
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

A generalized variable neighborhood search algorithm for the talent
scheduling problem
Mohammad Ranjbara,⁎, Ahmad Kazemib
a Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
b School of Mathematical Sciences, Monash University, Melbourne, Australia

A R T I C L E I N F O

Keywords:
Talent scheduling
Metaheuristic
Generalized variable neighborhood search
algorithm

A B S T R A C T

An important part of the movie production process is to determine a shooting sequence of scenes to minimize the
total cost of the actors, called the talent scheduling problem. We first modify a previously developed formulation
of the problem as an integer linear programming model and develop a metaheuristic based on the generalized
variable neighborhood search algorithm to solve it. The computational experiments based upon available test
instances in the literature suggest that our algorithm outperforms previously developed algorithms especially for
large-scale instances.

1. Introduction

A movie consists of several scenes where each of them includes a set
of actors (talents). After finishing shooting process, the scenes are as-
sembled to be presented, thus scenes are not shot in the sequence they
are appeared. Determining the optimal sequence for shooting scenes in
order to minimize the total costs of actors motivates the talent sche-
duling problem, which is described as follows. There are a set of scenes
and a set of actors where a given subset of actors are involved in each
scene. We assume all scenes are shot in a predetermined location. Also,
each scene has a positive duration and each actor has a daily wage, paid
for each day of a required interval. The required interval consists of the
first day of the first scene an actor is needed to the last day of the last
scene the actor is needed while he/she may not work in some days of
this interval but his/her daily wage should be paid. The challenging
optimization problem is that to determine the optimal permutation of
scenes such that the total salary costs of actors is minimized.

A simplified version of the talent scheduling problem, called concert
scheduling problem, was introduced by Adelson, Norman, and Laporte
(1976) in which the costs of all actors are identical. Cheng, Diamond,
and Lin (1993) considered the scene scheduling problem where each
scene last a shooting day. Also, Cheng et al. (1993) proved that scene
scheduling problem is NP-hard even if each actor is required in only
two scenes, and all wages and durations are identical. Nordström and
Tufekci (1994) developed several hybrid genetic algorithms for the
scene scheduling problem. For the same problem, Fink and Voß (1999)
designed and implemented a simulated annealing and several tabu

search algorithms.
Smith (2003) developed a constraint programming approach to

solve both problems introduced by Adelson et al. (1976) and Cheng
et al. (1993). The talent scheduling problem in which scenes may have
different durations and also actors may have non-identical daily wages
was introduced by De la Banda, Stuckey, and Chu (2011). They de-
veloped a dynamic programming approach accelerated with pre-
processing and restricting search procedures. Also, Qin, Zhang, Lim,
and Liang (2016) developed an efficient branch-and-bound algorithm
for the problem introduced by De la Banda et al. (2011), outperforming
already developed algorithms. Bomsdorf and Derigs (2008) considered
a generalized version of the problem, introduced by De la Banda et al.
(2011), dealing with some of the practical constraints such as the
precedence relations among the scenes, the resource limitations, and
permitted time windows for the scenes and the actors.

Contribution of this paper is twofold: (1) we modify and improve a
previously developed formulation of the talent scheduling problem; (2)
we develop a generalized variable neighborhood search (GVNS) algo-
rithm to solve the problem which has better performance than already
developed algorithms in the literature especially for large-size in-
stances.

The remainder of this paper is organized as follows. In Section 2,
problem statement and formulation is presented. The GVNS algorithm
is developed in Section 3. Section 4 is assigned to the computational
experiments. Finally, conclusions and future research directions are
presented in Section 5.

https://doi.org/10.1016/j.cie.2018.10.028
Received 8 September 2017; Received in revised form 27 September 2018; Accepted 10 October 2018

⁎ Corresponding author.
E-mail addresses: m_ranjbar@um.ac.ir (M. Ranjbar), ahmad.kazemi@monash.edu (A. Kazemi).

Computers & Industrial Engineering 126 (2018) 673–680

Available online 12 October 2018
0360-8352/ © 2018 Published by Elsevier Ltd.

T

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2018.10.028
https://doi.org/10.1016/j.cie.2018.10.028
mailto:m_ranjbar@um.ac.ir
mailto:ahmad.kazemi@monash.edu
https://doi.org/10.1016/j.cie.2018.10.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2018.10.028&domain=pdf

2. Problem statement and formulation

The talent scheduling problem can be described mathematically as
follows. Consider n scenes as the set =S s s{ , , }n1 and m actors as the
set =A a a{ , , }m1 . We define matrix ×Rm n where =r 1ij if actor ai
should participate in scene sj; otherwise =rij 0. For each scene s Sj with
positive duration d s()j , a subseta s()j of actors are required
where = =a s a A r() { 1}j i ij . Also, each actor ai plays in a subset s a()i of
scenes where = =s a s S r() { 1}i j ij . We show by the set of all n! pos-
sible sequences of the n scenes where each sequence = (, ,)n1
indicates a solution. The daily wage for each actor a Ai , shown by
w a()i , is paid based on the solution and from his/her starting day
sta ()i to his/her finishing day fta ()i . The goal of the talent scheduling
problem is to find a shooting sequence that minimizes the total
paid salaries.

In addition to aforementioned notations, we define the four fol-
lowing variables.

xkj: a binary variable that gets 1 if scene sj is shot immediately after
scene sk , and 0 otherwise.

stsj: the starting day for shooting scene sj.
stai: the starting day for working actor ai.
ftai: the finishing day for working actor ai.
We define two dummy scenes 0 and +n 1 with = =+d s d s() () 0n0 1

to indicate the first and the last scenes to be shot. In other words, we
assume =sts 00 and = ++ =sts d s1 ()n j

n
j1 1 .

The integer linear programming model reads as follows.

= = =

Min w a fta sta d s() ()
i

m

i i i
j r

n

j
1 1 ij 1 (1)

s.t.

=
=

x 1
j

n

j
1

0
(2)

=
=

+x 1
k

n

k n
1

, 1
(3)

= =
=

+

x k n1; 1, ,
j j k

n

kj
1,

1

(4)

= =
=

x j n1; 1, ,
k k j

n

kj
0, (5)

+ + = = +sts M x sts d s k n j n(1) (); 0, , , 1, , 1j kj k k (6)

+ = = +sts M x sts d s k n j n(1) (); 0, , , 1, , 1j kj k k (7)

= = =sts sta i m j n r; 1, , , 1, , & 1j i ij (8)

= = =sts fta d s i m j n r(); 1, , , 1, , & 1j i j ij (9)

=sts 00 (10)

= ++
=

sts d s() 1n
j

n

j1
1 (11)

= = +x k n j n{0, 1}; 0, , , 1, , 1kj (12)

= = ++sts sta fta i m j n, , ; 1, , ; 0, , 1j i i (13)

The total costs is the total salaries paid to the actors for the duration
they are employed. Clearly, the salary costs are paid to the actors for the
times they are playing a role cannot be reduced by changing shooting
sequence. Therefore, the objective function (1) only minimizes the total
holding costs. Holding cost is the salary that should be paid to the actors
for the time that they are not playing a role but are waiting until the
next scenes, in which they are involved, are shot.

Constraints (2) and (3) guarantee that s0 and +sn 1 are shot as the first

and the last scenes, respectively. Constraints (4) and (5) impose exactly
one immediate predecessor and one immediate successor to each scene,
respectively. Constraints (6) and (7) ensures that if =x 1kj , then

= +sts sts d s()j k j . Also, these constraints do not allow sub-tour creation
in the solution. Constraints (8) and (9) ensure that each scene is shot
when required actors are available. Constraints (10) and (11) fix the
starting time of shooting scenes s0 and +sn 1, respectively. Finally,
Constraints (12) and (13) determine the type and feasible range of
variables where + indicates the set of non-negative integers.

It should be noticed that in the recently published paper by Qin
et al. (2016), a similar formulation has been developed but they have
used a non-linear constraint instead of constraints (6) and (7) as con-
straint (14). Next, they have transformed this non-linear constraint to a
set of linear constraint using four equations.

= + =
=

+

sts x sts d s k n(); 0, ,
j k j

n

j kj k k
1,

1

(14)

We claim that this equation does not work correctly. For example,
consider an instance including two actors and three scenes. The equa-
tions related to constraints (10), (11) and (14) are listed as follows.

+ + = +sts X sts X sts X sts d s()1 01 2 02 3 03 0 0 (I)

+ = +sts X sts X sts d s()2 12 3 13 1 1 (II)

+ = +sts X sts X sts d s()1 21 3 23 2 2 (III)

+ = +sts X sts X sts d s()1 31 2 32 3 3 (IV)

=sts 00 (V)

= + + +sts d s d s d s() () () 14 1 2 3 (VI)

Also, assume duration of all scenes is equal to one day. For the ar-
bitrary feasible sequence = (1, 2, 3), we have

= = = =X X X X 101 12 23 34 . If we consider these values for Eqs. (I)-(VI),
we obtain the following conflicting values resulting in an infeasible
solution.

= = = + = + =
=

sts sts sts sts sts sts sts sts; 1; 1; 0 1; 0 and
4

1 0 2 3 2 3 0 4

3. Generalized variable neighborhood search algorithm

In this section, a metaheuristic based on the general variable
neighborhood search (GVNS) is developed for the talent scheduling
problem. The GVNS performs local searches to reach local optimum in
addition to a shaking procedure to avoid getting trap in local optimum.
Moreover, GVNS employs variable neighborhood descent (VND) as a
local search that systemically explores different neighborhood struc-
tures (See Mladenović and Hansen (1997)).

This algorithm begins with an initial solution. Since any permuta-
tion of scenes is a feasible solution, the initial solution is generated
randomly. This algorithm is based on the GVNS developed by Mjirda,
Todosijević, Hanafi, Hansen, and Mladenović (2016) for the well-
known travelling salesman problem because it was very successful
implementation and also our problem is very similar to the travelling
salesman problem.

The sketch of our developed GVNS is presented in Algorithm 1 as
pseudo-code. It includes a local search procedure, called VND and de-
scribed in Section 3.2, and a shaking procedure, described in Section
3.3. It takes two parameters smax (maximum number of moves in a
shake) and tmax (time limit) as input. A random sequence X is given as
the initial solution. Next a while-loop is reaped until termination cri-
teria, consider as a time limit, is met. At each iteration of the GNVS, first
a shaking procedure is applied on the current solution and then the
VND is applied as a local search.

M. Ranjbar, A. Kazemi Computers & Industrial Engineering 126 (2018) 673–680

674

3.1. Neighborhood structures

In this section, we discuss the 8 neighborhood structures that are
used as local search operators. As the talent scheduling problem is very

similar to the traveling salesman problem (TSP), we have used the
moves that are most common in the literature of this problem, namely
2-opt and OR-opt. Since OR-opt is a special case of 3-opt, the k-opt

Table 1
The example of the talent scheduling problem.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 w a()i

a1 X X X X X 10
a2 X X X X X X 30
a3 X X X X X 5
a4 X X X X 10
a5 X X X 60
a6 X X 15
d s()j 1 3 2 1 5 1 2 1 6 3 2 1

Table 2
A solution of the example problem before applying 2-opt move.

s8 s10 s11 s9 s12 s7 s6 s4 s5 s3 s1 s2 Holding Costs

a1 X X X X X 30
a2 X X X X X X 120
a3 X X X X X 45
a4 X X X X 0
a5 X X X 0
a6 X X 0

Table 3
A solution of the example problem after applying 2-opt move.

s8 s10 s11 s9 s12 s1 s6 s4 s5 s3 s7 s2 Holding Costs

a1 X X X X X 30
a2 X X X X X X 0
a3 X X X X X 40
a4 X X X X 0
a5 X X X 0
a6 X X 0

Table 4
A solution of the example problem before applying OR-opt-3 move.

s7 s2 s3 s5 s4 s6 s12 s9 s10 s1 s11 s8 Holding Costs

a1 X X X X X 130
a2 X X X X X X 30
a3 X X X X X 40
a4 X X X X 10
a5 X X X 0
a6 X X 0

Table 5
A solution of the example problem after applying OR-opt-3 move.

s7 s2 s3 s5 s4 s6 s1 s12 s9 s10 s11 s8 Holding Costs

a1 X X X X X 30
a2 X X X X X X 0
a3 X X X X X 40
a4 X X X X 0
a5 X X X 0
a6 X X 0

Table 6
A solution of the example problem before applying COMPRESS move.

s3 s7 s2 s5 s6 s1 s12 s8 s9 s4 s11 s10 Holding Costs

a1 X X X X X 0
a2 X X X X X X 30
a3 X X X X X 45
a4 X X X X 10
a5 X X X 900
a6 X X 135

M. Ranjbar, A. Kazemi Computers & Industrial Engineering 126 (2018) 673–680

675

moves with >k 2 have not been used. In the problem at hand, the 2-opt
move is swapping two scenes together which improve the solution. OR-
opt-k move extracts k consecutive scene from the current sequence and
inserts them in a new position between two scenes (Johnson and
McGeoch (1995)). We have considered OR-opt-1, OR-opt-2, and OR-
opt-3 moves. In addition, an OR-opt move is called backward OR-opt
move if the extracted scene is inserted between the previous scenes and
it is called forward OR-opt if it is inserted between the next scenes.
Therefore, we have six different OR-opt moves, namely backward OR-
opt-1, forward OR-opt-1, backward OR-opt-2, forward OR-opt-2,
backward OR-opt-3, and forward OR-opt-3.

Consider an example including 6 actors and 12 scenes where in-
formation of parameters ai and sj are determined by the matrix ×Rm n
shown in Table 1, where cell rij is filled with the symbol “X” if ai should
participate in sj. Also, the last row and the last column indicate duration
of scenes and actors’ wage, respectively.

Tables 2 and 3 illustrate a 2-opt move on a solution of the example
problem in which position of scenes 1 and 7 are exchanged. This move
reduce the holding costs from 195 to 70 cost unit. The obtained solution
is one of the optimal solutions of the example problem.

Also, Tables 4 and 5 illustrate how forward OR-opt-3 move works.
This move extract three consecutive scenes 12, 9 and 10 and insert
them in the same order between scenes 1 and 11. This move reduces
holding costs from 210 to 70 cost unit which is an optimal solution of
the example.

The aforementioned neighborhood structures are designed for TSP
in the literature. However, the cost structure of the talent scheduling
problem is fundamentally different from TSP. Therefore, we propose a
new neighborhood structure for the talent scheduling problem, called
COMPRESS, which exploits the cost structure of the problem. For each
actor, COMPRESS tries to reduce their holding cost by simultaneously
delaying the shooting of the first presence of the actor and antedating
the shooting of the last presence of the actor.

Consider a particular actor, ai, and the sequence
=Q S s S s S s S s S{ , , , , , , ", , ¯}k k1 1

'
2 1 for shooting the scenes. In the se-

quenceQ1, capital letters represent a sequence of a subset of scenes and
small letters represent a single scene. Moreover, assume that the actor ai
plays in the scenes s1, s2, sk 1, and sk , and does not participate in any

Table 8
The APD for =t 1max s.

N m

8 10 12 14 16 18 20 22

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
26 0.000 0.000 0.000 0.000 0.079 0.077 0.000 0.006
28 0.000 0.000 0.000 0.000 0.312 0.000 0.000 0.019
30 0.000 0.000 0.000 0.000 0.222 1.020 0.097 0.000
32 0.000 0.000 0.054 0.000 0.003 0.945 1.398 0.385
34 0.000 0.189 0.000 0.314 2.352 0.428 4.493 −0.446
36 0.352 2.688 3.824 0.903 1.388 0.012 0.167 2.948
38 0.000 1.906 3.979 2.504 0.002 2.134 0.569 3.541
40 0.182 0.174 2.057 0.307 0.916 0.925 1.901 1.165
42 1.352 2.807 3.225 4.809 1.218 −0.552 1.621 −0.361
44 0.438 1.997 3.341 4.788 2.972 1.065 −0.015 1.321
46 0.548 0.945 3.600 5.360 1.829 5.990 0.428 1.905
48 4.497 4.670 2.417 2.473 0.852 4.160 2.729 2.443
50 4.017 4.575 4.302 3.404 −0.266 4.926 2.780 1.474
52 2.423 3.057 1.318 2.126 0.281 0.386 2.984 2.963
54 3.038 1.690 3.978 1.132 1.144 2.270 1.441 1.797
56 9.482 5.517 9.463 6.286 1.943 7.307 −0.714 0.813
58 11.031 12.143 3.060 3.154 6.909 −0.074 −2.372 −4.224
60 3.379 4.874 5.742 2.098 0.595 4.012 4.051 0.006
62 9.204 7.049 14.747 6.488 3.531 0.875 −1.199 0.113
64 4.907 10.632 3.835 3.408 9.345 −0.183 −0.923 −3.062

Table 9
The APD for =t 10max s.

n m

8 10 12 14 16 18 20 22

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019
30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32 0.000 0.000 0.000 0.000 0.003 0.000 0.000 −0.394
34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.919
36 0.000 0.000 0.000 0.000 0.000 −1.619 0.000 −0.338
38 0.000 0.000 0.000 0.000 0.000 0.000 −1.050 −0.104
40 0.000 0.000 0.069 0.000 0.208 0.000 −0.081 −0.660
42 0.000 0.000 0.000 0.000 −0.628 −0.764 0.200 −3.751
44 0.000 0.000 0.610 0.000 0.346 −0.795 −1.200 −1.047
46 0.035 0.000 0.187 0.015 −0.983 −1.985 −3.342 −0.182
48 0.000 0.449 −0.600 −0.577 −0.973 −0.841 −1.139 −3.015
50 0.000 0.051 0.000 1.106 −2.010 −1.618 −0.384 −2.898
52 0.000 0.085 −2.603 −0.653 −2.193 −3.098 −1.913 0.113
54 0.006 −0.093 −1.399 −3.582 −3.799 −0.908 −2.344 −2.835
56 0.000 0.000 0.867 −1.454 2.236 0.937 −3.442 −3.231
58 0.017 0.000 −1.013 −2.737 1.564 0.346 −7.403 −3.977
60 0.000 0.804 −1.505 −1.925 −1.983 −1.710 −1.503 −4.398
62 1.011 0.440 −0.936 1.628 −1.547 −3.043 −4.967 −3.322
64 0.945 −0.476 −0.481 0.685 2.139 −4.891 −2.684 −3.070

Table 7
A solution of the example problem after applying COMPRESS move.

s7 s2 s3 s5 s4 s6 s1 s12 s8 s9 s11 s10 Holding Costs

a1 X X X X X 30
a2 X X X X X X 30
a3 X X X X X 45
a4 X X X X 0
a5 X X X 0
a6 X X 0

M. Ranjbar, A. Kazemi Computers & Industrial Engineering 126 (2018) 673–680

676

scenes of the sequences S S S, , ",' and S̄. It is not important if the actor
plays in the scenes of the sequence S or not. Therefore, based on the
sequence Q ,1 the actor ai first presences when the scene s1 is shot and
their last presence is when the scene sk is shot. The COMPRESS move

tries to delay shooting scene s1 and antedating shooting scene sk as
much as possible to obtain the sequence

=Q S S s s S s s S S{ , , , , , , , ", ¯}.k k2
'

1 2 1 COMPRESS is operated when the

Table 10
The APD for =t 30max s.

n m

8 10 12 14 16 18 20 22

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.394
34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.919
36 0.000 0.000 0.000 0.000 0.000 −1.619 0.000 −0.338
38 0.000 0.000 0.000 0.000 0.000 0.000 −1.050 −0.174
40 0.000 0.000 0.000 0.000 0.000 0.000 −0.097 −0.660
42 0.000 0.000 0.000 0.000 −0.628 −0.688 0.000 −3.836
44 0.000 0.000 0.000 0.000 0.000 −0.980 −1.541 −1.684
46 0.000 0.000 0.187 0.000 −0.983 −2.402 −3.704 −0.182
48 0.000 0.000 −1.052 −0.602 −2.916 −0.870 −1.316 −3.015
50 0.000 0.000 0.000 0.000 −2.600 −1.771 −0.785 −2.998
52 0.000 0.000 −2.731 −0.646 −2.193 −3.396 −3.609 −0.840
54 0.000 −0.562 −1.569 −3.712 −3.273 −1.976 −3.225 −4.029
56 0.024 0.000 0.000 −2.069 −1.623 0.458 −3.878 −3.103
58 0.000 0.000 −1.133 −2.785 −0.578 −4.219 −8.251 −6.094
60 0.000 0.000 −2.273 −3.435 −2.003 −2.675 −4.132 −4.562
62 0.031 0.000 −1.314 0.000 −2.985 −3.750 −6.201 −4.906
64 0.012 −1.000 −5.473 −0.903 −0.976 −4.623 −4.130 −6.118

Table 11
The APD for =t 60max s.

n m

8 10 12 14 16 18 20 22

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.394
34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.919
36 0.000 0.000 0.000 0.000 0.000 −1.619 0.000 −0.338
38 0.000 0.000 0.000 0.000 0.000 0.000 −1.050 −0.174
40 0.000 0.000 0.000 0.000 0.000 0.000 −0.097 −0.660
42 0.000 0.000 0.000 0.000 −0.628 −0.764 0.000 −3.836
44 0.000 0.000 0.000 0.000 0.000 −0.899 −1.666 −1.684
46 0.000 0.000 0.000 0.000 −0.983 −2.402 −3.984 −0.182
48 0.000 0.000 −0.938 −0.602 −2.916 −0.870 −1.316 −3.015
50 0.000 0.000 0.000 0.000 −2.600 −1.837 −0.785 −3.084
52 0.000 0.000 −2.731 −0.653 −2.193 −3.191 −3.652 −1.082
54 0.000 −0.349 −1.642 −3.712 −3.573 −2.027 −3.225 −4.101
56 0.000 0.000 0.000 −2.170 −1.653 0.064 −3.878 −3.411
58 0.000 0.000 −1.205 −2.828 −0.578 −4.219 −8.461 −6.311
60 0.000 0.000 −2.273 −3.437 −1.983 −2.924 −3.678 −4.616
62 0.277 0.000 −1.796 0.000 −3.928 −3.735 −7.284 −5.283
64 0.000 −1.004 −5.480 −0.496 −1.073 −6.200 −4.934 −7.628

M. Ranjbar, A. Kazemi Computers & Industrial Engineering 126 (2018) 673–680

677

total holding costs decreases as the sequence changes from Q1 to Q2.
Note that when the actor ai participates in three scenes, s2 and sk 1 are
same, and the sequence S is empty. Similarly, when the actor ai plays in
two scenes, s s s, ,k k2 1 are same, and S and S" are empty. Note that this
move is applicable only for the actors who participate in two or more
scenes. In contrast to the previous neighborhood structures which
iterate over the scenes, the COMPRESS move iterates over the actors.
Tables 6 and 7 indicates an example of the COMPRESS move over the
example problem. The holding costs of the solution presented in Table 6
is 1120 cost unit. If we apply the COMPRESS move to a5, s3 is inserted
immediately before s5 and s4 is inserted immediately after s5. This move
reduces holding costs from 1120 to 105 cost unit.

3.2. Local search

In this section, the variable neighborhood descent (VND) procedure,
which is used as local search in GVNS, is described. This VND sys-
temically explores the neighborhoods that are mentioned in the pre-
vious section. The different arrangements of the neighborhood struc-
tures are examined and results are presented in the computational
results section. The VND procedure uses a first improvement strategy
and changes the neighborhood sequentially, implying it jumps to the
next neighborhood structure if there is no improvement in the current
neighborhood structure (Todosijević, Mjirda, Mladenović, Hanafi, &
Gendron, 2017). On the other hand, it starts from the first neighbor-
hood structure again if an improvement has been found. The algorithm
is stopped whenever no improvement is found in the all neighborhood
structures in an iteration. The details of the VND are presented in the
Algorithm 2.

Table 12
The APD for =t 180max s.

n m

8 10 12 14 16 18 20 22

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.394
34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.919
36 0.000 0.000 0.000 0.000 0.000 −1.619 0.000 −0.338
38 0.000 0.000 0.000 0.000 0.000 0.000 −1.050 −0.174
40 0.000 0.000 0.000 0.000 0.000 0.000 −0.097 −0.660
42 0.000 0.000 0.000 0.000 −0.628 −0.764 0.000 −3.836
44 0.000 0.000 0.000 0.000 0.000 −0.980 −1.666 −1.684
46 0.000 0.000 0.000 0.000 −0.983 −2.402 −3.984 −0.182
48 0.000 0.000 −1.052 −0.602 −2.916 −0.870 −1.316 −3.015
50 0.000 0.000 0.000 0.000 −2.600 −1.837 −0.785 −3.084
52 0.000 0.000 −2.731 −0.840 −2.193 −3.396 −3.652 −1.082
54 0.000 −0.562 −1.642 −3.712 −3.873 −2.166 −3.225 −4.101
56 0.000 0.000 0.000 −2.170 −1.686 0.064 −3.901 −3.440
58 0.000 0.000 −1.197 −2.868 −0.578 −4.219 −8.461 −6.262
60 0.000 0.000 −2.196 −3.437 −2.003 −3.196 −4.132 −5.010
62 0.000 0.000 −1.796 0.000 −3.934 −3.959 −7.284 −5.288
64 0.000 −1.004 −5.923 −1.125 −1.084 −6.276 −4.940 −7.629

M. Ranjbar, A. Kazemi Computers & Industrial Engineering 126 (2018) 673–680

678

3.3. Shaking procedure

In order to escape from local optimum traps, a shaking procedure is
employed within the solution algorithm. The shaking procedure per-
forms s times a random 2-opt move. The details of the shaking proce-
dure are presented in the Algorithm 3.

4. Computational experiments

We have coded our developed GVNS algorithm in C++ using the
Microsoft Visual C++ 2010 compiler and performed all computational
experiments on a PC Intel® Core ™ i7@ 3.1 GHz processor with 4 GB
RAM.

4.1. Benchmark instances and parameter setting

In order to evaluate our developed GVNS algorithm, we performed
computational results using two benchmark data sets, named Types 1
and 2. The Type 1 data set was introduced by Cheng et al. (1993) and
Smith (2005) and includes seven instances, namely MobStory, film103,
film105, film114, film117, film118 and film119. The size of these in-

stances varies from 18×8 (18 scenes by 8 actors) to 28×8. Also, we
used the Type 2 data set introduced by de la Banda et al. (2011). The
size of instances of the Type 2 data set varies from 16×8 to 64× 22,
including 200 different combinations for the number of scenes and the
number of actors and 20,000 instances (100 random instances for each
combination is generated). Both data set and some of the solutions can
be downloaded from http://www.tigerqin.com/publicatoins/talent-

Table 14
Impact of the neighborhood structures and moves.

Base COMPRESS 3-OR-opt 2-OR-opt 1-OR-opt 2-opt

(I) APD 0.011 0.016 0.017 0.018 0.032 0.014
MAX PD 1.058 1.493 1.931 3.187 3.097 4.867
MIN PD 0.000 0.000 0.000 0.000 0.000 0.000
#Positive PDs 9 12 18 18 45 11
Zero PDs 813 810 804 804 777 811
Negative PDs 0 0 0 0 0 0

(II) APD −0.872 −0.867 −0.860 −0.863 −0.828 −0.869
MAX PD 1.058 1.493 1.931 3.187 3.097 4.867
MIN PD −20.173 −20.173 −20.173 −20.173 −20.173 −20.173
#Positive PDs 9 12 19 18 46 11
Zero PDs 815 812 806 806 778 813
Negative PDs 176 176 175 176 176 176

(III) APD −4.952 −4.936 −4.910 −4.930 −4.800 −4.931
MAX PD 0.000 0.000 1.355 0.000 0.175 0.000
MIN PD −20.173 −20.173 −20.173 −20.173 −20.173 −20.173
#Positive PDs 0 0 1 0 1 0
Zero PDs 2 2 2 2 1 2
Negative PDs 176 176 175 176 176 176

Table 13
Summary comparative results.

tmax(seconds) 1 10 30 60 180

(I) APD 2.107 0.201 0.018 0.011 0.001
MAX PD 41.242 10.443 2.407 1.058 0.465
MIN PD 0.000 0.000 0.000 0.000 0.000
#Positive PDs 347 90 24 9 3
Zero PDs 475 732 798 813 819
Negative PDs 0 0 0 0 0

(II) APD 1.709 −0.519 −0.830 −0.872 −0.892
MAX PD 41.242 10.903 2.407 1.058 0.465
MIN PD −15.086 −19.347 −19.460 −20.173 −20.173
#Positive PDs 434 102 25 9 3
Zero PDs 476 734 800 815 821
Negative PDs 90 164 175 176 176

(III) APD −0.126 −3.848 −4.749 −4.952 −5.015
MAX PD 15.429 10.903 1.503 0.000 0.000
MIN PD −15.086 −19.347 −19.460 −20.173 −20.173
#Positive PDs 87 12 1 0 0
Zero PDs 1 2 2 2 2
Negative PDs 90 164 175 176 176

M. Ranjbar, A. Kazemi Computers & Industrial Engineering 126 (2018) 673–680

679

http://www.tigerqin.com/publicatoins/talent-scheduling-problem

scheduling-problem, provided by Qin et al. (2016). For each combi-
nation of n and m in Type 2 data set, the best known solutions of only 5
out 100 instances are reported, resulting in 1000 test instances. In order
to compare our results with already developed solution approaches in
the literature, we consider only 1000 instances with available solutions
from the Type 2 data set.

There are two parameters in our GVNS, i.e. smax and tmax . We con-
sider =smax

n
2 using fine tuning and report our results for

=t 1, 10, 30, 60max and 180 s.

4.2. Comparative results

Since test instances of the Type 1 data set are easy, our developed
GVNS is able to find the optimal solutions of all these instances in less
than 0.1 s. Thus, the challenging instances of Type 2 are more suitable
for comparative results. Qin et al. (2016) have reported that solutions of
822 out of 1000 instances of Type 2 are optimal and solutions of 178
other instances are only upper bounds.

The comparative results, based on average percent deviation (APD),
are presented for =t 1, 10, 30, 60 and 180max s in Tables 8–12,
respectively. The percent deviation (PD) is calculated as

× 100obtained solution by GVNS best known solution
best known solution and APD is the average of

percent deviations over 5 test instances for each combination of n and m
of Type 2 data set. It should be noticed that the most of best known
solutions in the literature are obtained by Qin et al. (2016). The cells
indicate negative APD imply improvement in the best found solutions.
As it was expected, by increasing the CPU run time, the APD is de-
creased for most combinations of n and m. Although Qin et al. (2016)
develop a branch and bound algorithm and do not report their results
within time limits, by comparing the following tables with Table 12 of
them, we fairly conclude that our developed algorithm is more efficient
especially for larger size instances.

Table 13 presents the summary comparative results based in three
sets of instances. The results presented in the row (I) is based on 822
instances of Type 2 data set for which optimal solutions are available. In
the row (II), the best found solutions of all 1000 test instances of Type 2
data set are considered while in the row (III) only 178 test instances, for
which optimal solutions are not found in the literature, are considered.
The results of Table 13 indicates that our GVNS is really efficient be-
cause it is able to find optimal solutions of 819 out of 822 instances
(99.6%) while for the three remaining test instances the APD is around
0.4. Also, GVNS has been able to improve the best found solutions of
176 out of 178 instances (98.9%) with non-optimal solution where the
average improvement is around 5 percent.

4.3. Impact of neighborhood structures

In this section, we analyze the impact of different moves based on
the different neighborhood structure, described in Section 3.1. In order
to investigate the impact of a move, we omit it from the GVNS and run
the algorithm to study the change of APD. Since for most of the in-
stances, noticeable improvement is not obtained after 60 s, we assume

=t 60max s in this section. The new results are presented in Table 14 in
which the column “Base” indicates the condition for which all moves
are included in GVNS. Also, for example, the column “COMPRESS”
presents the condition for which the COMPRESS move is excluded from
GVNS. Furthermore, the columns x-OR-opt moves imply excluding both
forward and backward types of that moves from the algorithm. The
general structure of Table 14 is similar to Table 13. The results of

Table 14 indicates that excluding each move from GVNS has a negative
impact on the performance of the algorithm but the 1-OR-opt has the
most significant impact.

5. Conclusions and future research directions

In this paper, we consider the talent scheduling problem and modify
a previously developed formulation of the problem and develop an
efficient metaheuristic algorithm based on the generalized variable
neighborhood search algorithm for the problem. Our developed GVNS
is able to find optimal solutions of 99.6% of test instances for which
optimal solutions have been reported in the literature. Also, it improves
the best known solutions of 98.9% of test instances for which only
upper bounds have been informed in the previous researches. These
computational results indicate that our developed GVNS is efficient and
outperforms already developed algorithms in the literature for the ta-
lent scheduling problem.

For the future research, we suggest to extend our GVNS for the ta-
lent scheduling problem by considering more realistic assumptions such
as setup times between scenes or stochastic durations for scenes.
Incorporating the realistic assumptions make the talent scheduling
problem even more complicated. Therefore, developing additional so-
lution algorithms to the talent scheduling problem seems to be an in-
teresting research topic to solve more broad classes of the problem.

Acknowledgement

This work is supported by Ferdowsi University of Mashhad as a
research project with number 43212 and date 13-2-2017.

References

Adelson, R. M., Norman, J. M., & Laporte, G. (1976). A dynamic programming for-
mulation with diverse applications. Operational Research Quarterly (1970-1977),
27(1), 119–121 Part1.

Bomsdorf, F., & Derigs, U. (2008). A model, heuristic procedure and decision support
system for solving the movie shoot scheduling problem. OR Spectrum, 30(4),
751–772.

Cheng, T. C. E., Diamond, J. E., & Lin, B. M. T. (1993). Optimal scheduling in film pro-
duction to minimize talent hold cost. Journal of Optimization Theory and Applications,
79(3), 479–492.

De la Banda, M. G., Stuckey, P. J., & Chu, G. (2011). Solving talent scheduling with
dynamic programming. INFORMS Journal on Computing, 23(1), 120–137.

Fink, A., & Voß, S. (1999). Applications of modern heuristic search methods to pattern
sequencing problems. Computers & Operations Research, 26(1), 17–34.

Johnson, D. S., & McGeoch, L. A. (1995). The traveling salesman problem: A case study in
local optimization. In E. H. L. Aarts, & J. K. Lenstra (Eds.). Local Search in
Combinatorial Optimization (pp. 215–310). New York: Wiley.

Mjirda, A., Todosijević, R., Hanafi, S., Hansen, P., & Mladenović, N. (2016). Sequential
variable neighborhood descent variants: An empirical study on the traveling
salesman problem. International Transactions in Operational Research, 24(3), 615–633.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers and
Operations Research, 24, 1097–1100.

Nordström, A. L., & Tufekci, S. (1994). A genetic algorithm for the talent scheduling
problem. Computers & Operations Research, 21(8), 927–940.

Qin, H., Zhang, Z., Lim, A., & Liang, X. (2016). An enhanced branch-and-bound algorithm
for the talent scheduling problem. European Journal of Operational Research, 250(1),
412–426.

Smith, B. M. (2003). Constraint programming in practice: Scheduling a rehearsal. APES group
Research report apes-67-2003.

Smith, B. M. (2005). Caching search states in permutation problems. In P. van Beek (Vol.
Ed.), Lecture Notes in Computer Science: . Vol. 3709. Berlin, Heidelberg: Springer.

Todosijević, R., Mjirda, A., Mladenović, M., Hanafi, S., & Gendron, B. (2017). A general
variable neighborhood search variants for the travelling salesman problem with draft
limits. Optimization Letters, 11(6), 1047–1056.

M. Ranjbar, A. Kazemi Computers & Industrial Engineering 126 (2018) 673–680

680

http://www.tigerqin.com/publicatoins/talent-scheduling-problem
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0005
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0005
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0005
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0010
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0010
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0010
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0015
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0015
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0015
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0020
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0020
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0025
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0025
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0030
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0030
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0030
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0035
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0035
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0035
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0040
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0040
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0045
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0045
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0050
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0050
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0050
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0055
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0055
http://refhub.elsevier.com/S0360-8352(18)30505-9/h9700
http://refhub.elsevier.com/S0360-8352(18)30505-9/h9700
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0060
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0060
http://refhub.elsevier.com/S0360-8352(18)30505-9/h0060

	A generalized variable neighborhood search algorithm for the talent scheduling problem
	Introduction
	Problem statement and formulation
	Generalized variable neighborhood search algorithm
	Neighborhood structures
	Local search
	Shaking procedure

	Computational experiments
	Benchmark instances and parameter setting
	Comparative results
	Impact of neighborhood structures

	Conclusions and future research directions
	Acknowledgement
	References

