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In international development programs on improvement of energy supply for cooking in remote regions,
biomass gasifier cook stoves have a remarkable place. Fuel type and size play a key role on the perfor-
mance of such stoves. The most abundant woody biomass waste in Iran is apple pruning waste (up to
1.32 Mt a year). This paper reports the result of evaluation of a top lit updraft biomass stove specifically
modified to burn apple pruning waste. In addition, the improved biomass cooking stove (ICS) was
technically compared with traditional cook stove (TCS) based on Water Boiling Test 4.2.3 and time to boil
(TTB) instruction. Water and flame temperature variations were compared with a natural gas stove (GS),
as the most common cooking device in Iran. The average TTB was 12, 13, and 20 min for the GS, ICS, and
TCS, respectively. The comparison of regression equations indicated that the rate of increase in the flame
and water temperature in the both ICS and GS were similar. In general, better thermal efficiency was
observed in the ICS (about 35%) in comparison with the TCS (12.6%). The specific and the total fuel
consumption in the ICS were 73 and 67% lower than that of the TCS, respectively.
© 2018 Chinese Institute of Environmental Engineering, Taiwan. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Among the various sources of renewable energy, biomass with
high annual production rate and geographically widespread dis-
tribution throughout the world has a special place [1,2]. It is
considered to be the most promising alternative for conventional
fossil fuels and feedstocks [3,4]. Statistics shows that more than 2.5
billion of the world's population rely on wood and charcoal for
cooking [1,5]. The majority of them are living in rural areas of
developing countries [6,7]. A large portion of these individuals use
open fires for cooking which corresponds to low thermal efficiency
and high air pollution due to poor burning characteristic [1]. The
indoor air pollution causes threats to health and even may lead to
premature death [8]. Every year, about four million people die
prematurely due to indoor air pollution from cooking [9]. It has
been proven that the existing biomass cook stoves can be improved
to reduce emission of toxic gasses and harmful particulates based
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on the principle of gasification [1]. It has been estimated that
570,000 unexpected losses of poor women and kids in India could
be kept away from, if clean cook stove initiatives were set up [10].
Recently, Mamuye et al. suggested that the use of improved char-
coal stoves (Merchaye and Lakech) in Ethiopia could help to miti-
gate climate change, deforestation, and household workload [11].

Emissions and efficiency of a biomass stove depend on various
factors (e.g., stove type, lighting, fuel feeding practice, and com-
bustion temperature) [12]. Among these factors, fuel type and size
play a key role on the performance of a stove [13]. Therefore a
unique design is required for a given biomass type. For instance,
Raman et al. evaluated three types of forced draft stove by feeding
with coconut shell [14]. Parmigiani et al. proposed a special stove
design for using rice husk as the fuel [13]. Grimsby and Borgenvik
examined the feasibility of using Jatropha fruit coats in a sawdust
cook stove and resulted in different performance [15]. In a recent
research, Njenga et al. compared the ease of use, energy con-
sumption, fuel efficiency, and emissions of a small-scale gasifier
cooking stove with a traditional three-stone stove and an improved
“Hifadhi” in the rural area of Kenya. They concluded that fuel saving
is a great advantage of gasifier stoves. In addition, the relatively
faster cooking and less indoor air pollution are the other benefits of
and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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the improved stove [16]. In another research, Singh et al. reported
that 41% fuel saving is possible by using improved stoves. It seems
that researchers tried to modify an existing, or develop a new
design in accordance with the availability of the biomass waste in
their target region [17].

The most abundant woody biomass waste in Iran is apple
pruning waste. A total area of 208,000 ha is under the cultivation of
apple garden which corresponds to an annual wood waste of up to
1.32 Mt [18]. During the pruning season, the branches should be
moved outside the garden and somehow be disposed of, elimi-
nating the risk of pests' outbreak. This feedstock can be simply
considered as free fuel, without negative effect on natural re-
sources. The use of an improved biomass stoves fueled with apple
wood could be a good alternative for traditional open fire stoves.
Various stove designs could be tested for fueling with apple wood,
however, the top lit updraft (TLUD) stove proposed by Anderson
[19] has some technical and economic advantages over the other
designs [5]. This stove was previously examined using wood chips,
almond shell, and corncob [20] but in order to make it suitable for
feeding with apple waste, the present researchers made some
minormodifications on this stove and evaluated its performance by
fueling with apple pruning waste. Therefore, the present paper
aims to: (i) evaluate the modified TLUD stove as an improved cook
stove (ICS) and compare it’s time to boil (TTB) with a gas stove (GS)
which is the most common device for cooking in Iran; (ii) assess the
flame features and temperature via regression models during the
tests; and (iii) evaluate the technical performance parameters and
CO emission of the ICS fed with apple pruning waste and compare
to the Iranian traditional three-wall cooking stove (TCS). The effi-
ciency parameters including burning rate, specific fuel consump-
tion, and thermal efficiency were also monitored.
Table 1
Geometric properties of the ICS (mm).

Main parts Height Cylinders
diameter

Hole
diameter

Hole
distance

Outer
cylinder

300 200 15 10

Inner cylinder 225 150 8a 10
5b 3

a Secondary air holes.
b Primary air holes.
2. Materials and methods

2.1. Stoves specifications

The TCS was made according to the most popular form of the
biomass stove in Iran. It had three hard brick side walls of 230 mm
height and an opening of 260 mm wide in front (Fig. 1c). A metal
sheet was placed under the TCS to weight the remaining fuel and
calculate the amount of consumed fuel at the end of each test. The
ICS has two concentric metal cylinders with 0.6 mm thickness and
two sets of primary and secondary air inlet holes. The details of the
design are shown in Fig. 1a and b. Based on the latest experience
with the various dimensions of the stoves, the authors have found
that, having a gap of about 75 mm between the inner and the outer
cylinders bottoms provides a better performance (Table 1).
Fig. 1. View of the ICS (a and b) and the TCS (c). A) The outer cylinder legs. B) The outer cylind
air control top door).
2.2. Feedstock

Apple wood was collected from Khorasan Razavi province (Iran)
during the pruning season. The woods were dried in oven at 40 �C
for 72 h. Based on the pretests, it was found that the uniformity of
fuel pieces strongly influences the performance of the ICS, i.e., large
pieces of wood were not suitable for stove startup. Hence, the fuels
were manually shredded to uniform pieces. The other fuel char-
acteristics were determined in accordance with general standards
(Table 2).

2.3. Test protocol

Water Boiling Test (WBT) version 4.2.3 [21] was applied in four
replications. This procedure was frequently used by other re-
searchers (e.g., [13,14,22e24]) and designed principally to evaluate
cook stoves performance. It simulates the actual cooking process to
help understanding the rate of energy transfer from the fuel to the
cooking pot [24]. This protocol consists of three phases of cold start,
hot start, and simmering. In all tests, the stove was fired at room
temperature (23 ± 2 �C). In each run, 3 kg of water in a 5-L popular
pot (Taban, Iran) without a lid, reached to the local boiling point
(96.6 �C, for the test location, Mashhad).

2.4. Technical calculations

During each phases of WBT, the amount of water and evapo-
rated water was measured. Fuel and remaining charcoal were
weighed by separating the fuel at the end of the test. The temper-
atures and elapsed time were also recorded continuously. These
measurements were used to evaluate the stove performance at low
or high power phases [21]. Thermal efficiency (h) of a biomass cook
stove indicates how well the stove can transfer the energy of the
biofuel to the cooking pot. It is defined as the ratio of the energy
received by the water to the total energy content of the used fuel
[21,24] as Eq. (1).
er. C) The inner cylinder. D) The outer and inner cylinder coupling. E) Connector bolt to



Table 2
Characteristics of the apple wood as biofuel and the methods of measurement.

Factor B.Da (kg L�1) M.Cb (%) V.Mc (%) Ash (%) L.H.Vd (MJ kg�1) Size (mm)

Amount 0.19 5 94 4 17.5 length 53
diameter 17

Method EN
15103:2009

EN
14774-3:2009

EN
15148:2009

EN
14775:2009

Based on the literature reviewe EN
16127:2012

a Bulk Density.
b Moisture Content.
c Volatile Matter.
d Lower Heating Value.
e As described in Nakomcic-Smaragdakis et al. [32].
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h ¼
ðm$c$DqÞH2O þ ðm$hvÞH2OðevapÞ

fac

¼ ðm$c$DqÞH2O þ ðm$hvÞH2OðevapÞ
dryfuelequ$LHVf � Emoist � char mass$LHVchar

(1)

where ðm$c$DqÞH2O is the energy received by water (J);
ðm$hvÞH2OðevapÞ is the energy absorbed by water for evaporation (J);
dryfuelequ is the mass of dry fuel used during the test (g); Emoist is
the energy needed to evaporate the moisture content of the fuel
(drying section) (J); char mass is the mass of charcoal remained at
the end of the test (g). The parameter c is the specific heat of water
(4.186 J g�1 K�1), hv is the heat of vaporization of water (2260 J g�1),
m is the mass in (g) and Dq is the difference of local boiling point of
water and the ambient temperature (73 �C). Also LHVf is the lower
heating value of the fuel (17.54 J g�1) and LHVchar is the remaining
charcoal lower heating value in J g�1. It should be noted that fac is
the actual mass of the consumed fuel during the test (Eqs. (2) and
(3)), where fuel masswet is the total mass of the fuel used in the test
(g), MC is the moisture content of the fuel, Tb is the local boiling
point (96.6 �C) and Ta is the ambient temperature at the beginning
of the test (23 �C).

dryfuelequ ¼ fuel masswet$ð1�MCÞ (2)

Emoist ¼ fuel masswet$MCð4:186ðTb � TaÞ þ 2260Þ (3)

Moreover, TTB was measured in minute along with the other
performance indicators including Burning Rate (BR), Fire Power
(FP), Specific Fuel Consumption (SFC), and Useful Fire Power (FPU)
through Eqs. (4)e(7).

BR ¼ fac
time to boil

(4)

FP ¼ fac$LHVf

time to boil� 60
(5)

SFC ¼ fac
waterre

(6)

FPU ¼ FP$h (7)

where waterre is the water remaining at the end of test (L).
The average of COave concentration (ppm) was determined by

Eq. (8) ([25]).

COavg ¼

Pt

i¼1
COi

t
(8)

where COi is the CO level in any given second (ppm) and t is the
duration of trial (s).
2.5. Test procedures and equipment

The ICS was mounted on a GF-6100 electronic balance with
0.01 g readability. The device was equipped with a bright vacuum
fluorescent display, a RS-232 port with a built-in Super Hybrid
Sensor (A&D, Japan). The weighing platform was connected to a
computer equippedwith “Rs-com” interface for real-time recording
of the fuel consumption during the tests. In the TCS tests, a bundle of
3 kg fuel was prepared for each test. To calculate the mass of
consumed fuel, themass of remaining fuel at the end of the test was
subtracted from the original 3 kg bundle. The fuel feeding intervals
were determined based on the appearance of the flame. Whenever
the flame had subsided, new stock of fuel was added. The fuel
feeding was continued until the beginning of the water boiling. In
order to investigate the effects of feeding on the performance of the
ICS stove, oneWBTcontinued beyond the cold start phase by adding
three bundles of fuel (150, 100 and 50 g) to prolong the flaming for
60min. WBTwas also performed for the cold start phase using a GS
as the control treatment. TTB and flame temperature variations
were used to compare GS against the TCS and ICS stoves.

A “K” type thermocouple was used to measure the water tem-
perature. An immersion thermocouple probe (“K” type HP-502A-
M21, China) with 3 s response time was used for flame tempera-
turemeasurement. A real time four-channel data logger (TM-947SD,
Taiwan) was employed to record the temperatures data received
from the thermocouples every 2 s.

Indoor air pollution measurements were also carried out to
investigate the concentration of CO in the cooking environment.
When using biomass stoves, most of the cooking procedures are
done by an operator for gradual feeding of biomass and condition
monitoring of the flame (especially in traditional stoves). It means
that the operator is highly exposed to the harmful gasses emitted
from the stove. Therefore, the emission measurement was done by
locating the sensor in front of the stove (50 cm) at the height of
60e70 cm. The CO concentration was recorded every 10 s during
the test.

3. Results and discussion

3.1. Performance results

The comparative results of the technical parameters are shown
in Fig. 2. It can be seen that the BR of the two stoves are quite
different, i.e., 18.7 g min�1 for the ICS and 42.4 g min�1. The higher
BR in the TCS implies the higher gas release from the wood. The
average of the total consumed fuel was approximately 350 and
1065 g while the FPU was 1.5 and 1.9 kW for the TCS and the ICS,
respectively. h increased as FP decreased. The h of the ICS in the
cold start phase was approximately 35%, while for the TCS it was
only 12.6%. A more recent research also showed that even a small
improvement on the three-stone stoves could enhance the h [26].

As can be seen in Fig. 2, the SFC for the ICS and the TCS was 88
and 327 g L�1, respectively. In a latest attempt on the improvement
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of traditional stoves in rural Kenya, Ochieng et al. stated that the
modification on the traditional three-stone stove substantially
decreased the fuel consumption [27]. Many researchers tried to
reduce the fuel consumption with promising outcomes [10,28,29].
The average of TTB for the TCS was 20 min while for the ICS was
reduced to 13 min. In practice, cooking by TCS involved often
cooling of the pot due to the blowing of the flame by the wind. At
the same time, wind access to the core of the fire in TCS results in
more oxygen availability for the woods. This leads to higher BR,
more FP, more fuel consumption, and consequently lower TE. In the
ICS, due to the controlled air flow, the precipitous consuming of fuel
can be regulated. Moreover, preheating of the secondary air opti-
mizes the combustion in the ICS. In the TCS, in contrast, the wind
cools down the fire environment. In fact, though the ICS exhibited
lower FP, but due to its higher TE, it could provide more favorable
FPU index. In addition, the controlled and uniform downward
movement of the pyrolysis layer reduced the total fuel consump-
tion and SFC index in the ICS [30].

3.2. Water temperature versus time

The experimentalWBTcold start phasewas also done for aGS as a
control test. The data of the temperature variations were fitted in a
simple regressionmodel. The average TTBwas 12,13, and 20min for
the GS, ICS, and TCS, respectively. The comparison of the slopes of
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Fig. 4. CO concentration and flame temperature variation during the cold start test of th
temperature variations of the ICS (c) and the TCS (d).
regression lines (0.11) indicated that the rising trend of water tem-
perature in the ICS is almost the same as the GS. The slope of
regression line measured for the TCS (0.06) was meaningfully
different. This difference means a lower heat transfer to the water
during theTCS operation, increasing theTTB index for the TCS Fig. 3a.

3.3. Flame temperature variations evaluation

Fig. 3b shows the flame temperature of each stove during the
experiment. The best prediction of the flame temperature varia-
tions was demonstrated by logarithmic regression functions. The
highest flame temperature was 608, 667, and 542 �C for the GS, the
ICS, and the TCS, respectively. It can be seen that the flame tem-
perature in both the GS and the ICS increased in a uniform and
similar pattern, with much tolerance observed in the case of the
TCS. The TCS is affected by wind blowing. It cools down the py-
rolysis vapors and the flame surrounding. It also spreads out the
flame. Moreover, due to the lowerh, more often fueling is needed in
this stove. New added fuel again means cooling down the fire.

3.4. Emission performance

Fig. 4a and b shows CO concentrations during the test for each
stove separately (a for the ICS and b for the TCS). It can be seen that
the CO emission from the TCS was significantly higher than that of
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the ICS. The maximum and the average amount of CO emission
from the TCS was 940 and 172 ppm respectively. These values were
17 and 6 ppm for the ICS. Uncontrolled situations in the TCS is the
main contributor for higher CO emission [31]. While by employing
the primary and secondary air supply in micro-gasifiers, high
combustion efficiency is guaranteed and low pollutant emission is
provided [19].

Rapid increase in CO concentration in either curves of Fig. 4c and
d corresponds to themoment of fueling the stoves. Tryner et al. also
observed that adding solid fuel during the stove operation makes a
sharp increase in CO emission [24]. In general, the results reveal
that even though each stove has its exclusive behavior but, fuel
feeding has two direct effects in both the stoves; decreasing the
flame temperature, and at the same time, increasing CO emission.
When the fuel was fed into the combustion chamber, a portion of
heat was spent for fuel drying and volatilizationwhich resulted in a
sudden decrease in temperature.

4. Conclusions

The performance of a TLUD biomass stove fed with apple
pruning waste was compared to that of gas stove and traditional
biomass stove. Based on the regression models, there is a similar
trend between the ICS and GS for water temperature. CO emission
from ICS was in acceptable range however, refueling during the
operation led to transient increases in CO emission. Therefore a
gradual feeding is suggested. In the TCS, on the other hand, due to
the lower efficiency, more often refueling leads to further increase
in smoke emission. While the fire power for the TCS was only 27%
more than that of the ICS, its fuel consumptionwas 1.3 times higher.
Thermal efficiency of the ICS was found to be 35%. Generally, from
practical point of view, ICS could be a good substitute for TCS for
remote regions where there is no access to the natural gas or
kerosene. Considering the higher efficiency of the ICS, this could
substantially reduce the need for wood collection and therefore can
be of impact in prevention of desertification.
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