since we have used field redefinitions to
relate the manifestly T-duality invariant action (26) to the
manifestly gauge invariant action (27), the T-duality trans-
formations rules in above action would be the Buscher rules
plus their α0-corrections. They have be found directly by
using the T-duality approach [15,16].
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The parameters in the 2D-dimensional action (25), how-
ever, are not fixed uniquely in terms of b1, d1. There remain
many parameters in (25) to be arbitrary. They reflect the four
classes of terms in (25) that we did not removed them from
the list of independent couplings in (25). Choosing different
values for the arbitrary parameters correspond to different
scheme in which the 2D-dimensional action can be written.
One particular choice for the parameters should reproduce
the 2D-dimensional couplings found in [11] which include
derivatives of the generalized dilaton and frame. However, as

in the D-dimensional action (35), we choose a scheme in
which the 2D-dimensional dilaton appears only as an overall
factor. Since the derivative of the dilaton appears in the flux
FA, we choose the arbitrary parameters to have no terms in
(25) which has FA or its derivatives. Using this constraint,
there are still some residual parameters in this scheme. We
further constrain the scheme to have no terms with structure
∂A∂B∂CFDEF, ∂A∂BFCDE, nor ∂AFBCD∂EFEFH. Then the
effective action in this scheme for the bosonic string theory
becomes

Sfe
1 ¼ −2b1

κ2Ṽ
α0
Z

dxdx̃e−2d
�
−
1

8
HABHCDHEFHGHHIJHKLFACEFBDGFFIKFHJL þ 1

4
HABHCDFA

EFFB
GHFCE½FFG�DH

þ 1

4
HABHCDHEFHGHFACEFBDGFF

IJFHIJ þHABHCDFAC
EFB

FGFDF
HFEGH

þ 1

2
HABHCDFAC

EFBE
FFD

GHFFGH þ 3

8
HABHCDHEFHGHFAC

IFBE
JFDGJFFHI

−
1

2
HABHCDHEFHGHFACEFBG

IFDH
JFFIJ þ

1

24
HABHCDHEFHGHHIJHKLFACEFBGIFDHKFFJL

− 2HABHCDFAC
EFB

FG∂ ½FFE�DG þHABHCDHEFHGHFACEFBG
I∂ðHF IÞDF þ � � �

�
ð36Þ

where dots represent terms that are zero under the strong
constraint. Our notation for antisymmetrization is L½APB� ¼
ðLAPB − LBPAÞ=2, similarly for symmetrization. This
action now must be invariant under double-Lorentz trans-
formations. Since we have used field redefinitions to relate
the manifestly T-duality invariant action (26) to the man-
ifestly Lorentz invariant action (27), the double-Lorentz
transformations in above action would be the standard

Lorentz transformations plus their α0-corrections. The
above action is even under B → −B. It should be the same
as the even part of the action has been found in [11] up to
the terms that are zero under the strong constraint and up to
2D-dimensional field redefinitions.
The 2D-dimensional effective action of the heterotic

string theory at order α0 contains the above action plus the
following terms which are odd under B → −B:

Sfo
1 ¼ −2d1

κ2Ṽ
α0
Z

dxdx̃e−2d
�
1

8
HABHCDHEFFAC

GFBD
IFEG

HFFIH −
1

8
HABHCDHEFHGIHHJFACEFBGHFDI

KFFJK

−
1

12
HABHCDHEFFAC

GFBE
IFDF

HFGIH þ 1

24
HABHCDHEFFACEFBD

GFF
IHFGIH

þ 1

4
HABHCDHEFFAC

GFEG
H∂BFDFH −

1

3
HABHCDHEFFACEFB

GH∂ ½DFG�FH

−
1

4
HABHCDHEFHGIHHJFACEFBGH∂DFFIJ −

1

8
HABHCDHEFFAC

GFEG
H∂FFBDH

−
3

8
HABHCDHEFFAC

GFEG
H∂HFBDF þ � � �

�
ð37Þ

where dots represent terms that are zero under the strong
constraint. While the action (36) has even number of HAB,
the above action has odd number ofHAB. The above action
should be the same as the odd part of the action has been
found in [11] up to the terms that are zero under the strong
constraint and up to 2D-dimensional field redefinitions.

The algebraic equations fix also the non-covariant
field redefinitions and total derivative terms required to
relate the two D-dimensional actions. The total derivative
terms in the bosonic theory have structures ∂∂e∂∂e,
∂∂e∂e∂e, ∂∂B∂B∂e, ∂B∂B∂∂e, ∂B∂B∂e∂e, ∂∂Φ∂e∂e,
∂∂Φ∂Φ∂e, ∂Φ∂e∂∂e, ∂Φ∂Φ∂e∂e, ∂Φ∂e∂e∂e and
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∂Φ∂e∂B∂B. They indicate that the current Ia contain
terms with structure ∂∂e∂e, ∂e∂e∂e, ∂Φ∂e∂e and
∂e∂B∂B. The reason that there is no current with structure
∂∂Φ∂e, ∂∂Φ∂Φ, ∂∂B∂B is that they produce terms in J

with structures ∂∂Φ∂∂Φ, ∂∂Φ∂∂e, ∂∂B∂∂Bwhich are not
in the D-dimensional action (27). There are too many total
derivative terms to be able to write them explicitly here. The
field redefinitions for the bosonic theory however are

δGB
ab ¼ b1ð2DeaciDebci − 4DeðbciDecaÞi þ 2DecbiDecai þ 8DeðbciDΦceaÞi − 8DecðbiDΦceaÞi − 4DDeðbccieaÞ

i

þ 4DDeccðbieaÞi − 4DecdjDecdieaiebj þ 4DecdiDedcjeaiebj þ 4DeðbciDeddjeaÞiecj − 4DecðaiDeddjebÞiecj
þ 2DeðbciDecdjeaÞjedi − 6DecdjDecðbieaÞjedi − 2DeðaciDedcjebÞjedi þ 6DecðaiDedcjebÞjedi

þ 2DeaciDebdjecjedi − 4DeðaciDedbÞjecjedi þ 2DecaiDedbjecjedi − 4DeðaciDecdjebÞiedj þ 4DecdjDecðaiebÞiedj
þ 4DeðaciDedcjebÞiedj − 4DecðaiDedcjebÞiedjÞ

δΦB ¼ 1

4
GabδGB

ab

δBB
ab ¼ b1Hcd½aðωb�ijeciedj þ eb�iDecdiÞ ð38Þ

whereDDeabci≡∂a∂beci,Deabi≡∂aebi andDΦa ≡ ∂aΦ.
The curved indices are raised with metric Gab and flat
indices are lowered by ηij. The above α0-corrections must
be added to the metric, dilaton and the B-field in the
reductions of 2D-dilaton, i.e., e−2d ¼ e−2Φ

ffiffiffiffiffiffiffi
−G

p
and the

generalized metric (7) in order to make them identical to
the corresponding covariant fields in the D-dimensional
action (27). The resulting new 2D-dilaton d̃ and general-
ized metric H̃, then should transform covariantly as (16).
The above field redefinition for dilaton, however, is such
that δd ¼ δΦ − 1

4
GabδGab ¼ 0. So the generalized dilaton

remains invariant under the field redefinitions at order α0.
Using the α0-corrections to the generalized metric, one may
find the α0-corrections to the generalized diffeomorphisms
for the fields that are transformed by the Buscher rules

under T-duality. Alternatively, one may add the above α0-
corrections, with a minus sign, to the D-dimensional
covariant fieldsGab,Φ, Bab in order to make them identical
to the corresponding 2D-dimensional fields e−2d ¼
e−2Φ

ffiffiffiffiffiffiffi
−G

p
and (7) which are transformed by Buscher rules

under T-duality [7]. In this way one may find the α0-
corrections to the Buscher rules for the D-dimensional
covariant fields.
The total derivative terms in the heterotic theory have the

same structures as in the bosonic theory as well as the
structures ∂∂e∂∂B, ∂∂e∂e∂B, ∂e∂e∂∂B, ∂e∂e∂Φ∂B,
∂e∂Φ∂∂B, ∂∂e∂Φ∂B, ∂Φ∂Φ∂e∂B and ∂e∂∂Φ∂B.
They indicate that the current Ia contain terms with
structure ∂∂e∂B, ∂e∂e∂B, and ∂e∂Φ∂B. The field rede-
finitions for the heterotic theory are

δGH
ab ¼ δGB

ab þ d1HcdðaebÞiDecdi δΦH ¼ 1

4
GabδGH

ab

δBH
ab ¼ δBB

ab þ d1ðDe½ab�iDecci þDDe½accieb�
i − 4De½ab�iDΦceci þDDe½acb�ieci

þDecdjDec½biea�jedi − 2De½aciDedcjeb�jedi þDec½aiDedcjeb�jedi

þ 2De½ba�iDecdjecjedi −De½aciDedb�jecjedi þ 2De½ab�iDecdjeciedjÞ ð39Þ

Here also the field redefinition for the generalized dilaton
δd is zero. While the field redefinition terms in the bosonic
theory do not change the symmetry under B → −B, the
field redefinition terms corresponding to the Chern-Simons
term in the heterotic theory change the symmetry of fields
under B → −B. This is as expected because the field
redefinitions should produce odd terms under B → −B
from the even terms in (32). It is interesting to note that in
both heterotic and bosonic theories the total derivative term
are zero when the D-dimensional frame eai is constant.

Moreover, the T-duality covariant fields and the gauge
covariant fields are identical when eai is constant, i.e.,
δG ¼ δΦ ¼ δB ¼ 0.
We have found the T-duality invariant 2D-dimensional

actions (36) and (37) by constraining them to be invariant
under the generalized diffeomorphism and by constraining
them to be invariant under the D-dimensional gauge
transformations after using appropriate field redefinitions
(38) and (39) on the leading order action (14). These
actions must be invariant under the double-Lorentz
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transformations as well. However, the transformations are
the standard double-Lorentz transformations pulse their
corresponding α0-corrections [10,11]. Since we have used
the 2D-dimensional field redefinitions freedom to write the
α0-order actions (36) and (37) in a scheme in which the
dilaton appears only as an overall factor, the field redefi-
nitions (38) and (39) and the corresponding α0-corrections
to the double-Lorentz transformations are then fixed
uniquely. If we have chosen a different scheme for the
2D-dimensional actions, then the field redefinitions (38)
and (39) would be different. The form of the corrections to
the double-Lorentz transformations might be different
from those have been found in [10,11], because the 2D-
dimensional actions in [10,11] is written in a different
scheme in which the derivative of dilaton also appears in
the actions. Unlike our approach that the 2D-dimensional
action is fixed first, in [10,11] the authors first fix the
α0-corrections to the double-Lorentz transformations
and then find the corresponding 2D-dimensional actions.
It would be interesting to find the α0-corrections to
the double-Lorentz transformations corresponding to the
actions (36) and (37) and then compare them with the
transformations found in [10,11] under the appropriate field
redefinitions that change the actions (36) and (37) to the
corresponding actions in [10,11].
Using the generalized frame and dilaton as the dynamical

fields, we have found the 2D-dimensional actions (36) and
(37). One may wish to use the generalized metric and
dilaton as the dynamical fields to find the 2D-dimensional
action at order α0, i.e., extension of the action (14) to the
order α0. We have done this calculation. We have found that
for the case that B-field is zero there are nonzero D-
dimensional and 2D-dimensional actions, however, in the
presence of the B-field one would find no effective action at

order α0. In fact, when we write the couplings (27) in terms
of B-field and metric, for instance, the second coupling in
(27) produces, among other things, the following terms:

− 2Gfg∂aGdg∂aBbc∂bBde∂cGef

þGfg∂aBde∂aBbc∂bGdg∂cGef ð40Þ

None of them is reproduced by any 2D-couplings, any
noncovariant field redefinition or any total derivative term
at order α0. This confirms the observation that there is no
manifestly background independent and duality invariant
formulation of the bosonic theory at order α0 in terms of the
generalized metric, however, there is such formulation in
terms of generalized frame [31]. So one expects the
convenient framework for studying the higher derivative
couplings in the D-dimensional string theory and in DFT is
the framelike formulation of DFT.
The gravity and dilaton couplings in the effective actions

of string theories at orders α02 and α03 are known in the
literature. Using the T-duality approach, it has been shown
in [19,20] that they are invariant under the T-duality
transformations which are the Buscher rules and their α0-
corrections. However, the B-field couplings at these orders
are not known in the literature. It would be interesting to
use the method in this paper to find these couplings as well
as their corresponding 2D-dimensional actions. The B-field
couplings at order α02 for Hohm-Siegel-Zwiebach double
field theory [32] have been found in [33].
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