
Computers and Mathematics with Applications 76 (2018) 2011–2021

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Weighted and flexible versions of block CMRH method for
solving nonsymmetric linear systems with multiple
right-hand sides
S. Amini, F. Toutounian *
Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Iran

a r t i c l e i n f o

Article history:
Received 4 October 2017
Received in revised form 18 July 2018
Accepted 29 July 2018
Available online 18 August 2018

Keywords:
Block CMRH method
Block Krylov subspace
Weighting strategy
Flexible preconditioning
Multiple right-hand sides

a b s t r a c t

Block Krylov subspace methods are the most popular algorithms for solving large non-
symmetric linear systems with multiple right-hand sides. One of them is the block CMRH
method. This method generates a (non orthogonal) basis of the Krylov subspace through
the block Hessenberg process. To accelerate the convergence of the block CMRH method,
we will introduce two new methods. First, we present the block CMRH method with
weighting strategy. In thismethod, the block CMRHmethoduses a different product at each
restart. Second, we introduce a flexible version of the block CMRH algorithm that allows
varying preconditioning at every step of the algorithm. Numerical experiments illustrate
the benefits of the presented methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Block iterative methods are used for large systems with multiple right-hand sides of the form

AX = B, (1)

where A ∈ Rn×n is a large nonsymmetric real matrix and X and B are rectangular matrices of dimension n × s, and s is of
moderate size (i.e., s ≪ n). This problem arises in many areas of science and engineering, such as computational biology,
electromagnetic structure computation, control theory, and so on [1–4].

WhenA is a large sparsematrix, block iterativemethods, e.g., block CGmethod [5], blockGMRESmethod [6], block Lanczos
method [7], block QMR method [1], block BiCGSTAB method [8], block LSQR method [9], the block OSGCR(s)/OSOmin(s,k)
methods [10,11], or block CMRHmethod [12,13] are natural candidates for solving (1). The purpose of these block methods
is to provide the solutions of a multiple right-hand sides system faster than their single right-hand side counterparts. They
are generally more efficient when the matrix of the linear system is relatively dense or when preconditioners are used.

The global methods form another family that can be applied to the solution of multiple linear systems. These methods
are based on the use of a global projection process onto a matrix Krylov subspace and they are particularly suitable for
sparse multiple linear systems. References on this class include global FOM and GMRES methods [14,15], global BCG and
BiCGSTABmethods [16,17], global CGS algorithm [18,19], Gl-LSQR algorithm [20], Gl-BCR and Gl-CRS algorithms [21], global
Hessenberg and CMRH methods [22], and global SCD algorithm [23]. In order to improve the convergence property of the
Krylov subspace methods the weighted and flexible versions of these methods have been proposed. The weighting strategy
has been successfully developed for solving linear systems [24] and matrix equations [24–28]. Several flexible versions of

* Corresponding author.
E-mail addresses: s.amini@mail.um.ac.ir (S. Amini), toutouni@math.um.ac.ir (F. Toutounian).

https://doi.org/10.1016/j.camwa.2018.07.045
0898-1221/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2018.07.045
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2018.07.045&domain=pdf
mailto:s.amini@mail.um.ac.ir
mailto:toutouni@math.um.ac.ir
https://doi.org/10.1016/j.camwa.2018.07.045

2012 S. Amini, F. Toutounian / Computers and Mathematics with Applications 76 (2018) 2011–2021

Krylov SubspaceMethods have been implemented successfully. These include the flexibleGMRESmethod [29], GMRESR [30],
flexible CG [31–33], flexible QMR [34], flexible BiCG and flexible BiCGSTAB [35]. See also [36] for a general theory where the
preconditioner itself is a Krylov subspace method.

For nonsymmetric problems, the block CMRH [12,13] is one such method, but it may need restarting. Here we give two
new versions of the restarted block CMRHmethod to improve convergence. First to accelerate the convergence of the block
CMRHmethod we apply a weighting technique. We introduce a weighted block Hessenberg process for constructing a basis
of the block Krylov subspace by using the weighting matrix D. Second we propose a flexible version of the block CMRH.

Throughout the paper, all vectors and matrices are assumed to be real. For a matrix X , ∥X∥F denotes the Frobenius norm
∥X∥F =

√
tr(XTX). For a matrix V ∈ Rn×s, the block Krylov subspace Kk(A, V) is the subspace generated by the columns

of the matrices V , AV , A2V , . . . , Ak−1V . Some MATLAB notation is used; for instance, Hk(i + 1 : m + 1, 1 : m) denotes the
portion ofHk with rows from i+1 tom+1 and columns from 1 tom. Finally, 0m×n and Is will denote the zero and the identity
matrices in Rm×n and Rs×s, respectively.

As in [37], we need the definition of the left inverse of a rectangular matrix. Let Zk be the n × k matrix. We partition this
matrix as follows:

Zk =

[
Z1k
Z2k

]
,

where Z1k is a k × k square matrix. If the matrix Z1k is nonsingular, we define Z L
k a left inverse of Zk by

Z L
k =

[
Z1−1

k , 0k×(n−k)
]
.

The structure of the paper is as follows. In Section 2,we briefly describe the block CMRHmethod for solving nonsymmetric
linear systems with multiple right-hand sides. A weighted version of the block CMRH algorithm is presented in Section 3.
In Section 4, we propose the fixed and flexible preconditioned block CMRH algorithm. In Section 5, we demonstrate the
effectiveness of the proposed methods. Finally, conclusions are summarized in Section 6.

2. Block CMRHmethod

The block CMRH method [12,13] is a generalization of the well-known CMRH method [37]. The essential component of
the block CMRHmethod is the block Hessenberg process. Let X0 ∈ Rn×s be an initial matrix for the solution of system (1) and
R0 = B − AX0 its residual. The block Hessenberg process computes a unit trapezoidal matrix Lm = [L1, L2, . . . , Lm], whose
matrices Li ∈ Rn×s, for i = 1, 2, . . . ,m, form a basis of the Krylov subspaceKm(A, R0) = span{R0, AR0, . . . , Am−1R0}, by using
the following formulas:⎧⎪⎨⎪⎩

R0 = L1U1,

Lk+1Hk+1,k = ALk −

k∑
j=1

LjHj,k, for k = 1, . . . ,m,
(2)

where the unit trapezoidal matrix Lk+1 and the upper triangular matrixHk+1,k ∈ Rs×s are determined by the LU factorization
of W = ALk −

∑k
j=1LjHj,k, and the matrices Hj,k ∈ Rs×s are determined such that

Lk+1 ⊥ E1, E2, . . . , Ek, (3)

where Ei, for i = 1, 2, . . . , k, is the n × s matrix which is zero except for the ith s rows, which are the s × s identity matrix.
Let Hm ≡ (Hi,j)1≤i≤m+1,1≤j≤m be an (m + 1)s × ms block upper Hessenberg matrix. From the block Hessenberg process, we
can deduce the relation

ALm = Lm+1Hm = LmHm + Lm+1Hm+1,mET
m, (4)

where Hm is the ms×ms matrix obtained from Hm by deleting the last s rows and Em is the ms×s matrix which is zero
except for themth s rows, which are the s × s identity matrix.

The block Hessenberg process can breakdown if the LU factorization of R0 or W does not exist [13]. For avoiding such a
breakdown, we use pivoting strategy.

The block CMRH method constructs an approximate solution of the form XBC
m = X0 + LmY BC

m , where Y BC
m is the solution

of the minimizing problem

min
Y∈Rms×s

∥E1U1 − HmY∥F , (5)

where E1 ∈ R(m+1)s×s is the first s columns of the identity matrix.
In Algorithm 1, we summarize the restarted block CMRH method with pivoting strategy (denoted by BCMRH(m)). More

detail can be found in [13]. We mention that the block CMRH algorithm given in [12] is similar to the Algorithm 1. The main
difference between these algorithms is the generation of the matrices Hm and W in the block Hessenberg processes.

We end this section by giving a relation between the residual norms of the block CMRH method and the block GMRES
method denoted by ∥RBC

m ∥F and ∥RBG
m ∥F , respectively, which is stated in the following lemma [13].

S. Amini, F. Toutounian / Computers and Mathematics with Applications 76 (2018) 2011–2021 2013

Algorithm 1 BCMRH(m)
1. Start: Choose X0, Compute R0 = B − AX0.
2. Block Hessenberg process for constructing the basis Lm and the upper Hessenberg matrix Hm:
4. Compute the LU factorization of R0 with pivoting strategy, i.e., P1R0 = L̄1U1.
5. Set L1 = PT

1 L̄1, L1 = L1, and H0 = φ.
6. Set q = 01×(m+1)s .
7. For j = 1, . . . , s
8. Find the row index t such that PT

1 (t, j) = 1. Set q(j) = t .
9. end
10. For k = 1, . . . ,m
11. Compute T = ALk.
12. Set E = T (q(1 : ks), 1 : s), F = Lk(q(1 : ks), 1 : ks).
13. Compute Hk = F−1E.
14. ComputeW = T − LkHk.
15. Compute the LU factorization ofW with pivoting strategy, i.e., Pk+1W = L̄k+1Uk+1.
16. Set Lk+1 = PT

k+1L̄k+1 and Lk+1 = [Lk, Lk+1].
17. For j = 1, . . . , s
18. Find the row index t such that PT

k+1(t, j) = 1. Set q(ks + j) = t
19. end
20. Dk = Uk+1,

21. Set Hk =

[
Hk−1 Hk
Os×(k−1)s Dk

]
22. end
23. Approximate solution:
24. Determine Y BC

m as the solution of minY∈Rms×s ∥ E1U1 − HmY ∥F .
25. Compute the approximation solution XBC

m = X0 + LmY BC
m .

26. Compute RBC
m = B − AXBC

m .
27. Restart:
28. If ∥ RBC

m ∥F≤ ϵ Stop,
29. else X0 = XBC

m , R0 = RBC
m and go to 2.

Lemma 1. If the initial guesses in the block CMRH and the block GMRES methods are equal, i.e., XBC
0 = XBG

0 = X0, then

∥RBC
m ∥F ≤ κF (LBC

m+1)∥R
BG
m ∥F ,

where κF (LBC
m+1) = ∥(LBC

m+1)
†
∥F∥LBC

m+1∥F .

3. The weighted block CMRHmethod

Before giving a complete description of the weighted block CMRH method, we introduce, as in [26], the inner product
⟨·, ·⟩D. Let D ∈ Rn×n be a positive definite diagonal matrix. For two matrices X and Y in Rn×s, the inner product ⟨·, ·⟩D is
defined as follows:

⟨X, Y ⟩D = tr(XTDY). (6)

Then the corresponding matrix norm ∥ · ∥D is defined as

∥X∥D =

√
tr(XTDX).

In this case,we define theweighted LU decomposition ofmatrix V ∈ Rn×s byD
1
2 V = LU . By using this decomposition and the

inner product ⟨·, ·⟩D, the weighted block Hessenberg process constructs a basis L̃m = [L̃1, . . . , L̃m] of the subspace Km(A, V),
whose weighted matrix D

1
2 L̃m is a unit trapezoidal matrix. This is done by computing the weighted LU decomposition of

R0 = B − AX0 with pivoting strategy, (i.e., P̂1D
1
2 R0 = L̂1Ũ1, where P̂1 is a permutation matrix), setting L̃1 = D−

1
2 P̂T

1 L̂1, and
imposing the following orthogonality condition:

L̃k+1 ⊥D Ẽp1 , . . . , Ẽpk ,

where Ẽpi = P̂T
i Ei, for i = 1, 2, . . . , k, P̂i is the permutation matrix obtained in the iteration i, and X ⊥D Y means that

⟨X, Y ⟩D = 0.
The block Hessenberg matrix H̃m = (H̃i,j) ∈ R(m+1)s×ms constructed by the weighted block Hessenberg process can be

partitioned as

H̃m =

(
H̃m

H̃m+1,mET
m

)
. (7)

2014 S. Amini, F. Toutounian / Computers and Mathematics with Applications 76 (2018) 2011–2021

As in the block Hessenberg process, the matrices constructed by the weighted block Hessenberg process satisfy the
relationship

AL̃m = L̃m+1H̃m. (8)

Using the initial guess X0 and the corresponding initial residual R0 = B− AX0, the weighted block CMRHmethod constructs
the approximate solution

Xm = X0 + L̃mYWBC
m , (9)

where the matrix YWBC
m ∈ Rms×s is defined by

YWBC
m = argmin

Y∈Rms×s
∥E1Ũ1 − H̃mY∥F ,

As was pointed out in [24,25], the optimal choice of D in the weighted approaches is still an open problem and needs
further investigation. Some choices for the weighting matrix have been considered in [24,27,28,38]. In order to test the
influence of weighting matrix D on convergence, we consider two choices of matrix D based on the residual Rm, which could
be updated during the iterations. As in [27], for numerical examples (Section 5) we set D = D1, where

D1 = diag(d), di =

√
n

∥R0∥F

√ n∑
j=1

|(R0)i,j|2, (10)

with ∥D1∥F =
√
n and, as in [38], we use the mean of the block residual Rm, i.e., D = D2, where

D2 = diag(d), d =

⏐⏐⏐⏐∑s
i=1 Rm(:, i)

s

⏐⏐⏐⏐ . (11)

Note that the restarted weighted block CMRH method can also be regarded as the BCMRH(m) for solving system
(D

1
2 AD−

1
2)(D

1
2 X) = D

1
2 B, where the matrix D is dynamically set in each restart cycle. We can summarize the restarted

weighted block CMRH (denoted with WBCMRH(m)) as follows.

3.1. Relations between BCMRH(m) and WBCMRH(m)

First, we can give relations between the bases and block Hessenberg matrices generated by Algorithms 1 and 2.

Proposition 1. Assume that Algorithms 1 and 2 do not break down before the mth step. Then there exists a block upper triangular
matrix

Fm =

⎛⎜⎜⎝
F11 F12 · · · F1m

F22 · · · F2m
. . .

...

Fmm

⎞⎟⎟⎠ ,

such that

L̃m = LmFm, (12)

Fm = LL
mL̃m, (13)

and we can express H̃m in terms of Hm as

H̃m = F−1
m+1HmFm. (14)

Proof. For proving the relation (12), we use induction on j. For j = 1 by using the first step of the block Hessenberg process
and its weighted algorithm we have

R0 = L1U1 and R0 = L̃1Ũ1,

then we have L̃1 = L1F11, where F11 = U1Ũ−1
1 ∈ Rs×s.

We suppose that for j = 1, . . . ,m, the relation (12) is true, so we have

L̃j =

j∑
i=1

LiFij,

where Fij ∈ Rs×s. Using (4) and (8), we obtain

ALm =

m+1∑
k=1

LkHkm and AL̃m =

m+1∑
k=1

L̃kH̃km.

S. Amini, F. Toutounian / Computers and Mathematics with Applications 76 (2018) 2011–2021 2015

Algorithm 2WBCMRH(m)
1. Start: Choose X0, Compute R0 = B − AX0.
2. Compute D, e.g., by using (10) or (11).
3. Weighted Block Hessenberg process for constructing the basis L̃m and the upper Hessenberg matrix H̃m:
4. Compute the weighted LU factorization of R0 with pivoting strategy, i.e., P̂1D

1
2 R0 = L̂1Ũ1.

5. Set L̃1 = D−
1
2 P̂T

1 L̂1, L̃1 = L̃1, and H̃0 = φ.
6. Set q = 01×(m+1)s .
7. For j = 1, . . . , s
8. Find the row index t such that P̂T

1 (t, j) = 1. Set q(j) = t .
9. end
10. For k = 1, . . . ,m
11. Compute T̃ = AL̃k.
12. Set Ẽ = T̃ (q(1 : ks), 1 : s), F̃ = L̃k(q(1 : ks), 1 : ks).
13. Compute H̃k = F̃−1Ẽ.
14. Compute W̃ = T̃ − L̃kH̃k.
15. Compute the weighted LU factorization of W̃ with pivoting strategy, i.e., P̂k+1D

1
2 W̃ = L̂k+1Ũk+1.

16. Set L̃k+1 = D−
1
2 P̂T

k+1L̂k+1 and L̃k+1 = [L̃k, L̃k+1].
17. For j = 1, . . . , s
18. Find the row index t such that P̂T

k+1(t, j) = 1. Set q(ks + j) = t
19. end
20. Dk = Ũk+1,

21. Set H̃k =

[
H̃k−1 H̃k
Os×(k−1)s Dk

]
22. end
23. Approximate solution:
24. Determine YWBC

m as the solution of minY∈Rms×s ∥ E1Ũ1 − H̃mY ∥F .
25. Compute the approximation solution XWBC

m = X0 + L̃mYWBC
m .

26. Compute RWBC
m = B − AXWBC

m .
27. Restart:
28. If ∥ RWBC

m ∥F≤ ϵ Stop,
29. else X0 = XWBC

m , R0 = RWBC
m and go to 2.

From the last relation, by a simple computation, we deduce that

L̃m+1H̃m+1,m = AL̃m −

m∑
k=1

L̃kH̃km

=

m∑
k=1

Lk+1Hk+1,kFkm +

m∑
k=1

k∑
i=1

Li(HikFkm − FikH̃km).

So, we have

L̃m+1 =

m∑
k=1

Lk+1Hk+1,kFkmH̃−1
m+1,m +

m∑
k=1

k∑
i=1

Li(HikFkm − FikH̃km)H̃−1
m+1,m

and

L̃m+1 =

m+1∑
i=1

LiFi,m+1.

Thus the relation (12) is true for j = m + 1 and we get (12). By using LL
mLm = I , we obtain the relation (13). From (8) and

(12), we have

ALmFm = Lm+1Fm+1H̃m,

which implies that

Lm+1HmFm = Lm+1Fm+1H̃m,

by premultiplying it by LL
m+1, we get

HmFm = Fm+1H̃m,

premultiplying the above equation by F−1
m+1, yields the relation (14). □

2016 S. Amini, F. Toutounian / Computers and Mathematics with Applications 76 (2018) 2011–2021

Now, by partitioning Fm+1 as

Fm+1 =

(
Fm Fm+1
0s×ms Fm+1,m+1

)
, (15)

where Fm+1 ∈ Rms×s and Fm+1,m+1 ∈ Rs×s, we can state the following proposition.

Proposition 2. Under the same assumptions as in Proposition 1, we can express H̃m and Hm in terms of each other by

H̃m = F−1
m HmFm − F−1

m Fm+1F−1
m+1,m+1Hm+1,mFmmET

m, (16)

Hm = FmH̃mF−1
m + Fm+1F−1

m+1,m+1Hm+1,mET
m. (17)

Proof. By using (15) we have

F−1
m+1 =

(
F−1

m −F−1
m Fm+1F−1

m+1,m+1
0s×ms F−1

m+1,m+1

)
.

From (14), we can write

H̃m = F−1
m HmFm − F−1

m Fm+1F−1
m+1,m+1Hm+1,mET

mFm.

We get (16), since Fm is block upper triangular matrix and we have ET
mFm = FmmET

m. Multiplying the last equation on the left
by Fm and on the right by F−1

m , yields the relation (17). □

Also, we can describe a link between BCMRH(m) and its weighted version. From (9) and (12), we have the relation

XWBC
m − X0 = L̃mYWBC

m = LmŶWBC
m ,

where YWBC
m , ŶWBC

m ∈ Rms×s satisfy the relation YWBC
m = F−1

m ŶWBC
m . Since YWBC

m is the solution of the minimization problem

min
Y∈Rms×s

∥E1Ũ1 − H̃mY∥F ,

we have

ŶWBC
m = argmin

Ŷ∈Rms×s
∥E1Ũ1 − H̃mF−1

m Ŷ∥F

= argmin
Ŷ∈Rms×s

∥E1Ũ1 − F−1
m+1HmŶ∥F

= argmin
Ŷ∈Rms×s

∥F−1
m+1

(
E1U1 − HmŶ

)
∥F

= argmin
Ŷ∈Rms×s

∥E1U1 − HmŶ∥F−T
m+1F

−1
m+1

.

So, ŶWBC
m is the solution of the same optimization problem as for BCMRH(m) but with the norm corresponding to the

symmetric matrix F−T
m+1F

−1
m+1 instead of the Frobenius one.

4. The fixed and flexible preconditioned block CMRHmethod

It is well known that the performance of a Krylov subspace method can be improved when combined with a suitable
preconditioner. In this sectionwe consider the block CMRH algorithmwith fixed and flexible right preconditioners (denoted
by BCMRH(m) and FBCMRH(m), respectively) and we interpret the relation between them. In the sequel in order to avoid
confusion, we use the superscript BC and FBC to denote the quantities from BCMRH and FBCMRH algorithms, respectively.

Consider the following modified linear system with multiple right hand sides:

AM−1(MX) = B, (18)

where M is some appropriate preconditioner. We apply Algorithm 1 to solve the system (18). Let X0 ∈ Rn×s be the initial
matrix and R0 its residual. The block Hessenberg process generates a block upper Hessenberg matrix Hm ∈ R(m+1)s×ms, and
a basis LBC

m = [LBC1 , . . . , LBCm] of the Krylov subspace Km(AM−1, R0) such that⎧⎪⎨⎪⎩
R0 = LBC1 U1,

LBCk+1Hk+1,k = AM−1LBCk −

k∑
j=1

LBCj Hj,k, for k = 1, . . . ,m.
(19)

By defining

ZBC
k = M−1LBCk , (20)

S. Amini, F. Toutounian / Computers and Mathematics with Applications 76 (2018) 2011–2021 2017

then the following relation holds:

AZBC
k = AM−1LBC

k = LBC
k+1Hk, (21)

where ZBC
m = [ZBC

1 , . . . , ZBC
m] = M−1LBC

m . The block CMRH method computes, from an initial guess X0, the approximation
XBC
m = X0 + M−1LBC

m Y BC
m to the matrix equation (18), where Y BC

m is taken as the solution of the minimizing problem
minY∈Rms×s∥E1U1 − HmY∥F . Using the relation (21), the residual RBC

m can be written as RBC
m = LBC

m+1

(
E1U1 − HmY BC

m

)
. In

this case, the main part of Algorithm 1 remains the same except that the lines 11 and 25 must be changed as follows:

11. Compute ZBC
k = M−1LBCk and T = AZBC

k ,
25. Compute the approximation solution XBC

m = X0 + M−1LBC
m Y BC

m .

Suppose now that the preconditioner could change at every step, i.e., that Zk is given by

Z FBC
k = M−1

k LFBCk . (22)

Then it would be natural to compute the approximate solution as

X FBC
m = X0 + ZFBC

m Y FBC
m ,

in which ZFBC
m = [Z FBC

1 , . . . , Z FBC
m], and Y FBC

m is computed as before, as the solution to the least-squares problem in line 24 of
Algorithm 1. In this case the lines 11 and 25 are, respectively, changed to

11. Compute Z FBC
k = M−1

k LFBCk and T = AZ FBC
k .

25. Set ZFBC
m = [Z FBC

1 , . . . , Z FBC
m] and compute the approximation solution X FBC

m = X0 + ZFBC
m Y FBC

m .

Suppose that a second iterative solver is employed to solve approximatelyMkZ FBC
k = LFBCk . As in [31,34,39], we can rewrite

(22) as

Z FBC
k = M−1

k LFBCk = M−1LFBCk + GFBC
k , (23)

where GFBC
k is the error matrix associated with the inner solver at step k.

Lemma 2. Let ZBC
k and Z FBC

k defined by (20) and (22), respectively. If GFBC
k is the kth error defined in (23), then

ZBC
k ∈ Sm, for k = 1, . . . ,m, (24)

where the subspace Sm = span{Z FBC
i , (M−1A)jGFBC

i }
i=1,...,m
j=0,...,m−1.

Proof. The proof is similar to that of Lemma 1 in [39]. □

By using Lemma 2, we give the following theorem that relates themth residual norm of BCMRH(m) and FBCMRH(m).

Theorem 1. Let RBC
m and RFBC

m be the residuals derived from the mth steps of BCMRH(m) and FBCMRH(m), respectively. Define the
block error matrix GFBC

m = [GFBC
1 , . . . ,GFBC

m], where GFBC
k are the error matrices defined in (23), for k = 1, . . . ,m. Then there exists

DFBC
j ∈ Rms×s such that

∥RFBC
m ∥F ≤ κF (LFBC

m+1)

⎛⎝∥RBC
m ∥F +

m−1∑
j=0

∥A(M−1A)jGFBC
m DFBC

j ∥F

⎞⎠ , (25)

where the condition number κF (LFBC
m+1) = ∥(LFBC

m+1)
L
∥F∥LFBC

m+1∥F .

Proof. The proof is similar to that of Theorem 1 in [39]. □

4.1. Relation between FBCMRH(m) and FBGMRES(m)

In this section, we express a relation between the flexible block CMRH(m) (FBCMRH(m)) method and the flexible block
GMRES(m) (FBGMRES(m)) [40]method about the corresponding residual norm. As done in the previous section,wedenote by
the superscripts BG and FBG the BlockGMRES(m) (with fixed right preconditioning) and FBGMRES(m) variables, respectively.

Note that in FBGMRES(m), by defining

Z FBG
k = M−1

k V FBG
k , for k = 1, . . . ,m, (26)

the following relation, similar to (21), holds:

AZFBG
m = VFBG

m+1H
FBG
m , (27)

where ZFBG
m = [Z FBG

1 , . . . , Z FBG
m]. The following lemma will be useful for the main result of the section.

2018 S. Amini, F. Toutounian / Computers and Mathematics with Applications 76 (2018) 2011–2021

Table 1
Results for Example 1.

Matrix Algorithm s = 5 s = 10

Cycle CPU Residual norm Cycle CPU Residual norm

BCMRH † – – 476 5.88 2.64e−07
A1 WBCMRH (D1) 1080 6.96 1.93e−07 166 2.13 2.46e−07
m = 20 WBCMRH (D2) 1237 7.41 1.70e−07 229 3.01 2.34e−07

FBCMRH 216 40.78 1.81e−07 4 1.44 5.15e−11

BCMRH 29 0.14 2.46e−07 33 0.39 4.94e−07
A2 WBCMRH (D1) 23 0.14 2.07e−07 11 0.15 5.55e−07
m = 20 WBCMRH (D2) 20 0.11 1.09e−07 12 0.16 2.63e−07

FBCMRH 1 0.03 2.40e−14 1 0.04 6.96e−14

BCMRH 486 15.55 4.05e−07 652 40.00 5.29e−07
A3 WBCMRH (D1) 363 11.86 3.73e−07 259 16.26 5.27e−07
m = 20 WBCMRH (D2) 375 12.19 3.41e−07 254 15.76 5.65e−07

FBCMRH 1 0.35 5.28e−14 1 0.49 8.89e−14

BCMRH 149 1.60 3.69e−07 113 2.96 3.63e−07
A4 WBCMRH (D1) 104 1.27 3.67e−07 36 1.06 5.31e−07
m = 30 WBCMRH (D2) 143 1.58 2.13e−07 29 0.77 4.20e−07

FBCMRH 1 0.04 2.75e−14 1 0.07 5.82e−14

Lemma 3. Let ZFBC
m and ZFBG

m be defined in (21) and (27), respectively. Suppose that GFBC
k is the kth error matrix given by (23),

and analogously, GFBG
k is the kth error matrix associated with

Z FBG
k = M−1V FBG

k + GFBG
k . (28)

Then

Z FBG
k ∈ Pm, for k = 1, . . . ,m, (29)

where the subspace Pm = span{Z FBC
i , (M−1A)jGFBC

i , (M−1A)jGFBG
i }

i=1,...,m
j=0,...,m−1.

Proof. The proof is analogous to that of Lemma 3 in [39]. □

Next we present the result concerning the residual norm between FBCMRH(m) and FBGMRES(m).

Theorem 2. Let RFBC
m and RFBG

m be the residuals derived from the mth steps of FBCMRH(m) and FBGMRES(m), respectively. Suppose
that GFBC

m = [GFBC
1 , . . . ,GFBC

m] and GFBG
m = [GFBG

1 , . . . ,GFBG
m] where GFBC

k and GFBG
k are the error matrices defined in (23) and (28),

respectively, for k = 1, . . . ,m. Then there exists DFBC
j , DFBG

j ∈ Rms×s such that

∥RFBC
m ∥F ≤ κF (LFBC

m+1)

⎛⎝∥RFBG
m ∥F +

m−1∑
j=0

∥A(M−1A)jGFBC
m DFBC

j ∥F +

m−1∑
j=0

∥A(M−1A)jGFBG
m DFBG

j ∥F

⎞⎠ , (30)

where the condition number κF (LFBC
m+1) = ∥(LFBC

m+1)
L
∥F∥LFBC

m+1∥F .

Proof. The proof is analogous to that of Theorem 4 in [39]. □

5. Numerical results

In this section, we give some experimental results. We compare the performance of BCMRH(m) (unpreconditioned block
CMRH(m) method), WBCMRH(m), FBCMRH(m), FBGMRES(m), and WBGMRES(m) (the restarted weighted block GMRES
method [27]) for solving the multiple linear system (1). We have freedom in choosing the inner linear system solver for
flexible methods. For illustration, we only consider the block BiCGSTAB (Bl-BiCGSTAB) method ([8], Algorithm 3) since it
is easy to be implemented and needs no restarting. The tolerance for inner iteration is 10−1 and a maximum of 20 inner
iterations is allowed. We mention that this inner linear system solver for FBCMRH method takes very long time in each
cycle, but it provides the approximations that have high accuracy and allow FBCMRH to converge very fast (see the number
of cycles and CPU time in Tables 1 and 3 for FBCMRH method).

All the numerical experiments were performed in double precision floating point arithmetic in MATLAB R2014a. The
machine we have used is a Intel(R) Core(TM) i7, CPU 3.60 GHz, 16.00 GB of RAM. In all the examples, the starting guess was
taken to be zero. We consider the right-hand side B = rand(n, s), where function rand creates an n × s random matrix with
coefficients uniformly distributed in [0, 1]. We set the number of linear systems s = 5 and 10. The stopping criterion

∥Rk∥F

∥R0∥F
≤ 10−8

was used and a maximum of 3000 restarts was allowed.

S. Amini, F. Toutounian / Computers and Mathematics with Applications 76 (2018) 2011–2021 2019

Table 2
Test problems information.

Matrix property order nnz cond

1 cdde6 961 4681 1.77e+02
2 pde2961 2961 14585 6.42e+02
3 rdb3200l 3200 18880 1.11e+03
4 epb2 25228 175027 2.62e+03
5 Pd 8081 13036 2.62e+11
6 psmigr_3 3140 543160 1.33e+02
7 appu 14000 1853104 1.71e+02
8 Poisson3Db 85623 2374949 1.66e+05
9 FEM_3D_thermal2 147900 3489300 7.69e+03

Table 3
Results for Example 2.

Matrix Algorithm s = 5 s = 10

Cycle CPU Residual norm Cycle CPU Residual norm

BCMRH 106 0.52 3.52e−07 124 1.55 4.45e−07
cdde6 WBCMRH (D1) 43 0.26 3.30e−07 48 0.64 4.70e−07
m = 20 WBCMRH (D2) 49 0.24 2.82e−07 51 0.63 3.66e−07

FBCMRH 2 0.17 6.97e−09 2 0.27 1.61e−11

BCMRH 54 0.83 6.72e−07 114 4.12 6.21e−07
pde2961 WBCMRH (D1) 60 1.10 4.75e−07 79 2.90 9.47e−07
m = 20 WBCMRH (D2) 65 1.02 6.26e−07 81 2.88 8.02e−07

FBCMRH 2 0.34 2.30e−10 2 0.66 1.54e−12

BCMRH 395 2.25 6.92e−07 1076 12.94 9.80e−07
rdb3200l WBCMRH (D1) 384 3.29 7.20e−07 730 11.36 9.45e−07
m = 10 WBCMRH (D2) 351 2.11 7.28e−07 681 8.59 1.02e−06

FBCMRH 5 0.46 1.28e−08 5 0.81 9.71e−10

BCMRH 97 30.37 2.05e−06 150 106.79 2.88e−06
epb2 WBCMRH (D1) 72 25.01 1.90e−06 104 77.38 2.64e−06
m = 30 WBCMRH (D2) 81 26.32 1.74e−06 113 82.22 2.86e−06

FBCMRH 3 8.46 6.05e−09 3 26.62 1.01e−07

BCMRH 830 36.46 9.62e−07 867 84.66 1.58e−06
Pd WBCMRH (D1) 356 18.51 2.27e−07 139 15.04 1.05e−06
m = 20 WBCMRH (D2) 191 8.71 6.54e−07 88 8.99 8.10e−07

FBCMRH 5 2.08 1.58e−08 2 1.82 2.27e−07

In the tables of results, Cycle, CPU, and Residual norm denote, respectively, the number of restarts, the runtime in terms
of seconds, and the Frobenius norm of residual.

Example 1. In this example we consider four matrices. The first matrix is given in [37,41]:

A1 =

⎛⎜⎜⎜⎜⎝
1 1 1 · · · 1 1
a1 1 1 · · · 1 1
a1 a2 1 · · · 1 1
...

...
...

...
...

a1 a2 a3 · · · an−1 1

⎞⎟⎟⎟⎟⎠ ,

with ai = 1 + iϵ. We consider a system of size n = 300 and we take ϵ = 10−2. The second matrix is a tridiagonal matrix
with entries 1, 2, 3, . . . , 999, 1000 on the main diagonal and −0.1’s on the super diagonal and 0.1’s on the lower diagonal.
We consider the n × nmatrix A3 = SBS−1, where

S =

⎛⎜⎜⎜⎜⎜⎝
1 β

1 β 0
. . .

. . .

0
. . . β

1

⎞⎟⎟⎟⎟⎟⎠ and B =

⎛⎜⎜⎜⎜⎝
1

1 + α 0
3

0
. . .

n

⎞⎟⎟⎟⎟⎠ ,

with β = 0.9, α = 1, and n = 1000. This matrix was also considered in [37,42]. The matrix A4 is a bidiagonal with entries
0.1, 1, 2, 3, . . . , 999 on the main diagonal and 1’s on the super diagonal. The results obtained for these matrices are presented
in Table 1. In this Table, ‘‘†’’ signifies that the maximum allowed number of restarts was reached before the convergence.

2020 S. Amini, F. Toutounian / Computers and Mathematics with Applications 76 (2018) 2011–2021

Table 4
Results for Example 3.

Matrix Algorithm s = 5 s = 10

Cycle CPU Residual norm Cycle CPU Residual norm

WBCMRH (D1) 5 0.15 2.57e−08 5 0.26 2.04e−08
psmigr_3 WBGMRES (D1) 4 0.12 9.93e−08 4 0.20 8.04e−09
m = 10 FBCMRH 1 0.21 1.30e−11 1 0.34 6.56e−10

FBGMRES 1 0.25 1.01e−13 1 0.41 1.89e−13

WBCMRH (D1) 6 1.62 3.08e−07 6 3.41 9.49e−07
appu WBGMRES (D1) 5 1.26 7.93e−07 5 3.50 8.49e−07
m = 20 FBCMRH 1 3.42 4.57e−13 1 7.01 8.58e−13

FBGMRES 1 3.29 6.80e−13 1 7.08 1.08e−12

WBCMRH (D1) 23 56.71 3.67e−06 29 147.59 3.52e−06
Poisson3Db WBGMRES (D1) 16 77.40 1.59e−06 15 158.68 4.31e−06
m = 40 FBCMRH 1 41.00 1.67e−10 1 80.88 2.87e−10

FBGMRES 1 40.71 1.66e−10 1 66.86 2.54e−10

WBCMRH (D1) 31 81.01 2.68e−06 31 157.06 6.48e−06
FEM_3D_thermal2 WBGMRES (D1) 17 89.97 2.96e−06 16 172.39 4.30e−06
m = 30 FBCMRH 1 35.21 7.58e−10 1 64.83 1.32e−10

FBGMRES 1 42.35 4.96e−12 1 79.95 6.96e−12

For Examples 2 and 3, we used some nonsymmetric matrices from the University of Florida SparseMatrix Collection [43].
These matrices with their properties are shown in Table 2.

Example 2. In this example, we use the nonsymmetric matrices 1–5 of Table 2. Table 3 reports the results of these test
problems.

In the following, we summarize the observation from Tables 1 and 3. In all cases, we observe that the weighted BCMRH
algorithmwith different weightingmatrices needsmuch fewer iterations andmuch less CPU time than the standard BCMRH
algorithm and they reach about the same accuracy in terms of the residual norm. More precisely, WBCMRH performs better
than the standard BCMRH algorithm, using D1 and D2 as the weighting matrices. Furthermore, FBCMRH(m) is superior to
the other two algorithms in terms of the number of restarts, CPU time, and accuracy (except for example A1 with s = 5). All
these demonstrate that the WBCMRH(m) and FBCMRH(m) algorithms have the potential to improve the convergence, and
also they aremore robust and efficient than the standard block CMRH algorithm. According to the CPU time given in Tables 1
and 3, we can see that the compared methods often give a similar behavior when s increases.

Finally in the following example we compare FBCMRH, WBCMRH, FBGMRES, and WBGMRES methods in terms of the
number of restarts, CPU time, and accuracy.

Example 3. The test problems 6–9 of Table 2 are used for this example. The results are shown in Table 4. For weighted
methods we presented the results obtained with the weighting matrix D1. Similar results are obtained with the weighting
matrix D2.

As can be seen from Table 4, FBCMRH, WBCMRH methods and FBGMRES, WBGMRES methods give a similar behavior,
respectively. In addition, for all problems, the number of restarts of the WBGMRES is less than that of the WBCMRH and for
large matrices Poisson3Db and FEM_3D_thermal2, the CPU time for the WBCMRH is smaller than the one for the WBGMRES.
Finally for these large matrices, we observe that FBCMRH and FBGMRES are superior to the other methods in terms of the
number of restarts, CPU time, and accuracy.

6. Conclusion

Two new variants of the block CMRH algorithm for solving nonsymmetric systems with multiple right-hand sides were
presented and studied. The relations betweenWBCMRH(m) and BCMRH(m), FBCMRH(m) and BCMRH(m) are examined. The-
oretical results concerning the residual norm between FBGMRES(m) and FBCMRH(m) are presented. Finally, the numerical
experiments presented in this paper show that the weighted block CMRH method and the flexible block CMRH method are
more robust than the block CMRHmethod. In addition, theWBCMRH, FBCMRH algorithms are comparable to theWBGMRES,
FBGMRES algorithms in terms of the number of restarts and the CPU time needed for convergence.

Acknowledgments

We would like to thank the referees for their valuable remarks and helpful suggestions.

S. Amini, F. Toutounian / Computers and Mathematics with Applications 76 (2018) 2011–2021 2021

References

[1] R.W. Freund,M.Malhotra, A blockQMRalgorithm for non-Hermitian systemswithmultiple right-hand sides, Linear Algebra Appl. 254 (1997) 119–157.
[2] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[3] V. Simoncini, E. Gallopoulos, An iterative method for nonsymmetric systems with multiple right-hand sides, SIAM J. Sci. Comput. 16 (1995) 917–933.
[4] V. Simoncini, E. Gallopoulos, A hybrid block GMRES method for nonsymmetric systems with multiple right-hand sides, J. Comput. Appl. Math. 66

(1996) 457–469.
[5] D.P. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra Appl. 29 (1980) 293–322.
[6] B. Vital, Etude de quelques méthodes de résolution de problemes linéaires de grande taille sur multiprocesseur, (Ph.D. thesis), Université de Rennes,

1990.
[7] A. El Guennouni, K. Jbilou, H. Sadok, The block lanczos method for linear systems with multiple right-hand sides, Appl. Numer. Math. 51 (2004)

243–256.
[8] A. El Guennouni, K. Jbilou, H. Sadok, A block version of bicgstab for linear systems with multiple right-hand sides, Electron. Trans. Numer. Anal. 16

(2003) 129–142.
[9] S. Karimi, F. Toutounian, The block least squaresmethod for solving nonsymmetric linear systemswithmultiple right-hand sides, Appl. Math. Comput.

177 (2006) 852–862.
[10] A.T. Chronopoulos, S-step iterative methods for (non)symmetric (in)definite linear systems, SIAM J. Numer. Anal. 28 (1991) 1776–1789.
[11] A.T. Chronopoulos, A.B. Kucherov, Block s-step Krylov iterative methods, Numer. Linear Algebra Appl. 17 (2010) 3–15.
[12] M. Addam, M. Heyouni, H. Sadok, The block Hessenberg process for matrix equations, Electron. Trans. Numer. Anal. 46 (2017) 460–473.
[13] S. Amini, F. Toutounian, M. Gachpazan, The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides, J. Comput.

Appl. Math. 337 (2018) 166–174.
[14] M. Bellalij, K. Jbilou, H. Sadok, New convergence results on the global GMRES method for diagonalizable matrices, J. Comput. Appl. Math. 219 (2008)

350–358.
[15] K. Jbilou, A. Messaoudi, H. Sadok, Global FOM and GMRES algorithms for matrix equations, Appl. Numer. Math. 31 (1999) 49–63.
[16] K. Jbilou, H. Sadok, Global Lanczos-Based Methods with Applications, Technical Report LMA 42, Université du Littoral, Calais, France, 1997.
[17] K. Jbilou, H. Sadok, A. Tinzefte, Oblique projection methods for linear systems with multiple right-hand sides, Electron. Trans. Numer. Anal. 20 (2005)

119–138.
[18] J. Zhang, H. Dai, Global CGS algorithm for linear systems with multiple right-hand sides, Numer. Math. A: J. Chin. Univ. 30 (2008) 390–399.
[19] J. Zhang, H. Dai, J. Zhao, Generalized global conjugate gradient squared algorithm, Appl. Math. Comput. 216 (2010) 3694–3706.
[20] F. Toutounian, S. Karimi, Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides, Appl. Math. Comput.

178 (2006) 452–460.
[21] J. Zhang, H. Dai, J. Zhao, A new family of globalmethods for linear systemswithmultiple right-hand sides, J. Comput. Appl.Math. 236 (2011) 1562–1575.
[22] M. Heyouni, The global Hessenberg and CMRH methods for linear systems with multiple right-hand sides, Numer. Algorithms 26 (2001) 317–332.
[23] C. Gu, Z. Yang, Global SCD algorithm for real positive definite linear systems with multiple right-hand sides, Appl. Math. Comput. 189 (2007) 59–67.
[24] M. Heyouni, A. Essai, Matrix Krylov subspace methods for linear systems with multiple right-hand sides, Numer. Algorithms 40 (2005) 137–156.
[25] A. Essai, Weighted FOM and GMRES for solving nonsymmetric linear systems, Numer. Algorithms 18 (1998) 277–292.
[26] M. Mohseni Mohgadam, F. Panjeh Ali Beik, A new weighted global full orthogonalization method for solving nonsymmetric linear systems with

multiple right-hand sides, Int. Electron. J. Pure Appl. Math. 2 (2010) 47–67.
[27] A. Imakura, L. Du, H. Tadano, A weighted block GMRES method for solving linear systems with multiple right-hand sides, JSIAM Lett. 5 (2013) 65–68.
[28] F. Panjeh Ali Beik, D. Khojasteh Salkuyeh, Weighted versions of Gl-FOM and Gl-GMRES for solving general coupled linear matrix equations, Comput.

Math. Math. Phys. 55 (2015) 1606–1618.
[29] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput. 14 (1993) 461–469.
[30] H.A. Van der Vorst, C. Vuik, GMRESR: a family of nested GMRES methods, Numer. Linear Algebra Appl. 1 (1994) 369–386.
[31] G.H. Golub, Q. Ye, Inexact preconditioned conjugate gradient method with inner-outer iteration, SIAM J. Sci. Comput. 21 (1999) 1305–1320.
[32] A.V. Knyazev, I. Lashuk, Steepest descent and conjugate gradient methods with variable preconditioning, SIAM J. Matrix Anal. Appl. 29 (2007)

1267–1280.
[33] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput. 22 (2000) 1444–1460.
[34] D.B. Szyld, J.A. Vogel, FQMR: A flexible quasi-minimal residual method with inexact preconditioning, SIAM J. Sci. Comput. 23 (2001) 363–380.
[35] J.A. Vogel, Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems, Appl. Math. Comput. 188 (2007) 226–233.
[36] V. Simoncini, D.B. Szyld, Flexible inner-outer Krylov subspace methods, SIAM J. Numer. Anal. 40 (2002) 2219–2239.
[37] H. Sadok, CMRH: A newmethod for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm, Numer. Algorithms 20 (1999)

303–321.
[38] N. Azizi zadeh, A. Tajaddini, G. Wu, A weighted global GMRES algorithm with deflation for solving large Sylvester matrix equations, 2017, arXiv:

1706.01176.
[39] K. Zhang, C. Gu, A flexible CMRH algorithm for nonsymmetric linear systems, J. Appl. Math. Comput. 45 (2014) 43–61.
[40] H. Calandra, S. Gratton, J. Langou, X. Pinel, X. Vasseur, Flexible variants of block restarted GMRES methods with application to geophysics, SIAM J. Sci.

Comput. 34 (2012) A714–A736.
[41] R.T. Gregory, D.L. Karney, A Collection of Matrices for Testing Computational Algorithms, Wiley, New York, 1969.
[42] Y. Huang, H.A. Van der Vorst, Some Observations on the Convergence Behaviour of GMRES, Report 89-09, Delft Univ. Technology, 1989.
[43] T. Davis, Y. Hu, The university of florida sparse matrix collection, ACM Trans. Math. Software 38 (2011) 1–25 Avaiable online at http://www.cise.ufl.

edu/research/sparse/matrices/.

http://refhub.elsevier.com/S0898-1221(18)30416-4/sb1
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb2
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb3
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb4
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb4
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb4
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb5
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb6
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb6
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb6
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb7
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb7
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb7
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb8
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb8
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb8
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb9
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb9
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb9
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb10
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb11
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb12
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb13
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb13
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb13
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb14
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb14
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb14
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb15
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb16
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb17
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb17
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb17
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb18
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb19
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb20
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb20
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb20
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb21
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb22
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb23
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb24
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb25
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb26
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb26
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb26
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb27
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb28
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb28
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb28
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb29
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb30
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb31
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb32
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb32
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb32
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb33
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb34
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb35
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb36
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb37
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb37
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb37
http://arxiv.org/1706.01176
http://arxiv.org/1706.01176
http://arxiv.org/1706.01176
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb39
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb40
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb40
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb40
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb41
http://refhub.elsevier.com/S0898-1221(18)30416-4/sb42
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

	Weighted and flexible versions of block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides
	Introduction
	Block CMRH method
	The weighted block CMRH method
	Relations between BCMRH(m) and WBCMRH(m)

	The fixed and flexible preconditioned block CMRH method
	Relation between FBCMRH(m) and FBGMRES(m)

	Numerical results
	Conclusion
	Acknowledgments
	References

