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A B S T R A C T

The exact solution of inextensible catenaries in Cartesian coordinates is utilized to propose an efficient two-node
cable element for static analysis of three-dimensional cable structures. This element can consider out of plane
inclination without using any transformation matrices. Since the element is formulated within the framework of
large curvature assumption, cables with large sag, as encountered in long-span cable-stayed bridges and sus-
pension bridges, can be modeled accurately. The proposed element also accounts for the thermal effects. By
defining the stiffness component as the ratio of infinitesimal load increment to infinitesimal increase in length,
explicit entries of the tangent stiffness matrix are derived through equating the total differentiation of the
strained length and the elastic elongation of the cable. The tangent stiffness matrix is available in a closed form
and the need of taking the inverse of the flexibility matrix, which is faced in the solution procedure of elastic
catenary, is eliminated. The robustness of the suggested technique is established through investigation of sig-
nificant case studies, including slack and pre-tensioned spatial cable networks. Excellent agreement between the
present results and those found in the literature indicates the versatility of the proposed scheme.

1. Introduction

Over the past two centuries, analysis and design of cable-supported
structures have received huge attention as a crucial topic in the main-
stream of scientific research. Owing to their unique mechanical and
aesthetic features, cables are widely applied as constituent parts of
many engineering structures, such as, suspension roofs, long-span sus-
pension bridges, cable supported bridges and power transmission lines.
Cables are flexible members that exhibit highly nonlinear behavior
when subjected to external loads. This structure, within a cable-sup-
ported body, undergoes large displacements and rotations and sustains
significant portions of load. Pretension is proposed as a simple tech-
nique to alleviate the deflection of cable structures. Numerous studies
can be found in the literature addressing various schemes for in-
vestigation of the behavior of cable structures. In fact, the cable
members have been widely modeled, based on two different ap-
proaches, namely the finite element method with interpolation func-
tions and also the analytical approach which makes use of explicit ex-
pressions of a catenary.

In the first scheme, a cable is represented by a number of two-node,
multi-node or generally curved elements. The displacement field within
the element domain is approximated using the interpolation functions.
In 1965, Ernst suggested that a cable member can be modeled by truss
elements for the first time. He also introduced a modified axial stiffness
to account for the sag effects of a hanging cable [1]. Although his

method provided satisfactory results in some cases, it was rather in-
efficient since a large number of truss elements was required to achieve
an acceptable level of accuracy. Later, Knudson embarked on the im-
provement of this method in 1971 [2]. Various researchers have further
developed the truss element by introducing the nonlinear behavior and
various loading conditions [3,4]. Besides, different types of two-node
elements with rotational degrees of freedom have been proposed by
several researchers [5–7]. The cable members have been also modeled
based on the isogeometric approach with Lagrangian shape functions.
In this method, the shape of an infinitesimal cable element is approxi-
mated using multi-node curved elements [8,9]. Wu and Su im-
plemented a Four-node isogeometric element for analysis of cable
structures [10]. In 2013, a six-node isogeometric element was proposed
by Wang et al. [11]. The main drawback of the isogeometric elements in
modeling of cable assemblies is their complexity and large number of
degrees of freedom. This makes the analysis laborious and significantly
time consuming. Further, since the explicit form of the tangent stiffness
matrix is not available, numerical approaches must be iteratively
adopted to derive the tangent stiffness matrix. In some cases, such
analysis approaches lead to the numerical instabilities [12].

On the other hand, an element based on the analytical expressions
of the elastic catenary was first utilized by O’brien and Francis [13].
They showed that each cable member within a cable structure can be
modeled using a single analytical element. In this method, the overall
equilibrium of a stretched cable element is satisfied in the Lagrangian
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coordinates, and the exact profile is derived by imposing the boundary
conditions at the end of the cable. Many researchers have developed the
elastic catenary element by introducing thermal effects and different
loading types [14–20]. Salehi Ahmad Abad et al. proposed an extended
three-dimensional catenary element which takes the thermal effects and
distributed lateral loads in different directions into account [21]. Na-
ghavi Riabi and Shooshtari implemented the elastic catenary along with
the Ramberg-Osgood stress-strain relationship to investigate the effects
of material nonlinearity on the behavior of cable networks [22]. Re-
cently, Crusells-Girona et al. have employed a mixed variational ap-
proach in curvilinear coordinates based on the elastic catenary ex-
pressions to model cables with material and geometric nonlinearity
[23]. Moreover, a number of researchers have adopted the parabola
approach for analysis and design of practical cable structures. Since the
parabola approach disregards the large sag effects, it provides an ap-
proximate solution to the hanging cables. It is proved that the error of
the method increases by increasing the sag to span ratio. Therefore, this
approach is unsuitable for modeling deep cables [24–26].

In addition to the aforementioned finite element approaches, many
researchers have developed innovative ways for nonlinear analysis of
cable structures. Lewis employed the principle of minimum total po-
tential energy along with the dynamic relaxation method to assess the
efficiency of pure numerical approaches in analysis of pre-tensioned
cable nets [27]. A two-link structure was utilized by Kwan to develop a
simple technique for nonlinear analysis of pre-tensioned cable struc-
tures. In this approach, similar to a spatial truss, the nonlinear equili-
brium equations were written for each node, and then, they were solved
by using an iterative method [28]. Stefanou and Moossavi Nejad
minimized the total potential energy of the entire structural assembly
by the conjugate gradient method to obtain the equilibrium state of the
cable structures [29]. The efficiency of various dynamic relaxation
methods in analysis of cable structures was studied by Hüttner et al.
[30]. To model single-span cables considering extensibility and thermal
strains, the finite difference approach was applied by Bouaanani et al.
[31,32].

Although the elastic catenary provides highly accurate results, the
tangent stiffness matrix is not explicitly available. Therefore, a com-
plicated iterative procedure must be adopted to determine the nodal
forces and establish the flexibility matrix. To perform a very systematic
analysis, the inverse of the flexibility matrix must be also computed to
obtain the stiffness matrix. Thus, many difficulties arise during the
analysis procedure of the elastic catenary. On the other hand, simplified
cable approaches, such as elastic parabola or elastic straight shape, are
problematic in addressing the large sag effects in the deep cables.
Moreover, these elements must be transformed from a local axis to the
global one via transformation matrices to be able to consider inclina-
tion. This action further increases the computational complexities. To
improve these drawbacks, a three-dimensional cable element is pro-
posed in this study for static analysis of the general cable structures.
The elemental shape considers inclination without using transforma-
tion, and it takes both the large sag and thermal strain effects into ac-
count. To make the nonlinear analysis easier, the components of the
tangent stiffness matrix are presented by relatively simple closed-form
expressions. Since the profile of the hanging cable is given by hyper-
bolic functions, for convenience, the proposed element is referred to as
the ‘elastic hyperbola’. The numerical outcomes of the studied problems
reveal the accuracy and efficiency of the present element in the non-
linear analysis of spatial cable structures.

2. Formulation of the hyperbolic cable

The configuration of a perfectly flexible and elastic cable element
stretched between two nodes, namely i and j, is depicted in Fig. 1. As it
can be seen, the projected lengths along the x, y and z directions are
designated lx, ly and lz, respectively. Further, the nodal forces and nodal
displacements along the global axes, initial unstrained length and the

self-weight per unit unstained length are denoted by F, u, S and w, in a
respective manner.

The cross-sectional area, elastic modulus and thermal expansion
coefficient of the cable are supposed to be constant, and the formulation
is developed within the framework of small strains. Note that L and H
correspond to the horizontal projected length and the horizontal force
of the cable along the local axis, ζ , respectively. Herein, it is assumed
that the profile of the cable is sufficiently deep. In other words, no
limitations are imposed on the curvature of this structural element. It is
worth mentioning that removal of this assumption leads to the simpli-
fied elastic parabola approach. Based on the foregoing hypotheses, the
profile of the cable hanging under its self-weight with respect to the ζ
axis can be defined by the following hyperbolic function [17]:
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It should be added that satisfaction of the boundary conditions, i.e.
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Another parameter is defined as = +L l lx y
2 2 . It can be easily shown

that the cable tension at the Cartesian coordinates has the next ex-
pression:
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where T is the tension of the cable. After deformation, the strained
length of the cable element can be obtained as:
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where P stands for the strained length of the cable element. Since a real
cable has finite axial flexibility, the inextensibility condition must be
relaxed to obtain its elastic elongation. For an extensible cable with
constant material properties, the Hooke’s law is held:

= +ε ζ
T ζ
EA

α( )
( )

Δϑ (5)

where ε, E, A, α and Δϑ refer to the cable strain, elastic modulus, cross-
sectional area, thermal expansion coefficient and uniform variation in
the temperature, respectively. Substituting for the cable tension from
Eq. (3) into Eq. (5) and performing some mathematical manipulations
yield:

Fig. 1. Configuration of the hyperbolic cable element under self-weight.
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where d SΔ corresponds to an infinitesimal increment in the unstrained
length of the cable. The elastic elongation of the cable element can be
easily obtained by integrating both sides of Eq. (6). The solution pro-
ceeds as:
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In which SΔ refers to the elastic elongation of the cable element.
Because the strained length of the cable is equal to sum of the un-
strained length and the elastic elongation, the following equality holds
true:

= +P S SΔ (8)

It follows from Eq. (8) that for a given H, the unstrained length of
the cable can be directly calculated. When the unstrained length of the
cable element is given instead, Eq. (8) represents a nonlinear equation
by which the value of the horizontal force must be determined. A
simple and efficient iterative procedure, based on the modified Newton-
Raphson technique, will be discussed later to handle this issue.

As it can be seen in Fig. 1, the nodal forces Fjx and Fjy represent the
projected resultants of the horizontal force H along the global x and y
axes. In order to derive the tangent stiffness matrix, independent of
transformation matrices, the following relationships must be exploited:
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Moment equilibrium in the −O ζ plane will lead to the next re-
lationship:
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Substitution for the horizontal force by Eqs. (9)–(11) in Eqs. (4)–(7)
gives rise to:
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In which n is a dummy variable and other parameters have the
following form:
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3. Derivation of the tangent stiffness matrix

In the beginning, to determine the components of the tangent
stiffness matrix in an explicit manner, the following expressions are
available based on Eqs. (12) and (13):
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Since the initial unstrained length of the cable is a constant value, its
derivative equals to zero. Hence, for any n, differentiating both sides of
Eq. (8) yields:

=dP d SΔn n (17)

Clearly, Eq. (17) indicates that the total differentiation of the elastic
elongation, and the strained length of the cable are equal. Upon sub-
stitution of Eqs. (15) and (16) into Eq. (17), the following interesting
expression will be achieved:
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Eq. (18) forms the basis for calculation of the stiffness components.
As shown in Fig. 2, assuming that an infinitesimal increment equal

to dlx is applied to node j, such that the projected length of the cable
along the x direction is increase to +l dlx x. This gives rise to in-
finitesimal load increments, dFjx , dFjy and dFjz in the nodal forces of Fjx,
Fjy and Fjz. Note carefully that in such a case, dly and dlz equal to zero
and vanish.

Next, substituting by x for n in Eq. (18) leads to:
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The first entry of the tangent stiffness matrix for node j, i.e. k11, is
defined as the ratio of the infinitesimal increment in the nodal force Fjx
to the infinitesimal length increase dlx [33]. Dividing Eq. (19) by dlx
and rearranging the resultant, the stiffness component can be obtained
as:
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The tangent stiffness formulae k21 and k31 which denote the ratio of
infinitesimal increment in the nodal forces Fjy and Fjz to dlx , respec-
tively, can be evaluated in a similar manner:
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Likewise, the rest of the stiffness components for node j can be
calculated by applying infinitesimal increments to the projected length
of the cable along the y and z directions and repeating the

Fig. 2. Infinitesimal increase in the nodal forces due to infinitesimal increment
of lx .
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aforementioned procedure for =n y z, . The final configuration of the
cable element is depicted in Fig. 3. The rest of the stiffness components
for node j are also given below:
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where Ai and Bi constants are used for simplification purposes, and all
of them will be reported in Appendix A. At this stage, the stiffness
formulae are available in a closed-form and the tangent stiffness matrix
for node j can be established, as follows:
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The nodal force and length increments of node j are related as:

=dl dl dl dF dF dFk{ } { }x y z T jx jy jz T (30)

where k is the tangent stiffness matrix of node j and dl corresponds to
the difference between the nodal incremental displacements of two
nodes. The nodal displacement increments and infinitesimal length
increments are related as:

= − − −dl dl dl du du du du du du{ } { }x y z T jx ix jy iy jz iz T (31)

where du refers to the increment in the nodal displacements u.
Substituting Eq. (31) into Eq. (30) and carrying out some algebra, the

next result will be obtained:
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The equilibrium of nodal forces within the element requires the
following relation:

= − − −F F F F F wS F{ } { }ix iy iz T jx jy jz T (33)

Total differentiation of Eq. (33) results in the equilibrium equation
for node i as:
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Using Eqs. (32) and (34), the equilibrium equation of the cable
element will be achieved:
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where K, dU and dF correspond to the tangent stiffness matrix of the
element, incremental nodal displacement vector and incremental nodal
force vector, respectively.

As a matter of fact, the tangent stiffness matrix of the proposed
element given by Eq. (36) is derived with respect to the global axes, and
thus a transformation matrix is not required to consider inclination.
This significantly decreases the complexities and computational issues
encountered in analysis of three-dimensional cable structures. The
flexibility matrix of an elastic catenary is a function of three unknown
nodal forces. These unknown forces must be determined through a
rather complicated iterative procedure. In contrast, the stiffness matrix
in Eq. (36) depends only on one unknown force, namely the horizontal
force of the cable element. Hence, only a single value, i.e. the horizontal
force, must be calculated at each iteration step. Contrary to the
common procedures, it is not required to take the inverse of the flex-
ibility matrix at each iteration step since the explicit tangent stiffness
matrix is available and can be directly utilized. For pre-tensioned
cables, the pretension force is known in place of the unstrained length.
Unlike the elastic catenary that makes use of a laborious iterative
procedure to determine the unstrained length, the unstrained length of
the cable can be directly calculated in the present scheme by means of
Eq. (8). The foregoing merits of the proposed element make it re-
markably efficient in the analysis of a great variety of cable structures,
including slack or pre-tensioned cable networks.

4. Nonlinear analysis process

As it was already discussed in Section 2, when the initial unstrained
length of the cable is known instead of the horizontal force, the non-
linear equation given by Eq. (8) must be solved to obtain the value of H .
The Newton-Raphson technique provides a simple and efficient nu-
merical procedure to handle this problem. However, convergence to the
correct solution cannot be guaranteed unless sufficient criteria are in-
troduced into the Newton-Raphson scheme.

A schematic illustration of = − −f λ P S S( ) Δ is depicted in Fig. 4. As
it can be seen by dashed lines, the equation has three roots in terms of
λ. The positive root indeed corresponds to the correct solution by which
the value of H can be determined, and the two negative roots are un-
acceptable. Contrary to a taut cable, the Newton-Raphson technique
may converge to any of these three possible solutions in case of slack
cables. In order to avoid unwanted solutions, i.e. the negative roots, a
constraint is built into the Newton-Raphson scheme, as discussed by
Ahmadi-Kashani and Bell [16]. An initial value for λ is required to

Fig. 3. Final configuration of the cable element subjected to infinitesimal
length increments.
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begin the iterations. This initial value may either be underestimated or
overestimated. For an underestimated value, the convergence is always
to the correct solution. In contrast, an overestimated initial value for λ
is likely to yield a negative value for the updated λ, even in the first
iteration cycle. This indeed leads to the unwanted solutions. As a re-
medy, wherever a negative value for λ is detected, its value is halved
and used in place of the updated value obtained by the Newton-
Raphson method in that iteration. Hence, the modified iterative method
proceeds according to:

=
⎧
⎨
⎩

− ′ >

<
+

+

+
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λ f λ f λ λ

λ

( )/ ( ) for 0

for 0
i

i i i i

λ i
1

1

2
1i

(39)

To accelerate the Newton-Raphson procedure and converge to the
required solution by fewer iterations, the initial value of λ must be
chosen as close to the actual solution as possible. This further improves
the numerical stability of the method. An appropriate initial value for λ
can be chosen based on the following relations:
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where . If the cable is pre-tensioned, η falls outside the boundaries
given by Eq. (40). In such a case, the elasticity effects cannot be ne-
glected and a good estimate for λ may be given by
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Since the cable structures inherently exhibit geometrical nonlinear
behavior, it is necessary to implement an incremental-iterative solution
method. As it is obvious, no snap-through or snap-backs are observed in
analysis of cable structures and thus a load control scheme can be
employed. Among the load control methods, Newton-Raphson tech-
nique has been the most popular for nonlinear structural analysis. It
should be reminded that many researchers have developed and utilized

this approach [34–37]. In this study, Newton-Raphson scheme is em-
ployed to trace the equilibrium paths. In this way, the governing finite
element equation is obtained at time t+Δt as below:

= −+ + + +U UR F F( ,Γ ) ΔΓ ( )t t t t t t
ext

t t
int

Δ Δ Δ Δ (42)

in which +UF ( )t t
int

Δ is the vector of internal forces. It is worth
mentioning that these quantities are obtained based on the displace-
ments, +Ut tΔ . Moreover, the vector of external loads is defined by Fext

and ΔΓ is the load factor which remains constant at all iterations of
each increment. The linearized form of Eq. (42) for each iteration of
increments is given by:

=+ +
+

+ +UK U RΔ ( ,Γ )t t
i

t t
i

t t t tΔ Δ
1

Δ Δ (43)

where R refers to the residual force vector. In other words, external
loads are computed at the first iteration of each increment and remain
constant throughout the other iterations of this step. The load factor ΔΓ
is also defined at the beginning of the analysis. The system of equations
can be solved as:

= = = ⩾− − −δ j δ jK U F K U RΔΓ for 1 for 2j
i i ext

j
i

j
i

j
i

1 1 1 1 (44)

The flowchart of the incremental Newton-Raphson solution procedure
for nonlinear analysis of cable structures is provided in Appendix B.

5. Verification and numerical examples

In this section, various popular benchmark problems are studied to
establish the efficiency and applicability of the geometric nonlinear
analysis program, which is developed by authors, for using the sug-
gested element. In case of single span hanging cables subjected to self-
weight and a concentrated load at =s s1, where s denotes the
Lagrangian coordinate along the cable unstrained length, an analytical
solution exists based on the elastic catenary expressions [38]:
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where Fc corresponds to the concentrated load at =s s1 and V stands for
the vertical component of the cable tension at its left end. The unknown
values can be achieved by substitution of the right end boundary con-
ditions in the second relations of Eqs. (45) and (46). These analytical
expressions will be utilized for verification of the proposed element in
modeling of single span deep and shallow cables.

5.1. Isolated cable subjected to concentrated load

This example presents an isolated cable with the span of 304.8 m.
This problem was first considered by Michalos and Birnstiel [39] and
later studied by several researchers [13–15,17–19,21,40]. The initial
geometry of the cable and the necessary data for analysis are taken from
[19] and presented in Fig. 5 and Table 1. The cable is hanging under its
self-weight, and a concentrated force is applied at node 2. The cable
was modeled using 2 elastic hyperbola elements. The displacements are
compared with the previous studies and the analytical solution in

Fig. 4. Schematic view of the possible solutions for the horizontal force.
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Table 2. As it can be seen, the displacements obtained by the proposed
element are in excellent agreement with those found in the literature.
Fig. 6 depicts the comparison of the load-displacement curves for node
2 where the excellent agreement between the proposed scheme, and the
elastic catenary is clearly demonstrated.

5.2. Deep cable subjected to self-weight and a temperature variation

This example serves to demonstrate the potential of the proposed
element in modeling deep cables. The problem consists of a cable
hanging under its self-weight which spans 100 m. Note that the supports
are at the same elevation. The axial stiffness AE, thermal expansion
coefficient and mass per unit length of the cable are equal to ×5 10 kN4 ,

× − −1.25 10 K5 1 and 25kg/m, respectively. This cable also undergoes a
temperature variation of =Δϑ 10 K. The cable profile is obtained for
three different values of horizontal force, namely

= = =H H H10kN, 15kN, 20kN, by using the proposed scheme and the
analytical solutions given via Eqs. (45) and (46). To utilize the analy-
tical expressions, Fc and s1 must be set to zero. In all cases, the sag to

span ratio is larger than 1: 8 and thus the cable is regarded as deep. The
resulting profiles are illustrated in Fig. 7. As it can be seen, there is an
excellent agreement between the proposed results and the analytical
solution. This fact clearly demonstrates that authors' element is able to
accurately model extensible cables with large sag. It is worth men-
tioning that Bouaanani and Marcuzzi [31] implemented a complicated
and rather cumbersome finite difference technique to obtain the same
profile whereas the present scheme readily bears the correct config-
uration using a single element.

5.3. Thermo-elastic analysis of an isolated cable

The third example is included to validate the reliability of the
proposed element in the thermal analysis of cables. The problem refers
to a cable the left end of which is fixed at the coordinates (0,90) m while
the elevation of its right end support is kept constant at 30m and the
horizontal coordinate of the right end is varied between 0.02 and 100m
(see Fig. 8). The cable is subjected to a temperature rise of =Δϑ 100K.
The necessary properties of the cable are outlined in Table 3. The
problem was first studied by Pevrot and Goulois [20] and later analyzed
by Yang and Tsay [11] and Salehi Ahmad Abad et al. [21]. It is aimed to
obtain the horizontal and vertical reactions at the right end support. To

Fig. 5. Initial geometry of the isolated cable.

Table 1
Characteristics of the isolated cable.

Item Data

Cross sectional area 548.4mm2

Elastic modulus 131000MPa
Self-weight per unit unstrained length 46.12 N/m
Cable sag under self-weight at node 2 29.276m
Unstrained length of cable element 1–2 125.847m
Unstrained length of cable element 2–3 186.855m

Table 2
Comparison of present and previous results for the isolated cable.

Researcher(s) Element Type No. of
elements

Displacement at node
2 (m)

ux uz

Saafan [40] Truss – −0.845 −5.472
O’Brien & Francis [13] Elastic catenary 2 −0.860 −5.627
Michalos & Birnstiel [39] Truss – −0.845 −5.472
Jayaraman & Knudson [19] Elastic catenary 2 −0.859 −5.626
Jayaraman & Knudson [19] Truss 10 −0.845 −5.471
Tibert [17] Elastic catenary 2 −0.859 −5.626
Tibert [17] Associate

catenary
2 −0.859 −5.655

Tibert [17] Elastic parabola 2 −0.866 −5.601
Andreu et al. [14] Elastic catenary 2 −0.860 −5.626
Yang & Tsay [15] Elastic catenary 2 −0.859 −5.625
Thai & Kim [18] Elastic catenary 2 −0.859 −5.626
Salehi Ahmad Abad

et al. [21]
Elastic catenary 2 −0.859 −5.626

Crusells-Girona et al. [23] Discrete elastic
catenary

3 −0.861 −5.630

Present Analytical 1 −0.859 −5.626
Present Elastic

hyperbola
2 −0.859 −5.626

Fig. 6. Load-displacement curves for node 2.

Fig. 7. Present and elastic catenary profiles of the deep cable subjected to self-
weight.
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solve this problem, a single elastic hyperbola element was implemented
in all cases. The results are compared to the literature in Table 4. As it
can be seen, the proposed element has led to almost identical results
with those predicted by previous researchers.

5.4. Prestressed cable under uniform load

It was observed that the present element could accurately model
slack cables without difficulties. The analytical expressions of the
elastic catenary are based on the flexibility concept and consistently
satisfy the equilibrium of internal forces with the elastic elongation of
the cable. Since the present element is directly formulated within the

framework of stiffness concept, to account for the pre-elongation of a
taut cable, the elasticity effects cannot be neglected and thus the cable
weight per unit length must be updated as the length of the cable is
increased throughout the solution process according to the following
relation:

=w P w Si i 0 (47)

where wi and w0 refer to the updated and initial value of the cable
weight per unit length, respectively. It is clear that this equation implies
the conservation of mass. Unless the proposed modification is in-
troduced into the formulations, the distributed load of the cable will not
be recomputed. This will result in larger vertical reactions and deflec-
tions than the reality. This modification has been simply built into the
solution program to analyze prestressed cables.

The fourth example is presented to assess the applicability of the
new formulation for analysis of a prestressed cable subjected to uniform
transverse loads. The problem is taken from Jayaraman and Knudson
[19]. The initial unstrained length of the cable has been 9990.00999in.
Due to pretension, the length of the cable is increased to span 10000in,
as shown in Fig. 9. It is aimed to obtain the vertical displacement at
mid-span for different values of uniform transverse load. The horizontal
line joining the supports has been utilized as the starting geometry. The
cable was modeled by two elastic hyperbola elements. The obtained
results for five different values of w are reported in Table 5. It is ob-
served that the present results conform well to the benchmark out-
comes. Fig. 10 compares the variation of mid-span displacement of the
cable under increasing uniform load obtained by the proposed element
and the analytical theory of elastic catenary.

5.5. Longest cable of a cable-stayed bridge

In this practical example, the proposed element is implemented to
analyze the longest cable of the Sutong Changjiang high-way bridge in
China. The cable is perfectly elastic with a chord length of 576.488m
and an initial unstrained length equal to 574.805m. The cross-sectional
area, elastic modulus and weight per unit unstrained length are equal to
A=0.012046m2, E=190 GPa and w=988N/m, respectively. The
coordinates of the left and right ends of the cable are given as (0,
220.564m) and (532.626m, 0), respectively. Since the initial un-
strained length of the cable is shorter than its chord length, the strained
profile of the cable represents a taut behavior. This problem was
modeled only by one element. Table 6 compares the present results
against the benchmarks. A good agreement is achieved once again.

5.6. Prestressed plane cable net

In this example, a prestressed plane cable net consisting of inclined
and horizontal members is inspected. The geometry of the cable

Fig. 8. Various configurations of the cable.

Table 3
Properties of the cable under thermo-elastic loading.

Item Data

Cross sectional area 1m2

Elastic modulus ×3 10 N/m7 2

Self-weight per unit unstrained length 1 N/m
Thermal expansion coefficient × − −6.5 10 K6 1

Unstrained length 100m

Table 4
Comparison of reactions (N) for the cable under thermo-elastic loading.

Researcher(s) Reactions (N) Location (m)

0.02 20 40 60 80 100

Pevrot & Goulois [20] H 0 3.061 9.172 22.15 504 4,170,000
V 20.02 19.93 19.24 15.73 −328 −2,511,000

Yang & Tsay [15] H 0.01 3.061 9.172 22.15 504.1 4,255,700
V 20.02 19.93 19.24 15.73 −328.9 −2,555,340

Salehi Ahmad Abad et al. (DCC) [21] H 0.01 3.09 9.16 22.11 504.48 4,255,849
V 19.99 19.83 19.14 15.63 −329.4 −2,555,047

Salehi Ahmad Abad et al. (CCC) [21] H 0.011 3.06 9.172 22.145 504.104 4,258,491
V 20.02 19.93 19.24 15.73 −328.86 −2,555,044

Analytical H 0 3.060 9.172 22.146 504.103 4,258,491
V 20.02 19.93 19.24 15.73 328.87 −2,555,044

Present H 0 3.062 9.178 22.16 504.27 4,255,712
V 20.03 19.94 19.25 15.74 −328.96 −2,553,369
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structure is shown in Fig. 11. The cross-sectional area, elastic modulus
and self-weight per unit unstrained length of the cable are 146.45mm2,
82737MPa and 1.459 N/m, respectively. Furthermore, inclined and
horizontal cables maintain unstrained lengths of 30.419m and
31.760m, respectively. The problem was first studied by Saafan [40]
and subsequently investigated by Jayaraman and Knudosn [19], Tibert
[17] and Thai and Kim [18]. The internal nodes are subjected to a
concentrated force of =F 35.586kNc . Each cable was modeled using a
single elastic hyperbola element. Table 7 compares the present

displacements for node 4 against those reported by other researchers.
As it can be seen, the results are very close to previous studies. This
implies that the proposed element provides satisfactory results in the
static analysis of prestressed cable nets.

5.7. Hyperbolic paraboloid net

A hyperbolic paraboloid cable network is selected for which the
experimental results are available in [44]. Various methods have been
implemented by several researchers to numerically investigate this
structure as well [14,18,28,44,45]. As shown in Fig. 12, the structure
contains 31 cable segments pretensioned by the force of 200 N prior to
the application of external loads. Some internal joints are subjected to
concentrated loads of 15.7 N. All cables maintain an elastic modulus of
128.3GPa and a cross-sectional area of 0.785mm2. A uniform weight per
unit length equal to 0.195 N/m is assumed to act. The vertical dis-
placements of this assembly are compared to the previous studies in
Table 8. As it can be seen, the results predicted by the proposed scheme
are in good agreement with those reported by the other researchers. It is

Fig. 9. Prestressed cable under uniform load.

Table 5
Results and comparison for prestressed cable under uniform load.

Load
parameter

w (lb/in) Mid-span displacement (in)

Elastic
catenary [19]

Elastic
parabola [41]

Analytical Present

1 0.02 131.63 131.60 131.49 131.49
3 0.06 234.19 234.49 234.20 234.22
5 0.10 292.79 293.10 292.78 292.83
7 0.14 336.03 336.22 336.04 336.11
9 0.18 371.13 371.37 371.13 371.24

Fig. 10. Variation of central deflection with increasing weight for prestressed
cable under uniform load.

Table 6
Comparison study for the longest cable of the Sutong Changjiang high-way
bridge.

Researchers Left T KN( )A Right T KN( )B Cable strained
length P (m)

Sag P/1/2
*

Ren & Gu [42] 7331.219 7114.005 576.616 1/101.725
Yang & Tsay [15] 7321.591 7104.359 576.616 1/101.236
Present 7327.549 7109.632 576.616 1/101.328

* Sag of the cable below the chord at =x L/2.

Fig. 11. Prestressed plane cable net.

Table 7
Comparison of displacements for node 4 in plane cable net.

Researcher(s) Method Displacement at node 4 (mm)

x-direction y-direction z-direction

Saafan [40] Elastic straight −40.35 −40.35 −448.27
Jayaraman &

Knudson [19]
Elastic catenary −39.62 −40.20 −446.32

Tibert [17] Elastic catenary −40.48 −40.48 −450.00
Tibert [17] Associate catenary −40.78 −40.78 −453.36
Tibert [17] Elastic parabola −40.78 −40.78 −453.36
Thai & Kim [18] Elastic catenary −40.13 −40.13 −446.50
Thai & Kim [18] Elastic catenary

(SAP2000)
−40.28 −40.28 −448.88

West & Kar [43] Nonlinear
equilibrium

−40.39 −40.39 −447.99

Present Elastic hyperbola −40.75 −40.75 −452.79

Fig. 12. Hyperbolic paraboloid net.
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Table 8
Comparison of vertical displacements (mm) of hyperbolic paraboloid net.

Node Vertical displacement (mm)

Experiment [44] Dynamic Relaxation [44] Minimum Energy [45] Elastic catenary [18] Approximation by series [28] Elastic catenary [14] Present

5 −19.50 −19.30 (1.03)* −19.30 (1.03) −19.56 (0.31) −19.52 (0.10) −19.51 (0.05) −19.51 (0.05)
6 −25.30 −25.30 (0.00) −25.50 (0.79) −25.70 (1.58) −25.35 (0.19) −25.65 (1.38) −25.58 (1.10)
7 −22.80 −23.00 (0.88) −23.10 (1.32) −23.37 (2.50) −23.31 (2.24) −23.37 (2.50) −23.28 (2.10)
10 −25.40 −25.90 (1.97) −25.80 (1.57) −25.91 (2.01) −25.86 (1.81) −25.87 (1.85) −25.83 (1.69)
11 −33.60 −33.80 (0.60) −34.00 (1.19) −34.16 (1.67) −34.05 (1.34) −34.14 (1.60) −33.95 (1.04)
12 −28.80 −29.40 (2.08) −29.40 (2.08) −29.60 (2.78) −29.49 (2.39) −29.65 (2.95) −29.42 (2.15)
15 −25.20 −26.40 (4.76) −25.70 (1.98) −25.86 (2.62) −25.79 (2.34) −25.86 (2.62) −25.61 (1.62)
16 −30.60 −31.70 (3.59) −31.20 (1.96) −31.43 (2.71) −31.31 (2.32) −31.47 (2.84) −31.02 (1.37)
17 −21.00 −21.90 (4.29) −21.10 (0.48) −21.56 (2.67) −21.42 (2.00) −21.57 (2.71) −21.24 (1.12)
20 −21.00 −21.90 (4.29) −21.10 (0.48) −21.57 (2.71) −21.48 (2.28) −21.62 (2.95) −20.83 (0.81)
21 −19.80 −20.50 (3.54) −19.90 (0.51) −20.14 (1.72) −20.00 (1.01) −20.15 (1.76) −19.19 (3.08)
22 −14.20 −14.80 (4.23) −14.30 (0.70) −14.55 (2.46) −14.40 (1.40) −14.55 (2.46) −13.81 (2.74)
‖Error‖ 10.63 4.54 7.81 6.24 7.94 6.14

* Numbers in parentheses indicate the absolute error percentage with respect to experiment results.

Fig. 13. Spatial cable network.

Table 9
Comparison of displacements (mm) for spatial net.

Researcher Direction Displacements (mm)

Node

7 8 9 14 15 16

Lewis et al. [27] (Elastic straight) dx −5.14 −2.26 0.00 −4.98 −2.55 0.00
dy −0.42 −0.47 2.27 0.00 0.00 0.00
dz −30.41 −17.7 3.62 −43.49 −44.47 −41.65

Thai & Kim [18] (Elastic catenary) dx −5.03 −2.23 0 −4.92 −2.55 0.00
dy −0.41 −0.46 2.31 0.00 0.00 0.00
dz −29.86 −17.29 3.61 −42.85 −44.26 −42.08

Salehi Ahmad Abad et al. [21] (PCCC) dx −5.02 −2.24 0.00 −4.94 −2.56 0.00
dy −0.41 −0.43 2.23 0.00 0.00 0.00
dz −29.55 −17.55 3.19 −42.99 −44.30 −42.04

Salehi Ahmad Abad et al. [21] (PDCC) dx −5.05 −2.23 0.00 −4.93 −2.55 0.00
dy −0.40 −0.40 2.36 0.00 0.00 0.00
dz −29.55 −17.16 3.19 −42.94 −44.34 −42.14

Present (Elastic hyperbola) dx −5.03 −2.23 0.00 −4.93 −2.55 0.00
dy −0.40 −0.39 2.36 0.00 0.00 0.00
dz −29.50 −17.14 3.19 −42.94 −44.39 −42.20
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also drawn from this table that the present element leads to more sa-
tisfactory results in terms of the error norm compared to other tech-
niques.

5.8. Spatial cable network

Another example examined here is a spatial cable network. The
configuration of the structure is depicted in Fig. 13, in which symmetry
about both centerlines is evident. The assembly is ×24 m 16m in the
plan, and 38 pretensioned cable segments have been used to divide its
grid in ×4 m 4m quadrilaterals. All cables maintain an elastic modulus
of 160GPa and the pretension force along the x and y directions are
equal to 90kN and 30kN, respectively. All internal joints are subjected
to a downward concentrated force of 6.8kN. The cross-sectional areas of
the cables along the x and y directions are also equal to 350mm2 and
120mm2, in a respective manner. A very small quantity is assumed for
the cables’ weight per unit length to carry out the analysis. The ob-
tained displacements are compared to those reported by previous re-
searchers in Table 9. As it can be seen, the proposed scheme leads to
almost identical results.

5.9. Pretensioned cable roof

In this section, a pretensioned cable roof structure with symmetry
about both centerlines is analyzed. The initial geometry and z co-
ordinates for a quarter of the assembly are shown in Fig. 14. For the
first time, this problem was introduced by Thornton and Birnstiel [46]
and further studied by Ahmadi-Kashani [47]. The structure includes 64
pretensioned and weight-less cable segments. The side beams are as-
sumed to be rigid. The horizontal component of the pretension force is
50kips for all cables. The cross-sectional area and elastic modulus of the
cables are given as 1in2 and ×2.4 10 psi7 , respectively. Since the cables
are assumed to be weight-less, a very small weight per unit volume of

−10 kips/ft6 3 is assigned to each element. The structure was analyzed for

two different load cases. The first load case, indicated by LC.1, refers to
a downward concentrated force of 1kip applied to all joints. The second
load case, denoted by LC.2, is similar to LC.1 plus an additional load of
14 kips applied at node 29. Table 10 compares the present vertical
displacements of the sample joints against the benchmark results. As it
can be seen, the results predicted by the proposed element are in ex-
cellent agreement with previous studies.

5.10. Suspended cable ring

This example serves to illustrate the efficiency of the proposed
scheme in analysis of slack cable networks. The initial configuration of
an axisymmetric suspended cable ring with inner radius of 35 m and
outer radius of 75m is presented in Fig. 15. The assembly consists of 8
radial and 8 tangential slack cable segments. The outermost joints are
assumed to be fixed, while each of the inner joints maintains three

Fig. 14. Plan and side view of the pretensioned cable roof.

Table 10
Comparison of vertical displacements (ft) for example 9.

Node Vertical displacement (ft)

LC. 1 LC. 2

Ahmadi-
Kashani
[47]

Thornton &
Birnstiel
[46]

Present Ahmadi-
Kashani
[47]

Thornton &
Birnstiel
[46]

Present

1 0.00 0.00 0.00 0.00 0.00 0.00
3 −0.254 −0.254 −0.254 −0.259 −0.259 −0.259
7 −0.552 −0.552 −0.553 −0.605 −0.605 −0.606
13 −0.772 −0.772 −0.774 −1.020 −1.020 −1.023
21 −0.861 −0.861 −0.863 −1.722 −1.722 −1.727
29 −0.772 −0.772 −0.774 −3.720 −3.718 −3.727
35 −0.552 −0.552 −0.553 −1.268 −1.268 −1.272
39 −0.254 −0.254 −0.254 −0.381 −0.381 −0.381
41 0.00 0.00 0.00 0.00 0.00 0.00
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translational degrees of freedom. The cross-sectional area, elastic
modulus and weight-per unit unstrained length of all cables are equal to

=A 1963.44mm2, =E 170GPa and =w 151.047 N/m, respectively.
Further, the radial and tangential cables have unstrained lengths of
40m and 32m, respectively. The entire cable network is released from
the initial state to deform under its self-weight. It is aimed to obtain the
nodal coordinates of the final equilibrium state. Deng et al. used a ra-
ther arduous shape finding technique to solve this problem [48]. In this
study, the analysis was simply carried out by modeling each cable
segment with a single element. The coordinates of the inner joints at the
final equilibrium state are compared to those reported by previous re-
searchers in Table 11. As it can be seen, the proposed scheme has
predicted identical results. This clearly indicates the reliability and
applicability of the new formulation in shape finding and analysis of the
slack cable structures.

6. Conclusions

Based on the concept of inextensible catenary, a novel formulation
for three-dimensional cables was developed in this study. Authors’
element is able to consider inclination without using any transforma-
tion matrices, takes the large sag effects into account, and it is applic-
able to the cables undergoing general load cases, such as, concentrated,
uniformly distributed and thermal loads. The inextensibility condition
was relaxed and equality of the total differentiation of the elastic
elongation and strained length of the cable was employed to derive the
explicit components of the tangent stiffness matrix. To trace the

corresponding equilibrium paths of cable structures, the Newton-
Raphson iterative method was also employed.

Unlike the elastic catenary approach, which requires a complicated
iterative procedure for inverting the flexibility matrix and determina-
tion of three unknown nodal forces at each step, the proposed for-
mulation leads to an explicit stiffness matrix. It has only one unknown
force, namely the horizontal force. This makes the new element more
efficient in terms of the analysis time. Significant case studies, ranging
from single span cables to slack and pretensioned cable networks, were
performed to illustrate the robustness of the present technique in ana-
lysis of various types of cable assemblies.

In addition to the simplicity and explicit nature of the equations and
relations, the numerical outcomes clearly demonstrate that the pro-
posed element furnishes accurate results and can be conveniently uti-
lized in research, analysis and design of practical deep and shallow
cable-supported structures such as pretensioned cable roofs, long-span
cable stayed bridges and suspension bridges.
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Fig. 15. Plan and perspective view of the suspended cable ring.

Table 11
Comparison of joint coordinates (m) at the final equilibrium state.

Researcher(s) Direction (m) Joint No.

1 2 3 4 5 6 7 8

Hüttner et al. [49] x 41.469 29.451 0.000 −29.451 −41.649 −29.451 0.000 29.451
y 0.000 29.451 41.469 29.451 0.000 −29.540 −41.649 −29.451
z −21.713 −21.713 −21.713 −21.713 −21.713 −21.713 −21.713 −21.713

Deng et al. [48] x 41.469 29.451 0.000 −29.451 −41.649 −29.451 0.000 29.451
y 0.000 29.451 41.469 29.451 0.000 −29.451 −41.649 −29.451
z −21.713 −21.713 −21.713 −21.713 −21.713 −21.713 −21.713 −21.713

Present x 41.469 29.451 0.000 −29.451 −41.649 −29.451 0.000 29.451
y 0.000 29.451 41.469 29.451 0.000 −29.451 −41.649 −29.451
z −21.717 −21.717 −21.717 −21.717 −21.717 −21.717 −21.717 −21.717
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Appendix A

As it is given by Eqs. (20)–(28), the components of the tangent stiffness matrix are simplified using Ai and Bi constants. These constants are
outlined below:
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Appendix B

The flowchart of the incremental Newton-Raphson solution procedure is given below:
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Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.engstruct.2018.04.022.
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