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Abstract
We used the “valon model” to study the valence quarks polarization inside nucleon at Next-
to-Next-to-leading order (NNLO) approximation. The results show a good agreement with
available experimental data and also with those from global analysis presented in Taghavi-
Shahri et al. (Phy. Rev. D 93, 114024, 2016).
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1 Introduction

Understanding the internal structure of matter has been one of the main goals in high energy
physics. Electron - proton deep inelastic scattering shows that the proton consists of partons.
Each parton carries a specific fraction of the nucleon’s momentum and spin . Now we know
that only 40 percent of the proton’s spin comes from its constituent quarks, and the rest of
the spin originating from gluons and orbital angular momentum of quarks and gluons. The
main question is that “how the spin of the nucleon is shared between its constituent quarks
and gluons?”. To answer this question we have to study the “polarized parton distribution
functions” or PPDFs.

In this paper we intend to investigate the polarized parton distribution functions. The
Polarized parton distribution function is defined as the probability density for finding a
parton with a longitudinal momentum fraction x of its parent nucleon’s momentum and
spin align/ anti-align to the nucleon’s spin. It measures the net helicity of partons in a
longitudinally polarized nucleon.
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These PPDFs set can be calculated from the DGLAP evolution equations at various per-
turbation approximation. The polarized parton distribution functions have been calculated
by different global analyses groups using experimental data [1–13] and they have been
computed with various phenomenological models [14–16]. Recently, the polarized splitting
functions was proposed at NNLO approximation in Mellin space in [17]. Therefore, we can
investigate the PPDFs at this approximation.

In this paper we want to calculate the polarized valence quark distributions and the non-
singlet spin structure function using the valon model. The valon model is a phenomenologi-
cal model originally was introduced by R.C. Hwa [18] in the early 1980s. It was revitalized
later by Hwa [19] and others [20–22] and developed to the polarized cases at NLO approxi-
mation [23–26]. In this model, a hadron is a bound state of two or three “valons”. Each valon
includes a valence quark with its associated sea quarks and gluons. The quantum number
of the valon is the same as the quantum number of its valence quark. These valons carry all
the hadron’s momentum and spin.

The probability of finding a valon with momentum fraction y of the hadron’s momentum
defines the valon distribution function. These distributions are Q2 independent and univer-
sal. They can be considered as the wave- function squared of the constituent quarks in the
hadron.

At low Q2(Q2 < 0.3GeV 2), the structure of valons can not be determined. It means at
this range of energy, the hadron is only a bound state of three valence quarks that carry all the
hadron’s momentum and spin. At high Q2, the structure of valon can be resolved. Solutions
of the DGLAP evolution equations in each valon with suitable initial input densities in the
valon, led us to the Q2 dependence of the parton distribution functions in the valon and then
in the hadron.

The paper is organized as follows. In Section 2, we briefly review the solutions of the
DGLAP evolution equations at NNLO approximation in Mellin space. Then in Section 3,
we utilize the valon model to calculate the valence quarks polarization and the non- singlet
spin structure function. The results of our calculations are presented in Section 4. Finally
our conclusions are given in Section 5.

2 The DGLAP Evolution Equations at NNLO Approximation

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [27–30] are
essential tool to study the Q2- and x- dependence of the parton distribution functions and
the hadron’s structure. The Q2 variable is the virtuality of the exchanged vector bozon in
the deep inelastic scattering process and “x” is the Bjorken variable. The general form of
the DGLAP evolution equations is:

∂Δf (x,Q2)

∂lnQ2
= Δf (x, Q2) ⊗ ΔPij (x, Q2) (1)

with

a(x) ⊗ b(x) =
∫ 1

x

dy

y
a(y)b

(
x

y

)
(2)
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where Δf (x, Q2) is the polarized parton distribution functions and ΔPij (x,Q2) are known
as the splitting functions. The spliting functions at different perturbative approximations are
expanded as follows:

ΔPij (x, αs(Q
2)) = ΔP LO

ij (x) + αs(Q
2)

2π
ΔP NLO

ij (x) +
(

αs(Q
2)

2π

)2

ΔP NNLO
ij (x) + ....

(3)
We start with the solutions of the NNLO DGLAP evolution equations in the Mellin space
[31]. The related splitting functions at NNLO approximation can be found in Ref. [17]. The
Mellin moments are defined as:

Δf (N) =
∫ 1

0
Δf (x)xN−1dx (4)

The main advantage of working in moment space is that it reduces the convolution product
⊗ (Eq. (2.2)) into an ordinary product.

3 Study the Valence Quark Polarization in the “Valon” Model

We devoted this section to the details of the valence quark polarization in the valon model.
In the valon representation of hadrons, the PPDFs are given by:

ΔqP
i (x,Q2) =

∑ ∫ 1

x

dy

y
ΔGP

valon(y)Δqvalon
i

(
x

y
,Q2

)
(5)

where the Δqvalon
i (x/y,Q2) in (5) is the polarized parton distribution inside a valon.

ΔGP
valon(y) is the helicity distribution of the valon in the parent hadron i.e (probability

of finding the polarized valon inside the polarized hadron). ΔG
p

valon(y) is related to the
unpolarized valon distribution, Gp

j (y) by:

ΔG
p
j (y) = ΔFj (y)G

p
j (y) = Njy

αj (1 − y)βj (1 + ajy
0.5 + bjy + cj y

1.5 + djy
2) (6)

where j index refers to the U and D type valons [18, 22]. The related free parameters are
calculated in [23] and they are summarized in Table 1. They are also shown in Fig. 1.

The Mellin moment of the polarized valon distributions are defined as:

ΔG
p
U,D(N) =

∫ 1

0
yn−1ΔG

p
U,D(y)dy (7)

ΔG
p
U,D(N) correspond to the valon helicity densities in the Mellin space for the U and D

valons. Before we start our discussion, it is suitable to define our coefficients and conven-
tions that we will used them in the rest of the paper [32]. The Running coupling constant is
defined at Next-to-Next-to leading order as follows [32]:

as(Q
2) = 1

β0LΛ

− 1

(β0LΛ)2
b1 lnLΛ + 1

(β0LΛ)3

[
b21(ln

2 LΛ − lnLΛ − 1) + b2

]
(8)

Table 1 Numerical values for parameters of (6) for polarized valon distributions inside proton [23]

valon(j) Nj αj βj aj bj cj dj

U 3.44 0.33 3.58 −2.47 5.07 −1.859 2.780

D −0.568 −0.374 4.142 −2.844 11.695 −10.096 14.47
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Fig. 1 yΔGU (y) and yΔGD(y)

as a function of y
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where

LΛ = ln

(
Q2

Λ2
QCD

)
(9)

The coefficients of the beta function in MS scheme (β0, β1 and β2) are [32] :

β0 = 11 − 2

3
nf ;

β1 = 102 − 38

3
nf ;

β2 = 2857

2
nf − 5033

18
nf + 325

54
n2f

(10)

We also have b1 = β1
β0

and b2 = β2
β0
. In the valon model, we first calculate the polarized

parton distributions inside each valon (with suitable initial inputs). Then we can calculate
these distributions in the proton. The solutions of the DGLAP evolution equations at NNLO
approximation for the polarized valence quark distributions in the Mellin space are given
by:

Mv
NS(N,Q2) =

(
as

a0

)−r0

(1 − (as − a0) r−
1 + 1

2
(as − a0)

2(r−
1 )2

+1

2
(a20 − a2s ) rv

2 ) Mv
NS(N,Q2

0) (11)
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ΔP
−(1)
NS , ΔP

v(2)
NS are the splitting functions and the parameters r0, r

−
1 and rv

2 are as follows
[17, 33, 34] ,

r0 = ΔP
(0)
qq (N)

β0

r−
1 = ΔP

−(1)
NS (N)

β0
− b1r0

rv
2 = ΔP

v(2)
NS (N)

β0
− b1r0 − b2r

−
1 ; (12)

Finally, the valence quark distributions inside proton are given by:

Δuv(N,Q2) = 2 Mv
NS(N,Q2) × ΔG

p
U(N)

Δdv(N,Q2) = Mv
NS(N,Q2) × ΔG

p
D(N) (13)

The non- singlet spin structure function gNS
1 in the moment space at NNLO approximation

is as follows:

M[gNS
1 , N,Q2] =

(
1

6

)[
(1 + asΔC1

q + a2s ΔC
(2)
NS)

(
Δuv(N,Q2) − Δdv(N,Q2)

)]

(14)
Where ΔC1

q , ΔC
(2)
NS are the corresponding coefficient functions [34, 35].

We work in MS scheme, with ΛQCD = 0.252GeV 2 and Q2
0 = 0.283GeV 2. Our initial

input density at Q2
0 is the Dirac delta function δ(z − 1). Then, the Mellin transform of this

initial input, being equal to one. So we choose Mv
NS(N,Q2

0) = 1. This means that when
Q2 approaches to Q2

0 , the nucleon can be considered as a bound state of three valence
quarks which carry all of the nucleon’s momentum and spin. Therefore, at this scale of Q2

0
and when we solve the DGLAP evolution equation in the valon, there is only one valence
quark in each valon and this valence quark carry all of the valon’s momentum and spin.
Therefore, we choose the initial input density in the valon as δ(z − 1). In our calculations,
the sea quarks polarization is consistent with zero . This prediction was already suggested
in Ref [23] and it was confirm by experiment later [36, 37].

We used (13) to compute the valence quark polarization in moment space; eventually
we get help from Jacobi polynomial approach for gaining of the final result at x- space.
The Jacobi polynomials expansion method is one of the simplest and fastest algorithm to
calculate the structure function from its Mellin moments to x- space. In this method, one
can easily develop the polarized structure functions, xg1(x,Q2), in terms of the Jacobi
polynomials, Θα,β

n (x), as follows [38, 40, 41]

xgNS
1 (x,Q2) = xβ(1 − x)α

Nmax∑
n=0

an(Q
2) Θα,β

n (x) , (15)

where n is the order of the expansion terms, Nmax is the maximum order of the expansion
which normally can be set to 7 and 9. The parameters α and β are a set of free parameters
which normally set to 3 and 0.5, respectively. The Q2–dependence of the structure functions
are encoded in the Jacobi polynomials moments, an(Q

2). The x-dependence will be pre-
sented by the weight function xβ(1 − x)α and the Jacobi polynomials Θ

α,β
n (x) which can
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be written as,

Θα,β
n (x) =

n∑
j=0

c
(n)
j (α, β) xj , (16)

where the coefficients c
(n)
j (α, β) are combinations of Gamma functions in term of n, α and

β. The above Jacobi polynomials have to the following orthogonality relation,

∫ 1

0
dx xβ(1 − x)α Θ

α,β
k (x)Θ

α,β
l (x) = δk,l . (17)

Therefore, one can obtain the Jacobi moments, an(Q
2), by using the above orthogonality

relations as,

an(Q
2) =

∫ 1

0
dx xgNS

1 (x,Q2) Θ
α,β
k (x)

=
n∑

j=0

c
(n)
j (α, β)M[xgNS

1 , j + 2] , (18)

where the Mellin transformM[xgNS
1 , N ] introduced as,

M[xgNS
1 ,N] ≡

∫ 1

0
dx xN−2 xgNS

1 (x,Q2) . (19)

Fig. 2 xΔuv(x,Q2) and
xΔdv(x,Q2) as a function of x
for Q2 = 5Gev2
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Fig. 3 xΔuv + xΔdv in the valon model and comparison with experimental data [42–45], TKAA global
analyses [38] and those obtained at NLO approximation [25]

Finally the non- singlet spin structure function xgNS
1 (x,Q2) can be written as follows,

xgNS
1 (x,Q2) = xβ(1 − x)α

Nmax∑
n=0

Θα,β
n (x)

×
n∑

j=0

c
(n)
j (α, β)M[xgNS

1 , j + 2] . (20)

4 Results

This section is devoted to our results. We can calculate the polarized valence quark distri-
butions in the Mellin space by using (13); then we use the Jacobi polynomial approach for

Fig. 4 Integral of Δuv + Δdv as
function of low x limit of
integration and its comparison
with experimental data from
COMPASS Collaboration [44]
and those obtained at NLO
approximation [25]
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Fig. 5 xgNS
1 (x,Q2) as a function of x for different values of Q2

gaining of the valence quark polarization and the non-singlet spin structure function as a
function of x. In Fig. 2, we show our results for the polarized distribution functions of the
valence “u” and “d” quarks, xΔuv(x,Q2) and xΔdv(x,Q2) for Q2 = 5Gev2 in compar-
ision with those obtainin the valon model at NLO approximation and those obtained from
KATAO and TKAA global analyses [23, 38, 39].

In Fig. 3, our results for xΔuv + xΔdv are compared with experimental data [42–45]
and recent results from global analyses [38]. We compute the integral of Δuv + Δdv over
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Fig. 6 The results of xgNS
1 (x,Q2) for a different values of Q2 . We compared our results with HERMES

experimental data [36], TKAA global fit [38] and those obtained at NLO approximation [23]
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Fig. 7 xgNS
1 which is compared with experimental data from SMC, COMPASS and HERMES Collabora-

tions [36, 37, 46–51] NS model [52], TKAA model[38] and NLO results [23] at Q2 = 5GeV 2

the range of 0.006 < x < 0.7 as a function of low x limit of integration at Q2 = 10GeV 2.
Our results are compared with experimental data that released by COMPASS Collaboration
[44] in Fig. 4.

The non- singlet spin structure function gNS
1 at NNLO approximation are shown in Fig. 5.

In Fig. 6 we compared our results for xgNS
1 (x, Q2) with HERMES data [36] and TKAA

global analyses [38]. Finally, in Fig. 7 the x dependence of xgNS
1 is shown in compari-

son with experimental data from SMC, COMPASS, HERMES [36, 37, 46–51], NS model
[52] and TKAA model[38] at Q2 = 5GeV 2. We also compared our new results at NNLO
approximation with those obtained at NLO approximation [23, 25] in Figs. 3, 4, 5, 6 and 7.

5 Summary and Conclusions

We have applied the so- called valon model for calculating the polarized valence quark
distributions and the non- singlet spin structure function of the proton at NNLO approx-
imation. Our results have nice agreement with all available experimental data and exist
phenomenological models. It also shows that how such a simple model can well rehabilitate
the experimental data and therefor provides a good physical picture of the nucleons.
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