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a b s t r a c t

Feature extraction and classification are crucial steps of a data-driven structural health monitoring strat-
egy. One of the major issues in feature extraction is to extract damage-sensitive features from non-
stationary signals under unknown ambient vibration. Furthermore, the use of high-dimensional features
in damage detection is the other challenging issue, which may make a difficult and time-consuming pro-
cess. This article is initially intended to propose a hybrid algorithm as a combination of EEMD technique
and ARARX model for feature extraction. Subsequently, correlation-based dynamic time warping method
is proposed to detect damage by using randomly high-dimensional multivariate features. Due to the
importance of damage localization, dynamic time warping is eventually applied to locate damage.
Experimental datasets of the IASC-ASCE benchmark structure are utilized to validate the accuracy of pro-
posed methods. Results suggest that the proposed methods are effective tools for damage detection and
localization under ambient vibration and non-stationary and/or stationary signals.

� 2018 Published by Elsevier Ltd.
1. Introduction

Structural health monitoring (SHM) is a vital strategy for civil,
mechanical, and aerospace engineering systems due to preventing
any irreparable deterioration and damage, reducing maintenance
costs, improving dynamic performance, and increasing structural
safety and integrity [1]. This strategy includes the equipment of
structures with sensors (i.e. accelerometers, strain gages, fiber
optics, etc.), measurement of vibration responses (i.e. displace-
ment, strain, acceleration, etc.), extraction of meaningful and sig-
nificant features from the measured vibration signals, and feature
classification for early damage detection, localization, and quantifi-
cation [2].

Damage is inherently a local phenomenon; hence, a basic
requirement for an SHM scheme is to install and distribute a dense
sensor network throughout the structure for capturing entire infor-
mation about the structural dynamics. Due to major advances and
new development of sensor technology, the collection of vibration
data for SHM applications is no longer a significant topic. The
application of non-expensive sensors along with modern data
acquisition systems provides an opportunity to use ambient vibra-
tions such as wind, traffic, human activity, etc. for the excitation of
engineering systems, particularly civil engineering structures [3].
The great advantage of the ambient vibrations against the forced
vibrations is the lack of using expensive and heavy devices for
exciting structures, which leads to an efficient and cost-effective
SHM program [4]. Under such circumstances, the primary and
demanding task is to adopt robust signal processing methods for
analyzing measured vibration data and extracting damage-
sensitive features (DSFs) [5].

Despite numerous research efforts along with successful results
in SHM applications, there are still some challenging issues and
limitations. Conventional signal processing techniques in time or
frequency domains assume that the measured vibration signals
are stationary and linear [6]. However, this assumption may not
be accurate resulting frommeasuring non-stationary vibration sig-
nals from the ambient excitations, intrinsic dynamic nature, high-
speed mechanical systems, and structural damage or mechanical
faults [7–9]. An efficient way for extracting the DSFs from the
non-stationary signals is to use adaptive time-frequency data anal-
ysis methods [6]. For the first time, Huang et al. [10] proposed
empirical mode decomposition (EMD) method to decompose a
non-stationary signal into several stationary data named as intrin-
sic mode functions (IMFs). In order to deal with the major draw-
back of EMD called mode mixing, Wu and Huang [11] presented
a noise-assisted data analysis method known as ensemble
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empirical mode decomposition (EEMD). Due to its great ability to
analyze a broad range of stationary and non-stationary signals
without the mode mixing problem, the EEMD method has widely
been utilized in civil and mechanical systems for damage detection
and fault diagnosis [12–17].

In addition, the other significant issue in the context of SHM is
concerned with the fact that the ambient vibrations are unmeasur-
able and unknown [18]. In such cases, one of the efficient and reli-
able ways for extracting significant DSFs is to model the measured
vibration responses acquired from the ambient excitations by
parametric time series models such as autoregressive (AR)
[19,20], autoregressive with eXogenous input (ARX) [21], autore-
gressive moving average (ARMA) [18,22], and autoregressive-
autoregressive with eXogenous input (ARARX) [23]. The key bene-
fit of using time series modeling for feature extraction is that this
process does not depend on the type of excitation sources. Further-
more, the main statistical characteristics of the above-mentioned
time series models (i.e. the coefficients and residuals) are sensitive
to damage [24]. However, the main premise of using these models
is that the vibration time-domain responses should be stationary
[25]. In other words, these are not suitable for use in cases that
the measured vibration signals are non-stationary. As a result,
one robust approach to feature extraction under ambient vibration
and non-stationary signals is to utilize a hybrid algorithm as a
combination of a time-frequency data analysis technique and a
time-invariant linear model.

Apart from the step of feature extraction in the data-driven
SHM strategy, the use of high-dimensional time series features is
a demanding problem, which may not only make a difficult and
time-consuming feature classification process but also provide
inaccurate damage detection results, particularly from a dense sen-
sor network [26]. Although dimensionality reduction methods are
usually applied to map such features onto a new reduced space,
one can alternatively use influential dissimilarity-based or time-
series classification methods [27]. The advantage of such methods
is the possibility of direct classification of time series features
without dimensionality reduction or any concern about the loss
of information.

In this article, a new hybrid algorithm for feature extraction is
proposed to deal with the significant problem of extracting DSFs
from non-stationary vibration signals under ambient vibrations.
This algorithm is a combination of the EEMD method and ARARX
model named as EEMD-ARARX. On this basis, an IMF with the
highest level of energy is initially chosen among all modes
extracted from the EEMD technique. Fitting an ARARX model to
this IMF, the AR coefficients and ARX residuals are extracted as
the most significant DSFs. The major limitation of applying the
ARX residuals is that these are randomly high-dimensional multi-
variate data. Correlation-based dynamic time warping (CDTW)
method is proposed to handle this limitation and detect early dam-
age. This approach is based on the segmentation of time series data
sets by principal component analysis (PAC)-based techniques and
calculation of CDTW dissimilarity quantity using PCA similarity
factor. Dynamic time warping (DTW) method is used to locate
damage with the aid of the AR coefficients along with a well-
known threshold limit. The process of damage localization relies
on finding the sensor location associated with the largest DTW
value that exceeds the threshold limit. The accuracy and efficiency
of the proposed methods are experimentally verified by the IASC-
ASCE benchmark structure equipped with a relatively dense sensor
network. Results demonstrate that the EEMD-ARARX algorithm
succeeds in extracting the significant DSFs from the non-
stationary and/or stationary vibration signal under ambient vibra-
tions. Moreover, it will be observed that both CDTW and DTW
methods are influentially capable of detecting early damage and
identifying the locations of single and multiple damage cases.
The rest of this article is arranged as follows. Section 2 briefly
describes the adaptive time-frequency data analysis methods such
as EMD and EEMD. Time series analysis by ARARX model is dis-
cussed in Section 3. Section 4 presents the proposed EEMD-
ARARX algorithm for feature extraction. In Section 5, the time-
series classification methods such as CDTW and DTW are explained
for the early damage detection and localization. Experimental val-
idation by the IASC-ASCE benchmark structure is evaluated in Sec-
tion 6. Eventually, Section 7 summarizes the main conclusions
regarding this research study.

2. Adaptive time-frequency data analysis methods

2.1. EMD

The EMD is a self-adaptive method that offers an iterative
numerical approximate algorithm (sifting process) for the analysis
of stationary, non-stationary, and transient signals [10]. This
method is based on the decomposition of a signal into a set of com-
plete and almost orthogonal components known as intrinsic mode
functions (IMFs). These components arrange from high to low fre-
quencies based on local characteristic timescales. The IMFs indi-
cate the natural vibration mode embedded in the signal and
serve as the basis functions determined by the signal itself. This
great advantage makes the EMD as an adaptive non-parametric
time-frequency analysis approach, which increases its applicability
to a wide range of signals without constructing any basis to match
the signal characteristic structure [7]. Given a vibration signal in
time domain x(t), the process of signal decomposition through
the EMD method is given by:

x tð Þ ¼
Xn
i¼1

ci tð Þ þ rn tð Þ ð1Þ

where ci(t) and rn(t) represent the ith IMF and the residual (trend) of
the original signal, respectively. Each IMF should satisfy two condi-
tions including (i) the numbers of extreme and zero-crossings
should differ by not more than one, and (ii) the mean value of
envelop defined by the maxima and minima at any given time
should be zero. In the following, the algorithm of EMD is summa-
rized as:

1. Initialize: r0 = x(t) and i = 1
2. Extract the ith IMF: ci

2a. Initialize: hi(k-1)=ri-1, k = 1
2b. Extract the local maxima and minima of hi(k-1)
2c. Interpolate the local maxima and minima by cubic spline

lines to form upper and lower envelops of hi(k-1)
2d. Calculate the mean mi(k-1) of the upper and lower envelops

of hi(k-1)
2e. Set hik = hi(k-1)- m(k-1)
. If hik is an IMF then set ci = hik, else return to step 2b with
k = k + 1
2f

3. Define the remainder ri+1 = ri-ci
4. If ri+1 still has least two extreme then return to step 2 with

i = i + 1, else the process of signal decomposition is terminated
and ri+1 is the residual of the signal

2.2. EEMD

Although the EMD is an effective way in resolving the time-
varying structure of signal components, it suffers from the major
drawback of mode mixing. The precise definition of mode mixing
is that different modes of oscillation appear in one IMF or one
mode spread across different IMFs [11]. When the mode mixing
occurs, an IMF can cease to have physical meaning by itself due
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to the presence of different physical processes with different
energy levels in a mode. This problem also implies that there is
energy leakage from one IMF component to its adjacent mode.
On the other hand, the inherent orthogonality characteristic of
IMFs is no longer satisfied; therefore, the independence among
the decomposed components is not imposed [14]. Under such cir-
cumstances, the EMD method cannot extract reliable DSFs because
of the problem of mode mixing.

To cope with this important drawback, the EEMD enhances
the EMD algorithm to reconstruct better IMFs by adding zero
mean unit variance white noise with a limited amplitude (An)
and a specific ensemble number (NE) [11]. More precisely, the
added white noise uniformly populates the whole time-
frequency space leading to components of different scales. During
adding this uniformly distributed white noise, the components in
different scales of the original signal are automatically projected
onto appropriate scales. Since the white noise is added through-
out the entire signal decomposition process, no missing scales are
available, which lead to the elimination of mode mixing. In
addition, the zero mean of the white noise help to cancel out
the added white noise in the final ensemble mean, if there are
adequate ensemble numbers. This means that the only signal
itself remains in the final decomposition result [6,12]. Similar
to the EMD method, assume that x(t) is an original vibration sig-
nal, which is innocuously populated by a white noise signal w(t)
as follows:

xj tð Þ ¼ x tð Þ þwj tð Þ; j ¼ 1;2; :::;NE ð2Þ

where NE denotes the number of the ensemble (trail) and xj(t) is the
noise-added signal in the jth trail. Inspired by the EMD algorithm,
this signal is decomposed into a series of IMFs in the following
form:

xj tð Þ ¼
Xnj
i¼1

ci;j tð Þ þ rnj tð Þ; j ¼ 1;2; :::;NE ð3Þ

where ci,j represents the ith IMF of the jth ensemble, rnj is the resid-
ual of jth ensemble and nj denotes the IMFs number of the jth ensem-
ble. By calculating the ensemble means of corresponding IMFs of
the decompositions, the final IMF obtained by the EEMD algorithm
is given by:

ĉi tð Þ ¼
PNE

j¼1ci;j tð Þ
NE

; i ¼ 1;2; . . . ; n̂ ð4Þ

where bn = min (n1,n2,. . .nNE). For the sake of convenience, the algo-
rithm of EEMD is summarized as follows:

1. Determine an optimal noise amplitude and a proper ensemble
number (Please observe Section 2.3).

2. Perform the jth ensemble on the noise-added signal xj(t) by
j = 1.
2a. Generate a randomly zero mean unit variance white noise

signal with the obtained noise amplitude and add it to
the original signal.

2b. Decompose the noise-added signal into n modes (ci,j) using
the EMD algorithm.

2c. If j < NE, then return to step 2a with j = j + 1.
2d. Repeat steps 2a-2c again with a new randomly white noise

signal.
3. Calculate the ensemble mean of the NE trails for each IMF based

on Eq. (4).
4. Apply the mean ĉi as the final IMF obtained by the EEMD

method.
2.3. Parameter selection

The amplitude of the added white noise and the ensemble num-
ber are crucial parameters in the EEMD algorithm that need to be
prescribed. In general, there are no specific formulations to deter-
mine the EEMD parameters, particularly the noise amplitude. In
most cases, these values are obtained from the trial and error or
empirical equations [28]. For instance, Wu and Huang [11] pro-
vided a relationship among the ensemble number, the noise ampli-
tude, and the standard deviation of error. They recommended that
the amplitude of the added white noise is approximately 0.2 of a
standard deviation of the original signal and the value of ensemble
number is a few hundred. However, this approach is not always
useful for signal processing in various applications, because the
noise amplitude has a considerable importance in the performance
of the EEMDmethod. Selection of a very low-value noise amplitude
will not introduce adequate changes in the extremes of the decom-
posed signal and a very high quantity will result in redundant
IMFs. In order to have an accurate choice of An, one can introduce
relative root-mean-square of error (RRMSE) method [28] as follows:

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnt
k¼1

x kð Þ � cmax kð Þð Þ2

Pnt
k¼1

x kð Þ � x
�� �2

vuuuuuut ð5Þ

where cmax is an IMF that has the highest correlation with the orig-

inal signal; nt denotes the number of time samples, and x
�
represents

the mean of the original signal. If the value of RRMSE to be small, the
selected IMF is close to the original signal with the availability of
white noise. It implies that cmax not only includes the main compo-
nent of the original signal, but also involves the noise and/or the
other irrelevant signal components. Accordingly, the difference
between the original signal and the selected IMF becomes small,
which indicates an inappropriate decomposition process. On the
contrary, a high value of RRMSE means that the signal is separated
from the noise and the other irrelevant signal components; hence,
the selected IMF consists of the main signal component. It is worth
remarking that the amplitude of the added white noise is related to
the original signal and can be expressed as follows:

An ¼ Lnr0 ð6Þ
where r0 is the standard deviation of the original signal and Ln
denotes the noise level of the added white noise. Therefore, the
selection of An is equivalent to choosing Ln. Once the noise ampli-
tude has been determined, one needs to obtain a proper ensemble
number; however, this procedure may have two significant limita-
tions. First, the selection of a large ensemble quantity will lead to a
high computation cost. Second, a small number of NE will not enable
the EEMD method to cancel out the noise remaining in each IMF
[28]. In this regard, a reliable approach to determining a suitable
ensemble number is the signal-to-noise ratio (SNR). This process
is based on fixing the optimal noise amplitude and increasing the
ensemble number until the change in the value of SNR relatively
becomes small.

3. Time series analysis by ARARX model

A time series is a sequence of observations measured sequen-
tially in a specific time interval. It appears as stationary or non-
stationary, seasonal or non-seasonal, deterministic or random,
and linear or non-linear data. On the other hand, time series anal-
ysis is a statistical tool that aims at analyzing time series data by
fitting a mathematical model for various tasks such as time series
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modeling, feature extraction, and forecasting [25]. A time series
representation is a stochastic model building of time series that
depends on the nature of data. Assuming that vibration time-
domain signals (i.e. accelerations or IMFs) are stationary and linear,
one can build diverse polynomial time-invariant linear models
such as AR, ARX, ARMA, ARMAX, and ARARX [25,29]. Generally,
these representations consist of three main parts: (i) eXogenous
(X) or input term related to the excitation forces subjected to the
structure, (ii) autoregressive (AR) or output term regarding the
structural responses, and (iii) moving average (MA) or error term
[29].

In the case of using the ambient vibrations, when the input data
is unmeasurable and unknown, an efficient way for the response
modeling is to apply time series models that incorporate a polyno-
mial equation into the error term. This is because of the fact that
changes in the amplitude of ambient excitations will lead to alter-
ations in the coefficients of the MA term [22]. Among the above-
mentioned time-invariant linear models, one can utilize the ARMA
and ARARX representations for modeling the vibration time-
domain signals under the ambient excitations. Note that although
the ARMAX model contains the error term, it is not usually used in
the modeling process resulting from the unavailability of input
data.

On the other hand, the selection of ARMA or ARARX depends on
the nature of data. In some circumstances, a time series signal may
only conform to an AR process, which makes possible to choose the
ARARX model rather than ARMA [29]. One efficient way to find the
nature of time series data is to apply Box-Jenkins methodology by
checking the correlation of data using autocorrelation function
(ACF) and partial autocorrelation function (PACF) [25]. According
to this methodology, if ACF tails off as exponentially decay or
damped wave sine and PACF cuts off after a certain lag, it implies
that time series data is compatible with the AR process. In contrast,
if ACF cuts off after a certain lag and PACF decays gradually as
exponential or damped sine waveforms, time series data conforms
to the MA process. Eventually, if both ACF and PACF decay gradu-
ally, it is preferable to consider the ARMA model. Given a station-
ary and linear vibration response y(t), the AR representation is
expressed as:

y tð Þ ¼
Xp

i ¼ 1

hiy t � ið Þ þ e tð Þ ð7Þ

where b=[h1,h2,. . ., hp] and p represent the AR model coefficients and
order, respectively. Moreover, e(t) denotes the residual sequence at
time t, which corresponds to the difference between the measured
vibration signal and the predicted one obtained from the model. The
general idea behind the establishment of an ARARX model is to use
the residuals of the AR model as the input data in the ARX represen-
tation as follows:

y tð Þ ¼
Xq

j ¼ 1

ujy t � jð Þ þ
Xr

k ¼ 1

wke t � kð Þ þ e tð Þ ð8Þ

where q and r are the orders of ARX model associated with the out-
put and input terms, for which U=[u1,u2,. . .,uq] and W=[w1,w2,. . .,
wr] are their coefficients, respectively. In Eq. (8), e(t) denotes the
residual of the ARX model at time t. The significant topic in time
series modeling is to determine sufficient orders so that enable
the time series model to produce uncorrelated (independent) resid-
uals [25]. If the model orders to be inadequate, it is essential to
improve them for fitting an accurate time series model and captur-
ing the entire information about the structural dynamics [30]. Due
to the importance of order determination in time series modeling,
an iterative method proposed by the current authors [24] is utilized
to choose the sufficient orders for the AR and ARX terms of the
ARARX model.

4. A new feature extraction method by EEMD-ARARX algorithm

The proposed feature extraction method is a two-stage hybrid
algorithm as the combination of the EEMD method and ARARX
model (EEMD-ARARX). Although some researchers exploited the
EMD-AR algorithm [31,32], it may fail in extracting the reliable
and informative DSFs for some reasons. First, the mode mixing
problem mainly occurs in the signal decomposition procedure by
using the EMD technique. Second, the AR model is not usually suit-
able for modeling the vibration time-domain responses acquired
from the ambient excitations. The main objective of the proposed
EEMD-ARARX algorithm is to extract the significant DSFs from
non-stationary and/or stationary signals under unmeasurable
ambient vibration. In the first stage, an IMF with the highest
energy level among all modes extracted from the EEMD method
is obtained as the main IMF to use in the ARARX modeling. The pri-
mary advantage of this mode is that it strongly depends on the
damage. The total energy of all IMFs (ET) is given by:

ET ¼
Xn
i¼1

Eĉi tð Þ ð9Þ

where Ebc i tð Þ denotes the amount of energy contained in the ith IMF,

which can be expressed as:

Eĉi tð Þ ¼
Xnt
k¼1

jĉi kð Þj2 ð10Þ

Due to being stationary, the selected IMF is highly proper to uti-
lize in the time-invariant linear representations for time series
modeling. Accordingly, the second stage is concerned with model-
ing the main IMF through an ARARX representation. This process
consists of: (i) the determination of the AR and ARX orders in the
normal (healthy or known) condition, (ii) estimation of the model
coefficients, and (iii) extraction of the model residuals in both
healthy and damaged (abnormal or current) states. Fig. 1 shows
the flowchart of the proposed EEMD-ARARX algorithm. In this fig-
ure, zAR and zARX denote the residual vectors of the AR and ARX
models, respectively.

In SHM community, the process of feature extraction by time
series modeling consists of coefficient-based and residual-based
methods [24]. For the sake of convenience and clarification, these
algorithms are developed to describe the extraction of DSFs based
on the EEMD-ARARX algorithm. In the first method, the AR coeffi-
cients of the ARX model are representative of damage features, for
which the model orders (p, q, and r) are initially determined in the
normal condition. Suppose that xu(t) and xd(t) are the vibration
time-domain signals in the undamaged and damaged conditions.
Applying the EEMD method, the main IMFs of both signals are
extracted and designated by cmu(t) and cmd(t), respectively. Having
the orders of AR and ARX representations into consideration, the
expressions needed to obtain the model coefficients in the normal
condition are written in the following forms:

cmu tð Þ ¼
Xp

i¼1

huicmu t � ið Þ þ eu tð Þ ð11Þ

cmu tð Þ ¼
Xq

j¼1

uuj
cmu t � jð Þ þ

Xr

k¼1

wuk
eu t � kð Þ þ eu tð Þ ð12Þ

The same formulations can be expressed for the current or dam-
aged state as:
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Fig. 1. The flowchart of the proposed EEMD-ARARX algorithm.
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cmd tð Þ ¼
Xp

i¼1

hdicmd t � ið Þ þ ed tð Þ ð13Þ
cmd tð Þ ¼
Xq

j¼1

udj
cmd t � jð Þ þ

Xr

k¼1

wdk
ed t � kð Þ þ ed tð Þ ð14Þ

Based on these formulations, the AR coefficients of the ARX rep-
resentation in both normal and damaged states, Uu = [uu1. . .uuq]
and Ud = [ud1. . .udq], are selected as the DSFs. The residual-based
feature extraction method relies upon using the model orders
and coefficients in the normal condition for predicting the
responses of the damaged state. The fact beyond this algorithm is
that the model (i.e. its orders and coefficients) used in the undam-
aged state will no longer correctly predict the responses of the
damaged structure. Thus, the model residuals regarding the dam-
aged state will increase. Considering the ARARX model orders
and coefficients (i.e. bu, Uu, and Wu) obtained from the normal
condition, the ARX residuals associated with the undamaged and
damaged states are extracted as the DSFs in the following forms:

eu tð Þ ¼ cmu tð Þ �
Xq

j¼1

uuj
cmu t � jð Þ þ

Xr

k¼1

wuk
eu t � kð Þ

" #
ð15Þ
eu tð Þ ¼ cmd tð Þ �
Xq

j¼1

uuj
cmd t � jð Þ þ

Xr

k¼1

wuk
ed t � kð Þ

" #
ð16Þ
5. Feature classification methods

5.1. DTW

The DTW is a distance method that computes the dissimilarity
between two time-domain sequences by finding an optimal path
between them [33]. More precisely, it measures the dissimilarity
by aligning the two sequences of possibly different lengths and
computing a distance function using dynamic programming. Actu-
ally, the sequences are warped in a non-linear manner to calculate
the dissimilarity, regardless of the non-linear variations [34,35].
The primary aim of using the DTW method is to locate damage
using the AR coefficients of the ARX model as the DSFs. For this
purpose, the DTW calculates a distance matrix as the dissimilarity
of all samples between Uu and Ud as follows:

D ¼

d11 � � � dq1

. .
.

: : :

..

.
dij

..

.

: : : . .
.

d1q � � � dqq

26666666664

37777777775
ð17Þ

where dij represents the dissimilarity between ith sample of Uu

and jth sample of Ud. Typically, the Euclidean distance function is
applied to calculate point-to-point dissimilarity in the following
form:

dij ¼ uui
�udj

� �2
; i; j ¼ 1;2; :::; q ð18Þ

Once the distance matrix has been established, the optimal path
warp is computed by using the minimum cumulative distance
between the sequences. The best match between two sequences
is one that has the lowest distance path warp after aligning one
sequence to the other. The dissimilarity betweenUu andUd based
on the DTW method corresponds to the path with minimal warp-
ing cost as follows:

DTW Uu;Udð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C i; jð Þ

q
ð19Þ

where
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C i; jð Þ ¼ uui
�udj

� �2
þmin

C i - 1; j - 1ð Þ
C i - 1; jð Þ
C i; j - 1ð Þ

8><>:
9>=>; ð20Þ

For the process of damage localization, one can obtain a DTW
distance value at each sensor location. Assuming that ns sensors
are installed on the structure of interest, the damage localization
vector is given by DLV=[DTW1. . .DTWns]. The location of damage
is situated near a sensor that has a larger DTW quantity in compar-
ison with the other sensors. One robust way to make sure of locat-
ing damage is to define a threshold limit. A common approach is to
use a statistical confidence interval of the DLV amounts [36]. On
this basis, the threshold is expressed as the upper bound of a
one-sided confidence interval in the following form:

s ¼ lDLV þ rDLVffiffiffiffiffi
ns

p
� �

f 1�að Þ ð21Þ

where lDLV and rDLV are the mean and standard deviation of the
DLV amounts, respectively. Furthermore, f(1-a) is the critical value
for the distribution with ns-1 degree of freedom in a significant
level. Applying 5% significant level, the threshold is based on the
upper bound 95% confidence interval. For the problem of damage
localization, the sensor location regarding the DTW dissimilarity
value more than the threshold limit is identified as the location
of damage.

5.2. CDTW

Although the DTW method measures the dissimilarity between
two time-domain sequences appropriately, it may suffer a major
drawback regarding the distance computation of high-
dimensional time series data. The ARX residual vector of the
ARARXmodel at each sensor location has the same number of sam-
ples as the original signal, which is a relatively large and high-
dimensional time series set for feature classification. Therefore,
the direct use of the DTW method may not be suitable for early
damage detection due to making a complicated and time-
consuming process. For this reason, the CDTWmethod is presented
here to deal with the DTW shortcomings. This method relies on the
segmentation of multivariate high-dimensional time series data
using principal component analysis (PCA) [37].

On the other hand, the problem of early damage detection by
using the residuals of time series models lies in the fact that the
occurrence of damage changes the correlation of residual
sequences. As stated earlier, the model residuals gained by the nor-
mal condition of the structure should be uncorrelated. On this
basis, any change in the residual correlation is indicative of the
damage occurrence [24]. Therefore, in addition to dealing with
the significant issue of using the high-dimensional features, the
CDTW method is efficiently suitable for the problem of early dam-
age detection.

The main aim of data segmentation in the CDTW is to find
homogenous partitions by defining a cost function. Suppose that
Z is an nt-element ns-variable multivariate time series, which can
be expressed as:

Z ¼ z1; z2; :::zi; ::; zns½ �;
zi ¼ zi 1ð Þ; zi 2ð Þ; :::; zi jð Þ; :::; zi ntð Þ½ �T ð22Þ

where zi is the ith variable and zi(j) denotes the jth element of zi.
Based on this notation, a multivariate time series data set can be
represented by a matrix, in which each column (variable) corre-
sponds to a vector (zi) and each row denotes a sample of the mul-
tivariate time series, zi(j), as follows:
Z 1ð Þ
Z 2ð Þ
..
.

Z ntð Þ

266664
377775 ¼

z1 1ð Þ z2 1ð Þ � � � zns 1ð Þ
z1 2ð Þ z2 2ð Þ � � � zns 2ð Þ
..
. ..

. ..
. ..

.

z1 ntð Þ z2 ntð Þ � � � zns ntð Þ

266664
377775 ð23Þ

The ith segment of Z is a set of consecutive time samples, Si(a,b)=
[Z(a);Z(a + 1);. . .;Z(b)], where a and b are the first and last samples.
The v-segmentation of the multivariate time series is a partition of
Z to v non-overlapping segments as SZ=[S1(1,a);S2(a + 1,b);. . .;Sv(k,
nt)]. Indeed, a v-segmentation splits Z to v disjoint time intervals,
where 1 � a and k � nt. The cost function for segmentation can
be any arbitrary equation that projects the multivariate time series
data set to the space of the non-negative real numbers [37]. It is
usually based on the differences between the segment values and
its approximation by a simple function (g) as follows:

Cost Si a; bð Þð Þ ¼ 1
b� aþ 1

Xb

j¼a

d Z jð Þ; g Z jð Þð Þð Þ ð24Þ

In this study, Hotelling’s T2 statistic and Q-reconstruction error
(QRE) are used to define their cost functions and segment the mul-
tivariate data sets as the measure of the homogeneity of segments.
The QRE employs the direct change in the correlation among vari-
ables, whereas the Hotelling’s T2 statistic is a statistical measure of
the multivariate distance of each sample from the center of the
data set. For the jth sample, the QRE and Hotelling’s T2 statistic
are expressed as:

Q jð Þ ¼ Z jð Þ I - UpcU
T
pc

� �
Z jð ÞT ð25Þ

T2 jð Þ ¼ Lpc jð ÞLpc jð ÞT ð26Þ
where I is the identity matrix; Upc represents the matrix of principal
components gained by the PCA and Lpc(j) is the lower v-dimensional
representation of Z(j). Based on Eq. (24), the cost functions of QRE
and Hotelling’s T2 statistic are given by:

CostQ Si a; bð Þð Þ ¼ 1
b� aþ 1

Xb

j¼a

Q jð Þ ð27Þ

CostT2 Si a; bð Þð Þ ¼ 1
b� aþ 1

Xb

j¼a

T2 jð Þ ð28Þ

Before utilizing PCA-based segmentation techniques, it is essen-
tial to determine the adequate numbers of principal components
(nPC) and segments (v). Average eigenvalue criterion (AEC) or Kai-
ser’s criterion is one of the methods for determining nPC, which
adopts the only significant components with eigenvalue larger
than the average eigenvalue. In order to obtain v, an efficient and
simple approach is to use relative reduction error of the cost func-
tion between two consecutive segments as presented in the fol-
lowing equation [37]:

qr ¼
Cost Sv - 1

� �
� Cost Sv

� �
Cost Sv�1

� � ð29Þ

In this equation, Cost(Sv-1) and Cost(Sv) are the cost functions of
QRE or Hotelling’s T2 statistic for v-1 and v segments. The appropri-
ate number of segments is one that has the smallest qr.

Now, suppose that Zu and Zd are the ARX residuals of the ARARX
model in the normal and damaged conditions. Both of them are
matrices with nt samples (rows) and ns variables (columns), which
make randomly high-dimensional multivariate data sets. Initially,
the PCA-based segmentation techniques based on the QRE and



554 A. Entezami, H. Shariatmadar /Measurement 134 (2019) 548–568
Hotelling’s T2 cost functions are applied to determine the segments
of these multivariate datasets in the normal and damaged condi-
tions (Su and Sd). The early damage detection is based on the calcu-
lation of CDTW dissimilarity quantity using PCA similarity factor as
follows [38]:

DS Zu;Zdð Þ ¼
trace ST

uSd � ST
dSu

� �
nPC

ð30Þ

where trace denotes the sum of the diagonal elements of

ST
uSd � ST

dSu

� �
. Based on Eq. (30), the DS quantity close to zero is rep-

resentative of the normal condition and any deviation from this
amount implies the occurrence of damage. Furthermore, the largest
DS value represents the highest level of damage severity.
6. Application

To validate the accuracy and performance of the proposed
methods, a series of experimental data sets of the well-known
IASC-ASCE benchmark model (Phase II) are applied. This is a
four-story steel structure, as shown in Fig. 2(a), constructed from
2-bay-by-2-bay steel frame in scale-model with 2.5 � 2.5 m in plan
and 3.6 m in tall [39]. The members were hot-rolled grade 300W
steel with the nominal yield stress 300 MPa. The columns and floor
beams were constructed by B100 � 9 and S75 � 11 sections,
respectively. In each bay, the bracing system consisted of two
12.7 mm diameter threaded steel rods placed in parallel along
the diagonal.

Different structural changes were considered to simulate dam-
age cases with different severity levels. The damage patterns
included removing the bracing systems from the east side of the
structure and loosening the bolts at the beam-column connections
on the east-north side. In this study, the first damage pattern is
used to assess the capability of the proposed methods. Table 1 rep-
resents the healthy and damaged conditions of this pattern.

A relatively dense sensor network with 15 accelerometers was
mounted on the structure to measure acceleration time-domain
(a) 

Fig. 2. (a) The view of the IASC-ASCE benchm
responses caused by the ambient excitations such as wind, pedes-
trians, and traffic. As Fig. 2(b) appears, two accelerometers were
placed along the east and west frames on each floor as well as
the base of the structure to measure the motion in the north-
south direction (along the strong axis). Additionally, an accelerom-
eter was installed on each floor and the base near the center col-
umn of the frame to measure the east-west accelerations of the
structure (along the weak axis). Applying a sampling frequency
of 200 Hz, 60,000 samples of vibration signals were measured dur-
ing a time window of 300 s. It is important to point out that the
acceleration time-domain responses acquired from the sensors
1–3 mounted on the base are not incorporated into the feature
extraction and classification steps owing to the lack of having rel-
evant information about the dynamic behavior of the structure. For
example, Figs. 3–5 demonstrate the vibration signals of the sensors
4–15 associated with the cases 1, 2, and 5, respectively. In addition,
some statistical analyses are performed on the measured accelera-
tion responses of all cases to show their statistical properties as
illustrated in Figs. 6 and 7. These can be applied to assess the
uncertainty in measurement. It is worth remarking that if an
uncertainty is based on a statistical analysis, it is treated as a Type
A uncertainty [40,41]. Furthermore, it needs to mention that due to
using the unmeasurable and unknown ambient vibration for the
excitation of the structure, the problem is most likely a Type A
uncertainty [41].
6.1. Initial data analysis

Prior to implementing the step of feature extraction, it is prefer-
able to analyze the vibration time-domain responses. To perform
this task, each vibration signal is initially normalized by the z-
score standardization procedure through subtracting all samples
from the mean of the signal and diving its standard deviation. Sub-
sequently, the stationarity of vibration responses is assessed by
using Kwiatkowski-Phillips-Schmidt-Shin (KPSS) hypothesis test
[42]. It assesses the null hypothesis that a univariate time series
is trend stationary against the alternative hypothesis that it is a
(b) 
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Table 1
Damage scenarios of the second phase of the IASC-ASCE structure.

Case
no.

Condition Description

1 Healthy Fully braced configuration
2 Damaged Removing the braces of all floors from the east side
3 Damaged Removing the braces of all floors from one bay on the

southeast corner
4 Damaged Removing the braces of the first and fourth floors from

one bay on the southeast corner
5 Damaged Removing the braces of the first floor from one bay on

the southeast corner
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non-stationary unit root process. The KPSS test gives important
outputs such as a test statistic, a critical value (c-value), and a
probability value (p-value) that can be utilized to analyze time ser-
Fig. 3. The vibration signals of the sensors 4–1
ies data. By using a significant limit (a), it is possible to make a
decision about the null or alternative hypotheses. If the test statis-
tic is less than the c-value or the p-value to be more than the sig-
nificant limit, these imply that the time series data is stationary.

As a sample, Fig. 8 illustrates the KPSS test statistics by consid-
ering the 95% confidence interval under 5% significant level at all
sensors for the cases 1–4. In this figure, the red lines depict the
c-value of the KPSS test, which corresponds to 0.1460. It is clear
in Fig. 8 that some vibration signals have non-stationary behaviors
and the other ones are stationary. Such observations clearly
demonstrate the effect of unknown ambient excitations on the
responses of the structure. Under such circumstances that the nat-
ure of vibration responses is variable and unpredictable, one of the
most suitable ways for the feature extraction is to use a combina-
tion of a signal decomposition method and a time series model
such as the proposed EEMD-ARARX algorithm. Although this
method is usually proper to decompose the non-stationary signals
5 of the IASC-ASCE structure in the case 1.



Fig. 4. The vibration signals of the sensors 4–15 of the IASC-ASCE structure in the case 2 (the highest level of damage).
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into several stationary IMFs, there is no limitation to use it for the
stationary data.
6.2. Parameter selection for EEMD

In the first stage of the proposed feature extraction method
based on the EEMD-ARARX algorithm, one should choose an opti-
mal noise amplitude and an appropriate ensemble number for the
extraction of true IMFs. At first, a wide range of noise levels (Ln) is
chosen to use in the EEMD method and then calculate their RRMSE

values based on Eq. (5). For this process, the initial ensemble num-
ber is set as a small value, NE = 10, and relatively large and small
amounts are chosen as the initial and last noise levels, (Ln)1 = 2.5
and (Ln)Last = 0.001. According to these values, three different
ranges of the noise levels are defined to obtain an optimal Ln that
makes the largest RRMSE quantity. In the first range, the noise level
decreases from 2.5 to 0.1 in the step of 0.1 (2.5 � Ln � 0.1). For the
second range, this process repeats between 0.09 and 0.01
(0.1 > Ln � 0.01) in the step of 0.001. Finally, in the third range of
the noise level, it begins with 0.009 and ends with the last noise
level (0.01 > Ln � 0.001), in which the decreasing step becomes
0.001. Fig. 9 indicates the selection of optimal noise level at some
sensors of the cases 1–4.

Once the optimal noise amplitudes based on Eq. (6) have been
determined, the process of selecting appropriate ensemble num-
bers is carried out by fixing the optimal An and increasing NE until
the alteration in the SNR values relatively becomes small. This pro-
cedure is shown in Fig. 10 for some sensors in the cases 1–4. The
initial ensemble number is set as 10 and the other numbers are
30, 50, 100, 120, 150, 180, 200, 250, and 300. Note that the same
process with Fig. 10 is accomplished to attain the proper ensemble
numbers for the other sensors in all cases.

From Figs. 9 and 10, it can be observed that the amounts of An

and NE in the different structural conditions (the cases 1–4) and



Fig. 5. The vibration signals of the sensors 4–15 of the IASC-ASCE structure in the case 5 (the lowest level of damage).
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sensors approximately vary in the same levels so that the noise
levels and the ensemble numbers are in the ranges of 1.1–1.5
and 100–150, respectively. These mean that the unknown and
unpredictable ambient excitations, which may lead to stationary
or non-stationary vibration signals, do not significantly affect the
process of parameter selection.

6.3. IMF extraction

Applying the obtained noise amplitudes and ensemble numbers
to the EEMD algorithm, the true IMFs of each vibration signal are
extracted. At each sensor, the main IMF with the highest energy
level is selected among all extracted modes in both healthy (cmu)
and damaged (cmd) states. For instance, the energy levels of all IMFs
in the cases 1–4 at the sensor 15 are illustrated in Fig. 11.

From Fig. 11, one can observe that the most relevant IMFs to the
original vibration signal are available in the first few modes, which
include larger energy levels and frequency contents in comparison
with the other modes. In other words, these IMFs are the main
components of the vibration signals, which have the major
dynamic information. Among them, the main IMF with the highest
energy level is selected as the candidate of all extracted IMFs to
utilize in the ARARX modeling and feature extraction.

As another note, the main advantage of the signal decompo-
sition methods such as EEMD is to convert a non-stationary
vibration signal into several stationary components or modes.
Due to being stationary, one can simply apply the time-
invariant linear representations such as the ARARX model to
extract the DSFs. In this regard, Fig. 12 indicates the non-
stationary vibration signals (i.e. after the z-score standardization)
at the sensor 15 in the cases 1 and 2 as well as their stationary
main IMFs. To ensure the stationarity of extracted IMFs, Fig. 13
shows the results of the KPSS hypothesis test at all sensors in
the cases 1–4. Using the 5% significant limit and 95% confidence



Fig. 6. Box plots of the vibration signals of the IASC-ASCE structure in all cases.

Fig. 7. Standard deviations of the vibration signals of the IASC-ASCE structure in all
cases.
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interval, the c-value of the test corresponds to 0.1460. Accord-
ingly, it is discerned that all test statistics are less than the c-
value in the sense that the main IMFs is compatible with the
stationary process.
6.4. ARARX modeling

In the second stage of the proposed hybrid algorithm, the
ARARX model is fitted to the main IMF at each sensor. Before this
process, it is necessary to clarify the reason for choosing the ARARX
representation among all time-invariant linear models. As already
stated, the ARMA and ARARX models are suitable for situations
that the input data caused by the ambient excitations are unknown
and unmeasurable.

From a statistical viewpoint, the difference between these mod-
els is that the ARARXmodel is entirely compatible with the AR pro-
cess, whereas the ARMA representation conforms to both AR and
MA processes. Using the Box-Jenkins methodology for the model
identification, Fig. 14 indicates the ACF and PACF of the main IMFs
at the sensor 15 of the cases 1 and 2. It is obvious that the ACF pat-
terns do not tend to be zero and roughly behave as a sine wave,
whereas the PACF patterns approximately become zero after
25th lag. Such observations prove that the main IMFs are compat-
ible with the AR process. Therefore, it is an accurate choice to use
ARARX rather than ARMA for time series modeling.

In the following, the orders of AR and ARX terms of the ARARX
model are determined by the iterative order determinationmethod
presented in [24]. This method is based on the residual analysis by
Ljung-Box hypothesis test for checking the uncorrelatedness of the
model residuals. The main premise of the iterative method lies in
the fact that a sufficient order is one that enables the time series
model to produce the uncorrelated residuals. Using 5% significant
limit, if the p-value of the test to be more than 0.05, one can argue
that the model residuals are uncorrelated. On this basis, the num-
ber of iterations that satisfies this criterion is chosen as an ade-
quate order. Table 2 presents the amounts of p, q, and r along
with the p-values of the Ljung-Box hypothesis test in the healthy
state. It is important to note that the equal orders are considered
for the ARX model (q = r).

The amounts in Table 2 show that the obtained orders enable
the AR and ARX models to make uncorrelated residuals since the
p-values at all sensors are greater than 0.05. As another conclusion,
one can observe that the sum of q and r is smaller than p at each
sensor. This is Ljung’s suggestion for avoiding the overfitting prob-



Fig. 8. Stationarity assessment of the vibration signals by the KPSS hypothesis test: (a) Case 1, (b) Case 2, (c) Case 3. (d) Case 4.

Fig. 9. Selection of the noise level for the EEMD method: (a) Sensor 7 in Case 1, (b) Sensor 12 in Case 2, (c) Sensor 5 in Case 3, (d) Sensor 4 in Case 4.
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Fig. 10. Selection of the ensemble number for the EEMD method: (a) Sensor 7 in Case 1, (b) Sensor 12 in Case 2, (c) Sensor 5 in Case 3, (d) Sensor 4 in Case 4.

Fig. 11. The energy levels of IMFs at the sensor 15 for the: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.
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Fig. 12. Decomposition of non-stationary vibration signals (left) at the sensor 15 into stationary IMFs (right) in the cases 1 (upper) and 2 (lower).

Fig. 13. Stationarity evaluation on the main IMFs using the KPSS hypothesis test: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.
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Fig. 14. The ACF (left) and PACF (right) plots of the main IMFs at the sensor 15 of the cases 1 (upper) 2 (lower).

Table 2
Determination of the AR and ARX orders by the iterative method in [24].

Sensor no. AR ARX

Order no. p-value Order no. p-value

4 152 0.0609 40 0.1754
5 48 0.1255 21 0.0538
6 79 0.3495 33 0.0652
7 56 0.1446 25 0.3709
8 50 0.0594 20 0.0791
9 55 0.1877 26 0.1056
10 147 0.3072 62 0.4399
11 95 0.0716 36 0.2983
12 63 0.0738 30 0.1794
13 57 0.1341 25 0.2270
14 51 0.0756 22 0.2346
15 73 0.2382 32 0.1393
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lem in the ARARX modeling when q + r � p [29]. According to the
coefficient-based feature extraction algorithm, these orders are
used to estimate the AR and ARX coefficients using the least-
squares technique [25]. For a comparison, Fig. 15 shows the AR
coefficients of the ARX model at the sensors 8 and 15 in the cases
1–5.

It is apparent that there are no differences among the AR
coefficients at the sensor 8 in Fig. 15(a), which means that this
area of the IASC-ASCE structure has not been suffered from dam-
age (i.e. removing braces). In contrast, Fig. 15(b) indicates the
serious reductions in the AR coefficients due to the occurrence
of damage near the sensor 15. An interesting observation in
Fig. 15(b) pertains to the similarity of the AR coefficients in the
cases 1 and 5. This is a reasonable result, because the braces near
the sensor 15 in the fifth damage scenario were not removed
from the structure. This means that the location of this sensor
is the undamaged area. Finally, all observations in Fig. 15 lead
to the conclusion that the AR coefficients of ARX term in the
ARARX model are sensitive to damage.

In another comparison, the norm and variance of the ARX resid-
uals in all cases are evaluated to perceive the effect of damage on
the model residuals as shown in Fig. 16. From this figure, one can
understand that the occurrence of damage causes increases in the
residual variances and norms. In Fig. 16(a), the norms of the ARX
model residuals in the healthy state are roughly inconsiderable
values, whereas there are substantial increases in the damaged
cases. The same conclusion is available in Fig. 16(b). Therefore,
the results in Fig. 16 confirm the sensitivity of the ARX residuals
to damage.

Although a simple comparison of the residual norm or variance
between two different states of the structure one can distinguish a
normal condition from an abnormal one, this is not a robust and
reliable way to detect damage due to irregular increases in the
norms and variances of the ARX residuals in some cases. The same
difficulty and unreliability are available in the comparison of the
AR coefficients among different structural states. As a result, it is
a great necessity to use reliable and influential mathematical
and/or statistical methods in the step of feature classification for
detecting and locating damage.

6.5. Early damage detection and localization

To detect early damage, the ARX residuals at each sensor are
collected to establish the residual matrices for the healthy and
damaged conditions (Zu and Zd). These matrices make randomly
high-dimensional multivariate sets including 60,000 rows (nt)
and 12 columns (ns) in five cases. Based on the CDTW method, it
is initially necessary to specify the numbers of principal compo-
nents (nPC) and segments (v) as described in Section 5.2. Applying
the AEC approach, nPC for the cases 1–4 correspond to 5 and for the
case 5 is equal to 6. The results of determining the number of seg-
ments are indicated in Figs. 17 and 18 for the Hotelling’s T2 statistic



Fig. 15. Comparison of the AR coefficients in the ARX model for the cases 1–5: (a) Sensor 8, (b) Sensor 15.

Fig. 16. Comparison of the ARX residuals of the ARARX model in the cases 1–5: (a) the residual norms, (b) the residual variances.
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and QRE cost functions, respectively. From these figures, one can
perceive that the increase in the number of segments leads to
the reduction in qr so that from the 30th segment in both Hotell-
ing’s T2 statistic and QRE cost functions the relative reduction rates
to be invariant and close to zero. Therefore, the number of seg-
ments is set as 30.

By determining the numbers of principal components and seg-
ments, Zu and Zd are partitioned into 30 segments (Su and Sd), each
of which consists of five (for the cases 1–4) and six (for the case 5)
principal components. Finally, the CDTW dissimilarity quantity
using PCA similarity factor is used to detect early damage. Fig. 19
illustrates the results of early damage detection for both Hotell-
ing’s T2 and QRE cost functions.

It can be observed that the DS quantities correspond to zero in
the case 1, when there is no damage in the IASC-ASCE structure.
During the occurrence of damage, the DS value deviates from the
normal condition as shown in the DS quantities of the cases 2–5.
As Fig. 19 appears, the largest DS value belongs to the second case,
where the braces of all floors were removed from the east side of
the structure. Hence, this case is equivalent to the highest level
of damage severity. By contrast, the smallest DS quantity occurs
in the case 5, for which the braces of the first story were only elim-
inated from the southeast corner. This means that the lowest dam-
age level belongs to the fifth case. These observations confirm that
the CDTW method is not only able to detect early damage but also
estimate the level of damage severity. Furthermore, due to the reli-
able results obtained from this method in conjunction with the
proposed EEMD-ARARX algorithm, one can conclude that the
unmeasurable and unknown ambient excitations do not have any
effects on the early damage detection and quantification.

To locate damage in the cases 2–5, the AR coefficients of ARX
representation in the ARARX model (Uu and Ud) obtained from
12 sensors are used in the DTW method to establish a damage
localization vectors (DLV) for each damage scenario. Using 5% sig-
nificant limit, a threshold value is calculated for each case based on
Eq. (21). The results of damage localization are illustrated in
Fig. 20, where the dashed blue arrows show the threshold
amounts. Furthermore, ‘‘DL” means the damaged location and
‘‘UDL” implies the undamaged area.

In Fig. 20(a) and (b), the DTW quantities of sensors 6, 9, 12, and
15 exceed the threshold limits implying the damage locations. For
the case 4 in Fig. 20(c), the locations of sensors 6 and 15 are identi-
fied as the damaged areas in the IASC-ASCE structure. Eventually, as
Fig. 20(d) shows, the only DTW value of the sensor 6 is more than
the threshold value indicating the location of single damage. Based
on Fig. 2(b) and Table 1, one can realize that all observations in
Fig. 20 give reasonable and accurate damage localization results.
Due to the removal of braces from all floors of the east side of the
IASC-ASCE structure, the locations of sensors 6, 9, 12, and 15 were
situated near the damaged area in the cases 2 and 3. Furthermore,
the elimination of braces from the first and fourth floors at the
southeast corner occurred at the sensors 6 and 15 in the case 4.



Fig. 17. The relative reduction rates of the Hotelling’s T2 statistic: (a) Case 2, (b) Case 3, (c) Case 4, (d) Case 5.

Fig. 18. The relative reduction rates of the QRE: (a) Case 2, (b) Case 3, (c) Case 4, (d) Case 5.

564 A. Entezami, H. Shariatmadar /Measurement 134 (2019) 548–568



Fig. 19. Early damage detection via the CDTW method by using the ARX residuals of the ARARX model: (a) Hotelling’s T2 statistic, (b) QRE.
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Eventually, the only sensor 6 was located near the damaged area in
the case 5. Therefore, it can be seen in Fig. 20 that the DTWmethod
is precisely able to locate the single (case 5) and multiple (cases 2–
4) damage scenarios from a relatively dense sensor network. On
this basis, the sensor location associated with the largest DTW
value that exceeds the threshold limit is identified as the damaged
area.

For further assessment, it is attempted to compare the superior-
ity of the proposed EEMD-ARARX algorithm to the conventional
EMD-AR approach [31,32] for the problems of early damage detec-
tion and localization. Similar to the proposed hybrid algorithm, all
IMFs of each vibration signal are initially extracted from the EMD
technique. Subsequently, the main IMF is chosen to use in the AR
modeling. In this regard, the AR model coefficients and residuals
are extracted as the DSFs. Fig. 21 shows the results of early damage
detection by using the proposed CDTW method and the EMD-AR
algorithm.
Fig. 20. Damage localization via the DTW method by using the AR coefficients of the AR
With regard to the great ability of the CDTW method to detect
early damage by using the randomly high-dimensional data, one
can observe in Fig. 21 that the features extracted from the EMD-
AR algorithm can discriminate the normal condition from the dam-
aged states. However, a simple comparison between the EEMD-
ARARX (Fig. 19) and EMD-AR algorithms (Fig. 21) reveals that the
latter fails in quantifying the level of damage severity. To prove this
conclusion in an analytical manner, one can compare the rate of
increase (the percentage increase) in the DS values gained by the
DSFs extracted from the EEMD-ARARX and EMD-AR algorithms.
For this comparison, it is only necessary to calculate the relative
errors in the DS quantities between the smallest damage scenario
(case 5) and the other damaged cases as listed in Table 3. Note that
since the DS values associated with the Hotelling’s T2 and QRE cost
functions are roughly similar, the distance quantities gained by the
QRE are used in the comparison procedure.
X representation in the ARARX model: (a) Case 2, (b) Case 3, (c) Case 4, (d) Case 5.



Fig. 21. Early damage detection via the CDTW method by using the AR residuals based on the EMD-AR algorithm: (a) Hotelling’s T2 statistic, (b) QRE.

Table 3
The percentage increases in the DS values based on the EEMD-ARARX and EMD-AR
algorithms between the case 5 and the cases 2–4.

Algorithm Case no.

2 3 4 5

EEMD-ARARX 92.67% 86.21% 71.64% 0%
EMD-AR 4.11% 2.10% 1.56% 0%
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The amounts in Table 3 reveal that there are large increases in
the relative errors (the percentage increases) of the DS values
obtained from the proposed EEMD-ARARX algorithm between
the case 5 and the cases 2–4. In contrast, it is apparent that the per-
centages of the relative errors in the DS quantities gained by the
EMD-AR algorithm for the cases 2–4 are very close to the case 5.
An important note is that the DS values based on both the
EEMD-ARARX and EMD-AR algorithms (see Fig. 19(b) and 21(b))
Fig. 22. Damage localization via the DTW method by using the AR coefficients b
roughly vary in the same amounts (0 < DS < 40). However, the per-
centage increases in the EMD-AR algorithm is not as good as the
EEMD-ARARX approach. As a result, it is deduced that the conven-
tional EMD-AR algorithm does not appropriately enable the CDTW
method to estimate the level of damage severity.

Fig. 22 illustrates the results of damage localization by the DTW
method based on the AR coefficients extracted from the EMD-AR
algorithm. From this figure, it is apparent that there are erroneous
and unreliable results of locating the structural damages in all
cases. This is because of the false identification of the undamaged
areas of the structure as the damage locations (false positive) and
serious errors in locating the actual damages (false negative). Such
erroneous results may be due to the influence of ambient excita-
tions, the poor performance of AR representation for modeling
the vibration signals or IMFs caused by the ambient vibration,
and the problem of mode mixing in the EMD technique. For more
evaluation, Table 4 lists the percentages of the false positives (Type
I errors) and false negatives (Type II errors) in the process of dam-
ased on the EMD-AR algorithm: (a) Case 2, (b) Case 3, (c) Case 4, (d) Case 5.



Table 4
Type I and Type II errors in the damage localization based on the EMD-AR algorithm.

Error Case no.

2 3 4 5

Type I 8.34% 0% 8.34% 25%
Type II 8.34% 16.67% 8.34% 0%
Total 16.67% 16.67% 16.67% 25%
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age localization based on the EMD-AR algorithm. In the context of
SHM, a Type I error means that the structure is undamaged but the
decision-making system alarms the occurrence of damage,
whereas a Type II error refers to a situation that the structure suf-
fers from damage but the decision-making system does not alarm
the occurrence of damage [43].

Unlike the proposed EEMD-ARARX algorithm, for which both
the Type I and Type II errors are zero (see Fig. 20), there are rela-
tively large errors in the results of the EMD-AR algorithm. There-
fore, one can conclude that the proposed EEMD-ARARX algorithm
provides better DSFs than the EMD-AR algorithm for the localiza-
tion of damage under the ambient excitation and non-stationary/
stationary vibration signals.

7. Conclusions

In order to extract the significant DSFs from the non-stationary
vibration signals under ambient excitations, a hybrid algorithm has
been proposed as the combination of EEMD technique and ARARX
model. In this algorithm, the vibration signals have initially been
decomposed into several IMFs by the EEMD technique and the
main IMF with the highest energy level has been chosen to use
in the time series modeling. Fitting the ARARX model to this IMF,
the AR coefficients and ARX residuals have been selected as the
DSFs. The CDTW method based on the PCA-based segmentation
techniques has been presented to detect early damage using the
ARX residuals as the randomly high-dimensional multivariate data
sets. To locate damage via the AR coefficients, the DTW method
along with a threshold limit has been introduced. The experimen-
tal datasets of the well-known IASC-ASCE benchmark structure
have been utilized to validate the accuracy and reliability of the
proposed methods.

The results demonstrated that the proposed EEMD-ARARX algo-
rithm is an efficient and reliable tool for extracting the reliable
DSFs from the non-stationary and/or stationary vibration signals
acquired from the ambient excitations. In particular, when the nat-
ure of vibration signals is unknown or unpredictable, the proposed
algorithm is an appropriate and robust choice. The comparison of
the AR coefficients and ARX residuals of the ARARX model between
the different structural cases was shown that these features are
properly sensitive to damage. For the early damage detection, the
CDTW method with the aid of the PCA-based segmentation tech-
niques dealt with the limitation of using high-dimensional fea-
tures. The results confirmed that the CDTW dissimilarity quantity
based on PCA similarity factor is not only able to detect damage,
but also estimate the level of damage severity. Accordingly, the
normal condition has a dissimilarity value close to zero and any
deviation from the normal state is indicative of damage occur-
rence. In the process of damage localization, it was seen that the
DTW method using the AR coefficients precisely identified the
locations of single and multiple damage cases. On this basis, the
sensor location associated with the largest DTW quantity more
than the threshold limit is identified as the damaged area. Eventu-
ally, the comparison of the proposed EEMD-ARARX algorithm with
the EMD-AR approach in the problems of early damage detection,
localization, and quantification revealed that the proposed method
provides better and more reliable DSFs than the EMD-AR algorithm
under the ambient excitations and non-stationary and/or station-
ary vibration signals.
Acknowledgments

This research was supported by a Grant No. 96007230 from the
Iran National Science Foundation (INSF). The authors would like to
express their sincere gratitude to ASCE Structural Health Monitor-
ing Task Group for the experimental datasets of the four-story steel
structure.
References

[1] C.R. Farrar, K. Worden, An introduction to structural health monitoring, Philos.
Trans. R. Soc. A 2007 (365) (1851) 303–315.

[2] T.-H. Yi, H.-B. Huang, H.-N. Li, Development of sensor validation methodologies
for structural health monitoring: a comprehensive review, Measurement 109
(2017) 200–214.

[3] A. Cunha et al., Recent perspectives in dynamic testing and monitoring of
bridges, Struct. Control Health Monitoring 20 (6) (2013) 853–877.

[4] H. Hashim, Z. Ibrahim, H.A. Razak, Dynamic characteristics and model
updating of damaged slab from ambient vibration measurements,
Measurement 46 (4) (2013) 1371–1378.

[5] J.P. Amezquita-Sanchez, H. Adeli, Signal processing techniques for vibration-
based health monitoring of smart structures, Arch. Comput. Methods Eng. 23
(1) (2016) 1–15.

[6] Y. Lei et al., A review on empirical mode decomposition in fault diagnosis of
rotating machinery, Mech. Syst. Sig. Process. 35 (1) (2013) 108–126.

[7] Z. Feng, M. Liang, F. Chu, Recent advances in time–frequency analysis methods
for machinery fault diagnosis: a review with application examples, Mech. Syst.
Sig. Process. 38 (1) (2013) 165–205.

[8] K. Worden et al., Some recent developments in SHM based on nonstationary
time series analysis, Proc. IEEE 104 (8) (2016) 1589–1603.

[9] W.J. Staszewski, A.N. Robertson, Time–frequency and time–scale analyses for
structural health monitoring, Philos. Trans. R. Soc. London A 2007 (365) (1851)
449–477.

[10] N.E. Huang et al., The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis, Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, The
Royal Society, 1998.

[11] Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted
data analysis method, Adv. Adaptive Data Anal. 1 (1) (2009) 1–41.

[12] W. Guo, W.T. Peter, A. Djordjevich, Faulty bearing signal recovery from large
noise using a hybrid method based on spectral kurtosis and ensemble
empirical mode decomposition, Measurement 45 (5) (2012) 1308–1322.

[13] X. Zhang, Y. Liang, J. Zhou, A novel bearing fault diagnosis model integrated
permutation entropy, ensemble empirical mode decomposition and optimized
SVM, Measurement 69 (2015) 164–179.

[14] C. Yang, T. Wu, Diagnostics of gear deterioration using EEMD approach and
PCA process, Measurement 61 (2015) 75–87.

[15] X.-H. Chen et al., Research of weak fault feature information extraction of
planetary gear based on ensemble empirical mode decomposition and
adaptive stochastic resonance, Measurement 73 (2015) 55–67.

[16] G. Cheng et al., Study on planetary gear fault diagnosis based on entropy
feature fusion of ensemble empirical mode decomposition, Measurement 91
(2016) 140–154.

[17] H. Aied, A. González, D. Cantero, Identification of sudden stiffness changes in
the acceleration response of a bridge to moving loads using ensemble
empirical mode decomposition, Mech. Syst. Sig. Process. 66 (2016) 314–338.

[18] Y. Kim et al., System identification of smart buildings under ambient
excitations, Measurement 87 (2016) 294–302.

[19] H. Zheng, A. Mita, Localized damage detection of structures subject to multiple
ambient excitations using two distance measures for autoregressive models,
Struct. Health Monitoring 8 (3) (2009) 207–222.

[20] A.A. Mosavi et al., Identifying damage locations under ambient vibrations
utilizing vector autoregressive models and Mahalanobis distances, Mech. Syst.
Sig. Process. 26 (2012) 254–267.

[21] M. Gul, F.N. Catbas, Damage assessment with ambient vibration data using a
novel time series analysis methodology, J. Struct. Eng. 137 (12) (2010) 1518–
1526.

[22] E.P. Carden, J.M. Brownjohn, ARMA modelled time-series classification for
Structural Health Monitoring of civil infrastructure, Mech. Syst. Sig. Process. 22
(2) (2008) 295–314.

[23] Q. Zhang, Statistical damage identification for bridges using ambient vibration
data, Comput. Struct. 85 (7) (2007) 476–485.

[24] A. Entezami, H. Shariatmadar, An unsupervised learning approach by novel
damage indices in structural health monitoring for damage localization and
quantification, Struct. Health Monitoring (2017) 0(0).

[25] G.E. Box et al., Time Series Analysis: Forecasting and Control, 5th ed., John
Wiley & Sons, 2015.

http://refhub.elsevier.com/S0263-2241(18)31038-8/h0005
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0005
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0010
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0010
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0010
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0015
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0015
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0020
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0020
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0020
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0025
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0025
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0025
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0030
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0030
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0035
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0035
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0035
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0040
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0040
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0045
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0045
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0045
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0050
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0050
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0050
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0050
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0050
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0055
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0055
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0060
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0060
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0060
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0065
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0065
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0065
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0070
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0070
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0075
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0075
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0075
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0080
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0080
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0080
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0085
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0085
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0085
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0090
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0090
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0095
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0095
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0095
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0100
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0100
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0100
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0105
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0105
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0105
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0110
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0110
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0110
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0115
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0115
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0120
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0120
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0120
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0125
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0125
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0125


568 A. Entezami, H. Shariatmadar /Measurement 134 (2019) 548–568
[26] F.N. Catbas, M. Malekzadeh, A machine learning-based algorithm for
processing massive data collected from the mechanical components of
movable bridges, Autom. Constr. 72 (2016) 269–278.

[27] X. Wang et al., Experimental comparison of representation methods and
distance measures for time series data, Data Min. Knowl. Disc. 26 (2) (2013)
275–309.

[28] W. Guo, W.T. Peter, A novel signal compression method based on optimal
ensemble empirical mode decomposition for bearing vibration signals, J.
Sound Vib. 332 (2) (2013) 423–441.

[29] L. Ljung, System Identification: Theory for the User, 2nd ed., Prentice-Hall,
Upper Saddle River, NJ, 1999.

[30] M. Rezaiee-Pajand, A. Entezami, H. Shariatmadar, An iterative order
determination method for time-series modeling in structural health
monitoring, Adv. Struct. Eng. (2017).

[31] C. Junsheng, Y. Dejie, Y. Yu, A fault diagnosis approach for roller bearings based
on EMD method and AR model, Mech. Syst. Sig. Process. 20 (2) (2006) 350–
362.

[32] F. Li, B. Tang, R. Yang, Rotating machine fault diagnosis using dimension
reduction with linear local tangent space alignment, Measurement 46 (8)
(2013) 2525–2539.

[33] S. Adwan, I. Alsaleh, R. Majed, A new approach for image stitching technique
using Dynamic Time Warping (DTW) algorithm towards scoliosis X-ray
diagnosis, Measurement 84 (2016) 32–46.
[34] S. Adwan, H. Arof, On improving Dynamic Time Warping for pattern matching,
Measurement 45 (6) (2012) 1609–1620.

[35] T. Han, X. Liu, A.C.C. Tan, Fault diagnosis of rolling element bearings based on
Multiscale Dynamic Time Warping, Measurement 95 (2017) 355–366.

[36] C. Bao, H. Hao, Z.-X. Li, Integrated ARMA model method for damage detection
of subsea pipeline system, Eng. Struct. 48 (2013) 176–192.

[37] Z. Bankó, J. Abonyi, Correlation based dynamic time warping of multivariate
time series, Expert Syst. Appl. 39 (17) (2012) 12814–12823.

[38] W. Krzanowski, Between-groups comparison of principal components, J. Am.
Stat. Assoc. 74 (367) (1979) 703–707.

[39] S.J. Dyke et al., Experimental phase II of the structural health monitoring
benchmark problem, Proceedings of the 16th ASCE engineering mechanics
conference, 2003.

[40] L. Kirkup, R.B. Frenkel, An introduction to uncertainty in measurement: using
the GUM, Cambridge University Press, 2006.

[41] C. Ratcliffe, B. Ratcliffe, Doubt-Free Uncertainty in Measurement: An
Introduction for Engineers and Students, Springer, 2014.

[42] D. Kwiatkowski et al., Testing the null hypothesis of stationarity against the
alternative of a unit root, J. Econ. 54 (1992) 159–178.

[43] L. Balsamo, R. Betti, H. Beigi, A structural health monitoring strategy using
cepstral features, J. Sound Vib. 333 (19) (2014) 4526–4542.

http://refhub.elsevier.com/S0263-2241(18)31038-8/h0130
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0130
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0130
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0135
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0135
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0135
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0140
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0140
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0140
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0145
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0145
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0145
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0150
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0150
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0150
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0155
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0155
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0155
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0160
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0160
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0160
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0165
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0165
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0165
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0170
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0170
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0175
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0175
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0180
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0180
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0185
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0185
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0190
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0190
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0195
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0195
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0195
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0195
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0200
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0200
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0200
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0205
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0205
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0205
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0210
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0210
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0215
http://refhub.elsevier.com/S0263-2241(18)31038-8/h0215

	Structural health monitoring by a new hybrid feature extraction and dynamic time warping methods under ambient vibration and non-stationary signals
	1 Introduction
	2 Adaptive time-frequency data analysis methods
	2.1 EMD
	2.2 EEMD
	2.3 Parameter selection

	3 Time series analysis by ARARX model
	4 A new feature extraction method by EEMD-ARARX algorithm
	5 Feature classification methods
	5.1 DTW
	5.2 CDTW

	6 Application
	6.1 Initial data analysis
	6.2 Parameter selection for EEMD
	6.3 IMF extraction
	6.4 ARARX modeling
	6.5 Early damage detection and localization

	7 Conclusions
	Acknowledgments
	References


