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Abstract In this paper, we introduce the new concept isoclinism of two non-commuting
graphs. We describe it with this hope to determine the properties of the graph with large
number of vertices and edges more easier by use of its smaller correspondence graph in its
isoclinic class. In 1939, Hekster classified the groups by n-isoclinism which was weaker than
isomorphism, where n is a positive integer. The abelian groups are in the same class by group-
isoclinism, although their intrinsic properties are not the same. The notion of isoclinic groups
is the inspiration to define the isoclinism of two graphs. The isoclinism of two graphs is a
pair of significant special isomorphism between the quotient graphs of the given graphs. We
observe that all complete 3-partite non-commuting graphs are in the same isoclinic class and
the non-commuting graph associated to the dihedral group of order 8, D8 is the representative
of this class.
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340 B. Tolue et al.

1 Introduction

In order to classify solvable groups,Hall introduced the concept of isoclinism [3].He extended
it to the notion of V-isologism with respect to a given variety V . In 1939, Hekster considered
the variety of nilpotent groups of class at most n and arose the concept of n-isoclinism.
From the standpoint of group theory, isomorphic groups have the same properties and need
not be distinguished. Hekster classified the groups by a new notion which was weaker than
isomorphism. It is a more general concept which divides the class of all groups into families
(see [4] for more details). Let us recall the definition of two n-isoclinic groups.

Definition 1.1 Let G1 and G2 be two groups. Then the pair (ϕ, ψ) is called an n-isoclinism
from G1 to G2 whenever,

(i) ϕ is an isomorphism from
G1

Zn(G1)
to

G2

Zn(G2)
, where Zn(G1) and Zn(G2) are the n-th

term of the upper central series of G1 and G2, respectively.
(ii) ψ is an isomorphism from γn+1(G1) to γn+1(G2), with the law

[g11, . . . , g1n, g1(n+1)] �→ [g21, . . . , g2n, g2(n+1)] in which g2 j ∈ ϕ(g1 j Zn(G1)), 1
≤ j ≤ n + 1. If there is such a pair (ϕ, ψ) with the above properties, then we say that
G1 and G2 are n-isoclinic and denoted by G1˜nG2.

The essence of group n-isoclinism was the key to define n-isoclinism of the graphs, in
the third section. For this aim we consider a pair of significant special isomorphism between
the quotient graphs of the given graphs. If there is such as pair, then we call two graphs are
n-isoclinic.

LetG be a group. The non-commuting graph associated to the groupG was considered by
Paul Erdős for the first time. It is a graph with vertex set whole elements of the group G and
two vertices are adjacent if and only if they do not commute. In this paper we consider the
induced subgraph of the non-commuting graph, with non-central elements of G as the vertex
set, unless mentioned otherwise. It is denoted by �G . There are large amount of research on
the non-commuting graph one may see [1,11].

The distance between two vertices u and v, denoted by d(u, v), is the length of a shortest
path between u and v in the graph. For any graph � and positive integer n, the n-th derived
graph of � is a graph with the same vertices as �, two vertices in the derived graph being
connected by an edge if and only if the distance between them is exactly n in the main graph.
Let us denote it by �(n). The 1st derived graph is the graph itself and we denote �(2) by �′.
The center of the graph � is the set of all vertices z for which the greatest distance d(z, x)
to other vertices x is minimal. We denote this set of vertices by Z(�). Note that two phrases
central vertices of the graph and central elements of the group are different concepts.

In Sect. 2, we become familiar with some properties of central vertices of a connected
graph in particular the non-commuting graph. We observe that the existence of a central
vertex v for the non-commuting graph associated to the group G implies that the center of
the group, Z(G) = 1 and the centralizer of v,CG(v) = {1, v}. Moreover, an ascending chain
of induced subgraphs is presented.

In Sect. 3, we present the notion of isoclinism of two non-commuting graphs. For this
end, we require to define an appropriate quotients. According to the definition of the quotient
graphs we need a suitable equivalent relation over the vertices of the graph. We consider two
equivalence relation R and TG over the vertices of the non-commuting graph associated to
the group G. The twin equivalence relation R was studied vastly before (see [6,9]). Further,
the equivalence relation TG is the belonging of vertices in the same central factor of the group
G. In the third section after defining the non-commuting graph isoclinism, we observe that
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On the structure of isoclinism classes of the non-commuting graphs 341

two isoclinic groups have isoclinic non-commuting graphs. Hence, if one consider class of
all non-commuting graphs, then it can be classified into some families via graph isoclinism.
We perceive that each class contains a graph as a representative of the whole family with
the least size and all other graphs in this pack has similar properties some how. We call this
representative a stem. Finally, we prove that all complete 3-partite non-commuting graphs are
in the same isoclinic class and we can consider �D8

∼= �Q8 as the stem of this family, where
D8 and Q8 are dihedral group and quaternion group of order 8, respectively. Furthermore,
we have two distinct isoclinic classes of the graphs for all complete 4-partite non-commuting
graphs. By similar method, we deduce that there are 4, 3 and 2 distinct classes of isoclinism
for complete 5-partite, 6-partite and 8-partite non-commuting graphs, respectively.

The reader can use the references [2,7] for notations in graph theory and group theory.

2 Preliminaries

Let us start with the following result about the central vertices of a connected graph.

Lemma 2.1 Let � be a connected graph. Then Z(�) is the set of all vertices that join to all
other vertices.

Proof Let z ∈ Z(�). Since � is a connected graph, z is adjacent to at least one another
vertex. Thus by definition of a central vertex it is adjacent to all other vertices. �	

Let us denote the set of all vertices of the connected graph � for which their distances to
other vertices is at most n, by Zn(�). By diameter vertex of the non-commuting graph we
mean a vertex which is not central vertex. Therefore a diameter vertex of the non-commuting
graph is a vertex for which there is at least a vertex which is not adjacent to. Since Abdollahi
et al. [1] proved that the diameter of any non-commuting graph is 2, the central vertices are
adjacent to all other vertices of non-commuting graph. Now if v ∈ Z(�G) and 1 
= z ∈ Z(G),
then vz is a vertices which is not adjacent to v which is a contradiction so Z(G) = 1 and we
have the following result.

Lemma 2.2 Let �G be the non-commuting graph associated to the non-abelian group G. If
v ∈ Z(�G), then Z(G) = 1 and consequently Z(�G) = {v ∈ V (�G) : CG(v) = {1, v}}.

The induced subgraph of �G with vertex set Z(�G) is a complete graph K|Z(�G )|. The 2nd
derived graph of the non-commuting graph is the graphwith vertex setG\Z(G) such that two
vertices are adjacent if their distance is exactly 2. Thus those vertices of the non-commuting
graph are adjacent in �

(2)
G = �′

G which do commute. Let us denote the induced subgraph
of � over the vertex set Y ⊆ V (�) by �Y . If � is a graph such that diam(�) = n, then
�Zn(�) = �. Consequently, for every graph �, there exists an ascending chain of induced
subgraph,

�Z(�) ⊆ �Z2(�) ⊆ . . . ⊆ �Zi (�) . . . .

Let us call it the central series of �. It is clear that for all connected graphs, central series
terminate to the graph itself after finite steps. Therefore, if diam(�) ≤ n, then we call � a
connected graph of connectivity class at most n.

Obviously, if � is a connected graph of connectivity class at most n, then �(n+1) is an
empty graph. The non-commuting graph associated to a group G is a connected graph of
connectivity class 2.
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342 B. Tolue et al.

Twin vertices in graphs correspond to vertices sharing the same neighborhood. For each
vertex v ∈ V (�), let Ni (v) = {u ∈ V (�) : d(u, v) = i}. Two distinct vertices u and v are
n-twins, if Nn(v)\{u} = Nn(u)\{v}. We define u ≡Rn v if and only if u = v or u and v are
n-twins (see [6]). If two vertices are 1-twin, then simply we call them twin. This relation is
an equivalence relation. The equivalence class of v and the twin graph of � are denoted by
v∗ and �∗, respectively.

A quotient graph � of a graph � is a graph whose vertices are blocks of a partition of the
vertices of �, where block B is adjacent to block C if some vertex in B is adjacent to some
vertex in C with respect to the edge set of �. In other words, if � has edge set E(�) and
vertex set V (�) and λ is the equivalence relation induced by the partition, then the quotient
graph has vertex set V (�)/λ and edge set {([u]λ, [v]λ)|(u, v) ∈ E(�)}.

The twin graph �∗ is a graph with vertex set V (�∗) = {v∗ : v ∈ V (�)}, where u∗v∗
∈ E(�∗) if and only if uv ∈ E(�). Twin vertices is one of the known forms of symmetries
in the graphs. Moreover, �∗ can be considered as the quotient graph of � with respect to
the equivalence relation R, let us denote it by �/R or �∗. For the details about twin non-
commuting graph one can refer to [9]. The twin vertices of a vertex v ∈ �G is defined by
v∗ = {s ∈ G\Z(G) : CG(s) ∪ {v} = CG(v) ∪ {s}}.
Proposition 2.3 Let �G be the non-commuting graph.

(i) All central vertices of the non-commuting graph are twins. In other words, all of them
made a vertex in the twin non-commuting graph.

(ii) The central vertices of the non-commuting graph �G are isolated vertices of �
′
G.

Proof The first part follows by the above argument and Lemma 2.2 and the second part is
clear by the definition of central vertices. �	
Theorem 2.4 If �

′
G

∼= �
′
H , then �X is isomorphic to the induced subgraph of �Y , where

X, Y are H or G.

Proof Since �
′
G

∼= �
′
H , the number of isolated vertices of �

′
G and �

′
H , i.e. the number of

central vertices of the non-commuting graph of �H and �G are equal. The central vertices
form a complete graph in the non-commuting graphs. The other vertices are not connected
directly. The inductor of the connection of them is at lease one central vertex. Consequently
the diversity of �G and �H occurs in the difference of the number of these central vertices
which are used in joining diameter vertices. Hence the assertion is clear. �	

The tensor product �×� of graphs � and� is a graph such that the vertex set of �×� is
the Cartesian product V (�) × V (�) and any two vertices (u1, u2) and (v1, v2) are adjacent
in � × � if and only if ui is adjacent with vi for i = 1, 2.

Theorem 2.5 Let H be the subgroup of G and �H the induced subgraph of the non-

commuting graph �G. Then
�H × K|Z(�G )|

λ
∼= �H , where λ is the equivalence relation

on the vertices of the graph �H × K|Z(�G )| such that (u1, u2) λ (v1, v2) if and only if
u1 = v1.

Proof Define the map θ : V
(

�H × K|Z(�G )|
λ

)

−→ V (�H ), where θ([(u, v)]λ) = u. This

map is a bijection and since the adjacency of vertices of the graph
�H × K|Z(�G )|

λ
depends

on the adjacency of vertices of the graph �H , θ preserves edges. �	
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On the structure of isoclinism classes of the non-commuting graphs 343

Recall that the intersection of two graphs � and � is the graph � ∩ � with vertex set
V (�) ∩ V (�) and edge set E(�) ∩ E(�). The following corollary is the direct result of
Theorem 2.5.

Corollary 2.6 If �H is induced subgraph of �G and �G ∼= �H × K|Z(�G )|
λ

, then

(i) �′
G

∼= �′
H .

(ii) �H ∩ K|Z(�G )| ∼= K|Z(�H )|.
(iii) �′

G ∩ K|Z(�G )| ∼= �′
H ∩ K|Z(�H )|.

In general �H ∩ K|Z(�G )| is isomorphic with induced subgraph of K|Z(�H )|.

3 Graph isoclinism

Shortly after the notion of isoclinism of the groups was defined, Hall generalized this to what
he called V-isologiam, where V is some variety of groups. Isologism is so to speak isoclinism
with respect to a certain variety. In this way for each variety an equivalence relation on the
class of all groups arises. The larger the variety, the weaker this equivalence relation is (see
[5] for more details). Let us start with the following definition.

Definition 3.1 Let �G and �H be two non-commuting graphs. The pair of graph isomor-
phisms (α, β) which are presented as follows,

(i) α : �′
G

TG
−→ �′

H

TH
,

(ii) β :
�G

TG
R

−→
�H

TH
R

,

is called an isoclinism between �G and �H , where TX is an equivalence relation on the
vertices of the graph �X which is partition the vertices by this rule

(a) If |Z(G)| 
= |Z(H)|, then x TX y ⇐⇒ x, y ∈ Z(X)r , for some r ∈ X ,
(b) If |Z(G)| = |Z(H)|, then x TX y ⇐⇒ x = y,

for x, y ∈ V (�X ) and X = G or H . Moreover, R is the twin equivalence relation. If there is
such a pair (α, β) for two non-commuting graphs, then we call two graphs are isoclinic. We
denote two isoclinic graphs by �G ∼ �H .

Let Zn(X) be the n-th term of upper central series for the group X and T n
X be the equivalent

relation which is defined by x T n
X y ⇐⇒ x, y ∈ Zn(X)r , for some r in the group X and

n > 1 a positive integer. In the Definition 3.1, if we replace the equivalent relations TX and
R by T n

X and Rn , then �G and �H are called n-isoclinic and is denoted by �G ñ �H .
From the definition it is straightforward that two non-commuting graphs associating to

two groups whose order of centers are equal are isoclinic, if their derived and twin graphs
are isomorphic.

With out any ambiguity, the equivalence relation TX and R can optional be chosen. For
instance it may depend on the condition under which two vertices join in an arbitrary graph.
Thus by imposing different equivalence relations we obtain distinct equivalent classes and a
new concept similar to the V-isologism in the group theory.

In the following two results consider the same notations as in the Definition 3.1.
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344 B. Tolue et al.

Lemma 3.2 Let �G be the non-commuting graph associated to the group G.

(i) If v1, v2 are two twin vertices, then [v∗
1 ]TG = [v∗

2 ]TG .
(ii) Let [v1]TG = [v2]TG . Then v1 and v2 are twins.

Proof (i) Suppose v∗
1 = v∗

2 . By definition v∗
1 = {w ∈ G\Z(G) : CG(v1) ∪ {w} =

CG(w) ∪ {v1}} = v∗
2 . Now we can classify this set by the equivalence relation TG , as

follows v∗
1 = {[wi ] : [wi ] = {xi z j : z j ∈ Z(G)}}, where G = ∪i∈I Z(G)xi , xi ∈ G.

Hence the assertion is clear.
(ii) By the hypothesis CG(v1) = CG(v2). �	

In the text the notation [v]TG is the representation of the coset vZ(G) and in the graph �G
TG

we just consider one element of this set as a vertex. Thus it is enough to consider the element
v instead of [v]TG . Moreover, CG([v]TG ) means the centralizer of the element v in the group
G. Example 3.3 is useful to clarify the quotients of the graph.

Example 3.3 Let G = S3 × Z2, where S3 and Z2 are symmetric group of order 6 and
cyclic group of order 2, respectively. The vertices of the non-commuting graph �S3×Z2 are
non-central elements of the group S3 × Z2. Moreover,

V

(

�S3×Z2

TG

)

= {[((1 2), 0)]TG , [((1 3), 0)]TG , [((2 3), 0)]TG ,

[((1 2 3), 0)]TG , [((1 3 2), 0)]TG }
and

V

⎛

⎜

⎜

⎝

�S3×Z2

TG
R

⎞

⎟

⎟

⎠

= {[((1 2), 0)]∗TG , [((1 2 3), 0)]∗TG }.

Although,V

(

�S3×Z2

R

)

={((12), 0)∗, ((13), 0)∗, ((23), 0)∗, ((123), 0)∗}=V

(

�S3×Z2

R
TG

)

.

Example 3.3 implies that the isomorphism

�G

TG
R

∼=
�G

R
TG

does not hold in general.

Lemma 3.4 Suppose (ϕ, ψ) is the isoclinism between two groups G and H, where ϕ

: G
Z(G)

−→ H
Z(H)

such that ϕ(gi Z(G)) = hi Z(H) and the isomorphism ψ : G ′ −→ H ′
which inspire by ϕ, 1 ≤ i ≤ [G : Z(G)]. Then
(i) For any diameter vertex of the graph �G, there is a diameter vertex for the non-

commuting graph of �H .
(ii) The equality CG(gi ) = CG(g j ) is equivalent to CH (hi ) = CH (h j ).

(iii) CG (gi )
Z(G)

and CH (hi )
Z(H)

are isomorphic.

Proof (i) Suppose x is a diameter vertex of �G . Therefore by definition of the diameter
vertex of the non-commuting graph, there is at least a vertex y such that [x, y] = 1.
Since x, y ∈ G so x ∈ g1Z(G) and y ∈ g2Z(G). Thus ψ([x, y]) = ψ([g1, g2])
= [h1, h2] = 1. This fact implies that h1 ∈ V (�H ) exists such that it is a diameter
vertex.
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On the structure of isoclinism classes of the non-commuting graphs 345

(ii) It is clear that,

x ∈ CH (hi ) ⇐⇒ [x, hi ] = 1
⇐⇒ 1 = [x, hi ] = ψ([y, gi ])
⇐⇒ [y, gi ] = 1
⇐⇒ y ∈ CG(gi ) = CG(g j )

⇐⇒ 1 = ψ([y, g j ]) = [x, h j ]
⇐⇒ x ∈ CH (h j ),

where y ∈ ϕ(x Z(G)) and hl ∈ ϕ(gl Z(G)), l = i, j . The third part leave for the readers.
�	

It is clear that two isomorphic groups have isomorphic non-commuting graphs. In the
following theorem we observe that two isoclinic groups are associated to two isoclinic non-
commuting graphs.

Theorem 3.5 Let G and H be two isoclinic groups. Then the non-commuting graphs asso-
ciating to them are isoclinic.

Proof If |Z(G)| = |Z(H)|, then �G ∼= �H , by [10, Theorem 4.5]. Suppose |Z(G)|

= |Z(H)| and the pair (ϕ, ψ) is the isoclinism between the groups G, H . Define the map,

α : V
(

�′
G

TG

)

−→ V

(

�′
H

TH

)

[t]TG �−→ [s]TH ,

where ϕ(t Z(G)) = sZ(H) and t, s are diameter vertices of �G and �H , respectively.
The well-definedness of α follows by well-definedness of ϕ. Assume [t1]TG = [t2]TG . By
the equality of these two classes we deduce that t1, t2 ∈ x Z(G). Therefore ϕ(t1Z(G))

= ϕ(t2Z(G)) = sZ(H) and α([t1]TG ) = α([t2]TG ). Thus this argument and the first part
of Lemma 3.4 implies that the map α is well-defined. Moreover, α is one to one. Since
the equality α([t1]TG ) = α([t2]TG ) implies [s1]TH = [s2]TH . Clearly s1, s2 ∈ hi Z(H).
Thus ϕ−1(hi Z(H)) = gi Z(G) and so t1, t2 ∈ gi Z(G) which implies [t1]TG = [t2]TG . If
[k]TH ∈ V (

�′
H

TH
), then isomorphisms ϕ and ψ guarantee the existence of [l]TG ∈ V (

�′
G

TG
)

which maps to [k]TH by α, which shows that α is surjective. Finally the isomorphisms ϕ and
ψ cause that the bijection α preserves the edges.
Now, define the map

β : V

⎛

⎜

⎜

⎝

�G

TG
R

⎞

⎟

⎟

⎠

−→ V

⎛

⎜

⎜

⎝

�H

TH
R

⎞

⎟

⎟

⎠

(

[gi ]TG
)∗

�−→
(

[hi ]TH
)∗

,

where ϕ(gi Z(G)) = hi Z(H). If ([gi ]TG )∗ = ([g j ]TG )∗, then g j ∈ g∗
i and so CG(gi ) ∪ {g j }

= CG(g j ) ∪ {gi } (see [9]). We consider two cases

(a) IfCG(gi ) = CG(g j ), then by the second part of Lemma 3.4 we haveCH (hi ) = CH (h j )

which implies that h∗
i = h∗

j .
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346 B. Tolue et al.

(b) If [gi , g j ] 
= 1, then by [9, Remark 2.] CG(gl) = {1, gl}, l = i, j which implies
Z(G) = 1. It is not possible that |Z(G)| > |Z(H)|. By third part of Lemma 3.4
we have |CH (hi )| = |CH (h j )|. Moreover, CH (hl) = 〈hl , Z(H)〉 which implies that
|C H

Z(H)
(hi Z(H))| = |C H

Z(H)
(h j Z(H))| = 2. Hence ([hi ]TH )∗ = ([h j ]TH )∗, since in the

graph �H
TH

we consider just one element [hi ]TH from hi Z(H) as a vertex.

This shows β is well-define and similar argument deduce the injectiveness of β. The map β

is a graph isomorphism. �	
Example 3.6 In this example we present two isoclinic groups and their isoclinic non-
commuting graphs.

(i) D8 and Q8 are isoclinic groups, which their centers are of equal order. Their non-
commuting graphs are isomorphic so they are isoclinic. Their quotient derived graphs
are isomorphic to a graph with three isolated edges and their twin graphs are isomorphic
to K3.

(ii) S3 × Z2 and S3 are isoclinic groups. Clearly, the center of these two groups
does not have equal order, but their associated non-commuting graphs are iso-

clinic. V

(

�′
S3×Z2

TS3×Z2

)

= {[((1 2 3), 0)]S3×Z2
, [((1 3 2), 0)]S3×Z2

, [((1 2), 0)]S3×Z2
,

[((1 3), 0)]S3×Z2
, [((2 3), 0)]S3×Z2

} and

V

(

S3 × Z2

TS3×Z2

R

)

= {[((12), 0)]∗
S3×Z2

, [((123), 0)]∗
S3×Z2

}}.Obviously, the non-commuting

graph associated to S3 and S3 × Z2 are isoclinic.

By the second part of Example 3.6 we deduce that the isomorphism

�G

TG
R

∼=
�H

TH
R

does

not imply
�G

R
∼= �H

R
, generally.

If H ≤ G and N � G, then H ∼ HZ(G) and G/N ∼ G/N ∩ G ′ by [4, Lemma 3.5].
Thus by Theorem 3.5 the non-commuting graph associated to them are isoclinic.

By Theorem 3.5 and Example 3.6 we observe that the class of all non-commuting graphs
can be classify to isoclinic graphs such that each class has a stem as representative. Further-
more, we guess that the converse of the Theorem 3.5 does not hold generally. Studying of
the structure of the groups whose non-commuting graphs are isoclinic is not easy. As it was
mentioned, graph isoclinism is weaker than graph isomorphism and checking the structure
of the groups whose non-commuting graphs are isomorphic is the start of difficult research.

In [8], the non-centralizer graph of the group G was introduced which helps to recognize
big class of the non-commuting graphs. Let us recall its definition, since it is important in
the sequel. Note that in the main definition the vertex set of the graph is whole elements of
G, here we reduced it to G\Z(G) as required.

Definition 3.7 We construct a graph whose vertices are the non-central elements of the
group G and whose edges are obtained by joining any two vertices x and y whenever CG(x)

= CG(y). We call this graph the non-centralizer graph of G, and we denote it by ϒG .

Let us recall that a groupG all ofwhose centralizers are abelian is called an AC-group. The
non-commuting graph and the non-centralizer graph of a given group are not isomorphic in
general. In [8, Theorem 2.11] we observed that beingAC-group cause that the non-centralizer
graph of G coincides to its non-commuting graph.
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Lemma 3.8 �G is a non-commuting graph isomorphic to the complete k-partite graph if
and only if G is an AC-group.

Proof Assume t1, t2 are vertices of the graph such that t1, t2 ∈ CG(x), where x ∈ V (�G).
Since they commute with x and the graph is complete k-partite, we deduce that they are in
the same part of the graph. Hence [t1, t2] = 1 and the result is clear. �	
Theorem 3.9 Every two complete 3-partite non-commuting graphs of finite groups are iso-
clinic graphs.

Proof Let us consider two complete 3-partite non-commuting graph Kn1,n2,n3 and Km1,m2,m3 ,
where ni ,mi are positive integer and i = 1, 2, 3. By Lemma 3.8 �G ∼= Kn1,n2,n3 and
�H ∼= Km1,m2,m3 , where G and H are AC-groups. By [8, Proposition 2.18] G/Z(G)
∼= H/Z(H) ∼= Z2 × Z2. Therefore, G ∼ H by [4, Proposition 3.7]. Hence Theorem
3.5 complete the proof. �	

By similar argument, we conclude the following result.

Corollary 3.10 (i) There are 2 class of isoclinic graphs for the complete 4-partite non-
commuting graphs of finite groups.

(ii) There are 4 class of isoclinic graphs for the complete 5-partite non-commuting graphs
of finite groups.

(iii) There are 3 class of isoclinic graphs for the complete 6-partite non-commuting graphs
of finite groups.

(iv) There are 3 class of isoclinic graphs for the complete 7-partite non-commuting graphs
of finite groups.

(v) There are 2 class of isoclinic graphs for the complete 8-partite non-commuting graphs
of finite groups.

Proof Let us explain the first part, the rest will prove similarly. Suppose Kn1,n2,n3,n4 and
Km1,m2,m3,m4 are two complete 4-partite non-commuting graph, where ni ,mi are positive
integer and i = 1, 2, 3, 4. Therefore they are associated with AC-groups G and H . By [8,
Proposition 2.18] X/Z(X) ∼= S3 or Z3 × Z3, where X = G or H . If G/Z(G) ∼= H/Z(H),
then G ∼ H by [4, Proposition 3.7] and so Kn1,n2,n3,n4 and Km1,m2,m3,m4 are isoclinic by

Theorem3.5.Moreover, ifG/Z(G) ∼= S3 and H/Z(H) ∼= Z3×Z3, then |V (
�′
G

TG
)| 
= |V (

�′
H

TH
)|

and so Kn1,n2,n3,n4 and Km1,m2,m3,m4 are not isoclinic. �	
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