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Abstract
Monitoring air quality is crucial for Middle East countries such as Iran, where dust and polluted aerosol sources heavily influence
local air quality. The use of active satellite remote sensing techniques is therefore considered in monitoring air quality. This study
presents an initial assessment of NASA’s Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) aerosol data over Tabriz
and Mashhad cities in the north-western and north-eastern regions of Iran. We examined the Cloud and Aerosol Discrimination
(CAD) score values, extinction coefficient, and the CALIOP Vertical Feature Mask (VFM) data product and Moderate
Resolution Imaging Spectroradiometer (MODIS) Deep Blue Aerosol Optical Depth (DBOD) at wavelength of 0.55 μm. The
ground-based PM10 measurements were analyzed for different time periods, seasons, and years from 2005 to 2016. We inves-
tigated the profiles of the particle backscatter and extinction coefficient, as well as information about the determined feature types
(e.g., clouds or aerosols) and aerosol subtypes (e.g., dust, and smoke) from the VFM data product in 2 months of August 2009
and July 2013, which were statistically selected from 2009 to 2016. Evaluation of the comparison of the relative humidity,
temperature, and their inversion shows that the performance of the CALIOP in the detection of aerosols in mid-troposphere
(around 5.0 km) is better than cloud detection. Additionally, the correlations of the PM10 concentration, MODIS AOD, and
MODIS DBOD were investigated for January 2005 to December 2014. The overall analyses show that monthly ground-based
PM10 concentration measurements reveal better correlation (r = 0.65 and 0.67 for Tabriz and Mashhad, respectively) with
monthly MODIS-DBOD than MODIS-AOD for different seasons. The observed differences in the investigation of the
CALIPSO dataset with the actual measured values and the overall correlation results show that the cloud and aerosol discrim-
ination algorithm should be modified and calibrated based on local measurements of relative humidity, temperature, and their
inversions, MODIS-DBOD, and ground-based PM10 for the Iran region.
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1 Introduction

Iran is located in a region that is heavily affected by dust storms
(Cao et al. 2015) and has several desert fields, including the

Dasht-e Kavir (Great Kavir) and Lut deserts (Laity 2009). The
air quality issue is one of the major environmental problems in
recent years, due to the intensification of drought, which has
affected most parts of the Middle East countries. In addition,
according to Liu et al. (2009), specific geographical and political
conditions prevailing in the Middle East, and also geographical
location in the dust belt pathway, increases the necessity of mon-
itoring and discrimination of clouds and aerosols for this region,
especially for Iran. The study area includes western and eastern
regions located between (44 and 63)° eastern longitude and (25
and 40)° northern latitude of Iran. Figure 1 depicts the Iran region
as a study area in the Middle East.

Satellite remote sensing can be used to monitor the air qual-
ity of the areas that are not easily accessible for field measure-
ments (Gupta and Christopher 2008; Yap and Hashim 2013).
The Cloud-Aerosol LIdar with Orthogonal Polarization
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(CALIOP) onboard the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) satellite is one
of the active instruments of NASA’s A-Train satellites for mon-
itoring air quality, which provides both daytime and nighttime
measurements (Liu et al. 2009). It can obtain a vertically re-
solved profile of the object under consideration (capable of
distinguishing between aerosol and cloud layers, and retrieving
their vertical position), and it has high capability for a wide
range of scientific studies associated with clouds and aerosols.
More importantly, CALIOP can measure aerosol backscatter
and infer extinction coefficient profiles in both cloudy and
cloud-free situations (Chand et al. 2008; Winker et al. 2010).

Liu et al. (2009) compared the CALIOP dataset with the
CloudSat radar dataset on the Gobi desert, and found aerosols
at an altitude around 10 km, which, however, CALIOP
misclassified as a cloud. Chan and Comiso (2011) used a com-
bination of three sensor datasets (CALIOP, CloudSat, and
Moderate Resolution Imaging Spectroradiometer (MODIS))
to provide good complementary information about certain
types of clouds, which might be clear in one sensor detection,
but not in others and/or mistakenly classified. Considering that
CALIOP and CloudSat are designed exclusively tomeasure the
vertical structure of aerosols and clouds from space, unexpect-
edly, some features are not detected even in high-resolution

datasets, but those undetected features are detected in the
MODIS dataset. Yu et al. (2012) examined the feasibility of
combining Ozone Monitoring Instrument (OMI) aerosol index
and MODIS cloud optical depth to derive aerosol properties.
Zieger et al. (2011) studied the optical properties and particle
physics of aerosol in situ measurements for 4 months in
Cabauw, the Netherlands. They demonstrated that ambient
aerosol particles experience hygroscopic growth at enhanced
Relative Humidity (RH). The microphysical and optical prop-
erties of aerosols are also strongly dependent on RH.

Aerosol optical depth (AOD) from the MODIS is a signif-
icant indicator of the air quality in describing the aerosol dis-
tribution and air pollution studies for either a local or global
domain (Duncan et al. 2014; Liu et al. 2007; Mei et al. 2009).
Various studies have been carried out with various satellite
products, including MODIS Deep Blue (DBOD) and
MODIS AOD products, to find the relationship between
PM2.5 and PM10, and also estimate the concentration of
ground-level particulate matters for different regions of the
world (Choi et al. 2009; Emili et al. 2010; Escribano et al.
2014; Lee et al. 2016; Lei and Wang 2014; Song et al. 2009;
Tian and Chen 2010a, b; VanDonkelaar et al. 2006, 2011; Yap
and Hashim 2013). It should be mentioned that the defined
models are not universally applicable, due to the low

Fig. 1 Maps of the a study area in the Middle East and b dust belt
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correlation between PM, AOD, and DBOD. However, for the
regional models, the correlation coefficient of PM2.5 and PM10

with AOD and DBOD varies from (0.4 to 0.9).
Tian andChen (2010a) used a semi-empiricalmodel to predict

the hourly ground-level fine particulate matter (PM2.5) concen-
tration based on corrected MODIS AOD with ground and satel-
lite meteorological information, at a regional scale in southern
Ontario, Canada for 2004. Overall, the model is able to explain
65% of the variability in ground-level PM2.5 concentration.
Zheng et al. (2013) used AOD data retrieved from the MODIS
to investigate the spatial and temporal variations of PM10 pollu-
tion in the Pearl River Delta (PRD) region in China for 2006 to
2008. The results show that the estimated PM10 concentrations
from the regression models appeared to be the highest in winter,
and the lowest in summer. Also, a high PM10 concentration band
was detected over the inner part of the PRD region, where heavy
industries and dense populations are located.

The primary purpose of this study is to use the CALIOP
satellite data over Iran, where the air is highly polluted, dusty,
and dry, despite a lack of field measurements. However, the
performance of the CALIPSO satellite over this region has
remained untested, and any related analytical and processing
issues have yet to be identified. We explored this issue mainly
by using the quality flags (the Cloud-Aerosol Discrimination
(CAD) threshold or CAD score) that are indicative of the quality
of the CALIOP aerosol profile products, MODIS DBOD and
AOD at wavelengths of 0.55 μm, and the ground-based PM10

measurements. Note that these ground-based PM10 measure-
ments are collected from six and seven independent air-quality
monitoring stations by theDepartment of Environment (DOE) of
Tabriz and Mashhad, respectively, Iran from 2005 to 2016.

As we will show later, the mean/relative extinction coefficient
uncertainty explains why, when interpreting the CALIOP data, it
is important to pay attention to the quality flags. The CAD
threshold that we selected required aerosols to have CAD scores
of less than − 20 (Liu et al. 2009). In addition, we derived an
example of the aerosol feature and its sub-type classification over
some regions of Iran. Based on the Vertical FeatureMask (VFM)
data product, it was seen that the classification algorithm has
identified some features correctly for this region. Additionally,
in order to evaluate the feature layers from the CALIOP data for
this region, these layers are compared with field measurement of
relative humidity, temperature, and its inversion, which will be
explained in Section 3.

2 Data and method

2.1 Description of CALIOP and products

CALIOP is a dual-wavelength ((1064 and 532) nm),
polarization-sensitive elastic backscatter lidar in CALIPSO.

The transmitted laser beam is linearly polarized, and the two
polarization-sensitive 532-nm (parallel and perpendicular) re-
ceiver channels measure the linear depolarization degree of
the returned signal (Hunt et al. 2009). An overview of the
CALIOP science data processing architecture is provided in
Winker et al. (2009).

The routine CALIOP lidar data processing includes two
levels. In level 1 of data processing, the lidar backscatter data
are geo-located and calibrated. The resulting altitude resolved
profiles of attenuated backscatter coefficients are reported in
the CALIOP level 1B data products (Hostetler et al. 2006;
Vaughan et al. 2004). These level 1 profiles are further analyzed
in level two, in order to derive the optical and physical proper-
ties of clouds and aerosols (Vaughan et al. 2004). The level two
processing algorithms include three primary codes: First, the
layer detection algorithm (SIBYL—Selective Iterated
BoundarY Locator) finds the features (clouds, aerosols, sur-
face, etc.) by searching for regions of enhanced signal in the
attenuated backscatter profiles provided by the level 1 process-
ing (Vaughan et al. 2009). After finding the features, mean
values of the (532 and 1064) nm attenuated backscatter, atten-
uated total color ratio, and volume depolarization ratio were
computed for each detected atmospheric feature (Rogers et al.
2011; Winker et al. 2013). These optical layer properties, along
with the physical properties, such as top and base heights, lat-
itude, and longitude, are reported in level two layer products.
Based on these optical and physical properties, each atmo-
spheric feature is then classified according to type by the
Scene Classification Algorithm (SCA) (Liu et al. 2005). The
lidar ratio (extinction-to-backscatter) is a key parameter, which
is used in Hybrid Extinction Retrieval Algorithms (HERA) to
retrieve particulate (aerosol or cloud) extinction and backscatter
coefficients (Young and Vaughan 2009). The ratio does not
depend on the number density of the particles, but rather on
such physical and chemical properties as size distribution, and
particle shape and composition (Liu et al. 2005).

NASA decided to split up the CALIPSO data into half orbit
files, for day and night orbits, due to some problems, such as
background noise in daytime (Vaughan et al. 2005). Then,
after removing the same ancillary data, day and night data
would be combined together as whole day data. At the end
of processing, the final data products are extracted from these
intermediate files. Table 1 lists the degree of averaging, which
varies with altitude based on the mean sea level.

CALIPSO data products were generated in three standard
data formats: (i) A Vertical Feature Mask (VFM) format,
which provides information on the spatial and morphological
distribution of features. (ii) A suite of cloud and aerosol layer
products that provide statistical descriptions of all features
detected. (iii) A set of profile product formats that map the
vertical distributions of backscatter and extinction coefficients
separately for both clouds and aerosols (Hostetler et al. 2006;
Vaughan et al. 2006).

Assessment of CALIOP and MODIS aerosol products over Iran to explore air quality



2.2 Generating a profile of mean CALIPSO aerosol
extinction coefficient

We generated the vertical profiles of mean extinction coefficient
and relative uncertainty from the CALIPSO level two profile
productswith data quality screening. The three profile descriptive
flags (Atmospheric Volume Description (AVD), CAD score, and
extinction QC) were applied to screen out the extinction coeffi-
cient samples, which have less confidence, as follows.

We used the level two aerosol profile granule. The extinc-
tion coefficient 532 nm and its uncertainty, and all the profile
descriptive flag arrays (CAD score, AVD, and extinction QC
flag) were used (Young and Vaughan 2009). The two arrays of
extinction coefficient and its uncertainty indicate the number
of altitudes and number of profiles, respectively; but applying
the CALIPSO profile descriptive flags for quality screening is
slightly ambiguous (Young and Vaughan 2009), due to the
fact that they are stored in a three-array (index, the number
of altitudes, and number of profiles). However, the first
(index) is used to keep track of the two 30 m resolution layers
in each 60 m extinction coefficient range bin (Young and
Vaughan 2009). Afterwards, with an array of extinction coef-
ficients, samples with less confidence were screened out (such
as the information about clouds and stratospheric features), in
order to identify bad profiles. Therefore, we kept the informa-
tion about aerosols, which reflect the feature withmajority that
the scene classifier identifies for this region. We firstly
screened out the fill values (CAD score of − 127), indicating
that there are no samples to report. For the unscreened mean
extinction coefficient, we simply filtered out all extinction
coefficient samples that were not fill values. Then, for the
screened mean extinction coefficient, we applied the three
profile descriptive flags AVD, CAD score (eliminate features
with CAD scores greater than − 20) (Young and Vaughan
2009), and extinction QC values (constrained to 0, or 1) to
screen out extinction coefficient samples, and to preserve only
the layers that have higher confidence to be identified as aero-
sols. In order to calculate the extinction coefficient 532 nm
relative uncertainty, we divided the extinction coefficient un-
certainty by the mean extinction coefficient (Young and
Vaughan 2009), both with and without quality screening.

2.3 Discriminating aerosols

2.3.1 VFM data product analysis

The VFM data product is designed to provide scientists simple
Bwhere^ and Bwhat^ information about any region within and
along a track swath of the atmosphere (Vaughan et al. 2004).
Furthermore, the VFM data product contains a one 16-bit
integer, where each integer value includes a set of scene clas-
sification flags that characterize the corresponding spatial re-
gion in terms of feature presence and type (Vaughan et al.
2004). The descriptive information within these feature clas-
sification flags is described in detail in the PC-SCI-503
CALIPSO data products catalog (Version 3.3).

The aerosol discrimination algorithm distinguishes cloud
scenes from aerosol scenes by interpreting the individual bits
and the group of bits, which is provided in the PC-SCI-503
CALIPSO data products catalog (Version 3.3 Feature
Classification Flag Definition Table). Meanwhile, the cloud-
phase sub-algorithm used the interpretation of the feature-type
bits (liquid and ice (bits 6 and 7)), as well as the cloud top and
bottom temperatures. The cloud temperatures are calculated from
the CALIOP-measured geometrical cloud heights, and the
temperature-height relationship is obtained from the National
Centers for Environmental Prediction–National Center for
Atmospheric Research (NCEP–NCAR) reanalysis-2 data. In ad-
dition, six aerosol types were obtained from the surface type,
depolarization ratio, mean attenuated backscatter, and CALIOP
5-km VFM (Versions 3.01 and 3.30). The aerosol phase in the

Table 1 The spatial resolutions
for the CALIPSO on-board aver-
aging scheme (adopted from
Winker et al. 2006)

Altitude Region Vertical resolution (m) Horizontal
resolution (m)

No. of profiles
(per 5 km)

No. of samples
for each profile

Base (km) Top (km)

30.1 40.0 300 5000 1 33

20.2 30.1 180 1667 3 55

8.2 20.2 60 1000 5 200

− 0.5 8.2 30 333 15 290

− 2.0 − 0.5 300 333 15 5

Table 2 The seasonal statistics of CALIOP aerosol distribution of Tabriz
and Mashhad cities, Iran (2005–2016) (No.: The number of samples)

Tabriz (%) Mashhad (%)

Season No. Min Max Mean No Min Max Mean

Spring 588 14.21 32.97 24.09 507 13.55 36.96 24.89

Summer 655 32.09 40.63 36.40 550 28.02 41.73 35.76

Fall 650 12.94 32.74 24.42 560 11.97 34.16 24.14

Winter 615 9.26 16.26 12.16 504 8.02 15.41 11.51

S. Z. Asl et al.



algorithm used the interpretation of the aerosol feature sub-type
bits (six aerosol types (bits 10–12)), as well as the top and bottom
heights of aerosol layer. As mentioned in Omar et al. (2002,
2004, 2006) and Burton et al. (2013), the aerosol types are desert
dust, smoke from burning biomass, clean continental, polluted
continental, marine, and polluted dust. These aerosols have dif-
ferent extinction-to-backscatter ratios (lidar ratios), and depend
on factors such as size distribution, particle shape, and composi-
tion (Choi et al. 2010; Young and Vaughan 2009). In spite of the
fact that this set does not cover all possible aerosol-mixing

scenarios, especially for this region, it accounts for a majority
of the meso-scale aerosol layers.

2.3.2 CALIOP aerosol profile product analysis

We analyzed the monthly time series of CALIOP Aerosol
Profile V4 (Percentage) for (0 to 8) km altitude for different
times, seasons and years, from 2005 to 2016, over Tabriz
(Fig. 1c) and Mashhad (Fig. 1d) cities in the north-western
and north-eastern regions of Iran. Table 2 summarizes the
seasonal statistics of aerosol distribution.
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Fig. 2 Averagemonthly time series of CALIOPAerosol Profile V4 (percentage) integrated from 0 to 8 km altitude of a Tabriz and bMashhad, Iran, from
2009 to 2015

Table 3 The CAD score
distribution of CALIOP 5-km
feature type, for August 2009 and
July 2013 over Tabriz and
Mashhad cities, Iran

CAD score − 127 − 100 to − 20
aerosol (%)

− 20 to 20
no confidence (%)

20 to 100

cloud (%)

Special CAD
scores (101,102, and 103)

Tabriz 2009/8 47.80 40.07 10.92 1.21 0

2013/7 53.13 36.25 9.64 0.98 0

Mashhad 2009/8 45.32 42.75 11.13 0.80 0

2013/7 51.65 39.89 8.24 0.22 0

Assessment of CALIOP and MODIS aerosol products over Iran to explore air quality



The CALIOP aerosol distribution values show signif-
icant seasonal variability (Fig. 2). The values during
summer are the highest ((40.63 and 41.73) %), while
those in winter are the lowest ((9.25 and 8.02) %).
Also, the largest mean value ((36.40 and 35.76) %) is
in summer, while the lowest mean ((12.16 and 11.51)
%) is in winter (for Tabriz and Mashhad, respectively).

According to the synoptic data records, these cities have
high fraction of dust event occurrences and contamination
load, based on the evidence recorded in the early summer of
2009 and 2013 (CRI 1996). The dust events, which affected
many regions of Iran, could be seen in many city skies. Thus,
we selected two summer months of August 2009 and July
2013 over the western and eastern parts of Iran.

The selected months for the region, due to their proximity
and coincidence with religious and summer vacations for
2009 and 2013 (half of Sha’ban and Ramadan), as well as
traffic load, have the same conditions for comparison. Figure
2 shows the average monthly time series of aerosol distribu-
tion (CALIOPAerosol Profile V4) integrated for (0 to 8) km
altitudes of north-western (Tabriz, Fig. 2a) and north eastern
(Mashhad, Fig. 2b) parts of Iran for 2009 to 2016.

3 Assessment of CALIPSO data products
over Iran

3.1 CAD score distribution

Table 3 presents the CAD score distribution of the CALIOP
level two products in a percentile (integer) range of (−100 to
100) (positive: cloud and negative: aerosol) for the western
and eastern parts of Iran.

The identification of features as clouds and aerosols was
performed based on the values of the CAD score. A feature
was classified as cloud when (20 ≤CAD ≤ 100), as aerosol
when CAD ≤ −20, and no confidence (not cloud or aerosol)
when − 20 < CAD< 20 (Liu et al. 2009). The absolute value
of the CAD score provides a confidence level for the feature
classification that larger values of the CAD score, leading to
an increase in the confidence of the classification. Also, the
sign of the CAD score indicates layer type, so that clouds have
positive CAD scores, while aerosols have negative CAD
scores, along with the magnitude of the score indicating the
degree of confidence in the classification (Liu et al. 2009;
Winker et al. 2012).

Some features with CAD score values in the range of |CAD|
< 20 cannot be identified with enough confidence, indicating no
confidence. These feature layers may not be correctly measured,
due to the detection issues, such as the detector transient re-
sponse, two-way transmittance multiple scattering, and mixed
layers of cloud and aerosol (Liu et al. 2009). Table 3 shows that
we only classified the aerosol layers that had the magnitude of
CAD scores between (100 and 20). The fraction of aerosols in
August 2009 was more than that of July 2013. This is because of
the stable flow of dust, internal dust sources (such as the Dasht-e
Kavir and Lut Deserts), plus the dust flow that entered from the
western neighbors of Iran in the summer of 2009. The Special
CAD score of − 127 is actually unidentified, where the CALIOP
algorithm has detected no feature. This could happen because the
sample was of clear air, but it could also happen because the
aerosol backscatters were below the layer detection threshold.
Perfect interpretations of the special CAD scores (101, 102,
and 103) are also reported in the CALIOP data product descrip-
tions (Liu et al. 2009).

Table 4 presents the CAD score distribution for different
aerosol confidences for western and eastern parts of Iran. The
negative CAD values have been divided into high-confidence
range (70 ≤CAD ≤ −100), medium-confidence range (−50 ≤
CAD < −70), and low-confidence range (−20 ≤CAD < −50),
as a confidence level of the aerosol classification. The no-
confidence range (|CAD | ≤ 20), refers to the features that are
neither classified as cloud, nor as aerosol (Fuchs and Cermak
2015; Liu et al. 2005, 2009). The number of features with the
special score of 103, as a mixture of Horizontally Oriented Ice
(HOI) and other types of cloud, is very low for these regions.

According to Table 4, the rate of aerosols with high-
confidence range is more than the other ranges, since dust is
the major aerosol subtype for these regions, which has the
CAD score range from − 46 to − 100 based on our investiga-
tion. Additionally, prolongation of drought time and increas-
ing desertification due to the increasing anthropogenic activi-
ties inside and outside of Iran will have a progressive impact
on the process and the formation of dust storms. However, it is
found that the aerosol pixel shows fair confidence, once it is
identified as an aerosol, due to the aerosols in these regions

Table 4 The CAD score distribution for different aerosol confidences
on August 2009 and July 2013 over Tabriz and Mashhad cities, Iran

CAD score (%) Tabriz Mashhad

2009/8 2013/7 2009/8 2013/7

Not feature (NF*) 47.80 53.13 45.32 51.65

Aerosol high confidence 38.19 33.97 40.78 37.42

Aerosol medium confidence 1.16 1.45 1.25 1.64

Aerosol low confidence 0.72 0.83 0.68 0.84

No confidence 10.92 9.64 11.13 8.24

Cloud 1.21 0.98 0.80 0.22

101 0 0 0 0

102 0 0 0 0

103 0 0 0 0

*NF = − 127 (CAD score); aerosol high confidence = [− 100, − 70]; aero-
sol medium confidence = [− 70, − 50]; aerosol low confidence = [− 50, −
20]; no confidence = [− 20, 20]; cloud = [20, 100]; and 101, 102, and 103
are special CAD scores, respectively

S. Z. Asl et al.



Fig. 3 a, c The mean extinction coefficient as a function of altitude, and b, d the relative extinction coefficient uncertainty in percent for the unscreened
and screened cases over Iran on August 2009 and July 2013
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being mostly dust, which finding is relatively more reliable
than other types in the CALIOP algorithm. Thus, the future
improvement of the algorithm should be to reduce Not
Features (NFs), and identify more features.

3.2 Profiles of the mean CALIPSO aerosol extinction
coefficient and its uncertainty

We generated a vertical profile of the CALIPSO mean aerosol
extinction coefficient and the relative extinction coefficient
uncertainty using the profile descriptive flags (included in
CALIOP level two profile data product) for basic quality
screening, in order to discriminate the aerosols over the inves-
tigated regions of Iran.

Figure 3 shows the mean extinction coefficient (Fig. 3a, c)
and extinction coefficient relative uncertainty (Fig. 3b, d) pro-
files for the unscreened and screened cases over Iran in August
2009 and July 2013. The CALIPSO total attenuated backscat-
ter measurements reveal an aerosol layer, which reflects the
feature with majority measurement over the Iran region, ex-
tending from the northeast to the southeast. We applied the
three-dimensional profile descriptive flags (AVD, CAD score,
and extinction QC) to screen out the extinction coefficient
samples of less confidence or no samples to report for this
region. Moreover, the mean extinction coefficient was used
to validate the adjustment of aerosols in CALIOP VFM data.

Based on Fig. 3a, the mean extinction coefficient below
2 km altitude tends to have high extinction coefficient values
before screening. However, the majority of features that the
scene classifier identified for this region are aerosol with low
extinction coefficient values. In addition, its relative uncer-
tainty below 2 km in Fig. 3b exceeded 400% before screening,
but after removing a relatively small number of troublesome
samples (CAD score of − 127, namely, troublesome samples
or unidentified), it was reduced to a more manageable (70–
140) % (Fig. 3b). The reason for having high extinction coef-
ficient values, in particular below 2 km, could be the nature of
a downward pointing lidar of having more uncertainty with
decreasing altitude (Liu et al. 2005). Another reason is that the
lidar level two identified clouds or some possible aerosol
mixing types, such as mixed dust, biomass burning smoke,
or lead pollution with high extinction coefficient values for
low altitudes.

The mean extinction coefficient and its relative uncertainty
were increased on August 2009 in comparison with July 2013
(Fig. 3), due to the increase of the extinction coefficient at
532 nm (Liu et al. 2009), and rise of the relative humidity
on August 2009, considering that CALIOP could not pene-
trate the entire dense cloud layers due to the large attenuation
of the clouds at the 532 nm wavelength. On the other hand,
when CALIOP signals encounter dense cloud layers and/or
thick aerosol plumes, the signal becomes attenuated towards
the surface, and this is a known limitation of the CALIOP
measurements (Liu et al. 2005; Nowottnick et al. 2011).
This would be one of the reasons that the extinction coefficient
was raised on August 2009, and the possibility that the cloud
and thick aerosol’s existence increased on this date. In addi-
tion, particulate concentrations vary dramatically depending
on location, time of day, and time of year. More importantly,
many particulates are hygroscopic, so the size and distribution
of these particles are strongly dependent on the relative hu-
midity (Kovalev and Eichinger 2004). Therefore, the rise of
relative humidity on August 2009 compared to July 2013
caused the mean extinction coefficient and its relative uncer-
tainty to increase.

3.3 Aerosol feature discrimination using CALIOP
satellite data

We presented a preliminary assessment of the feature discrim-
ination algorithm performance based on two critical summer
months (August 2009 and July 2013) of expert manual clas-
sification of the CALIOP 5-kmVFM, cloud, and aerosol layer
datasets over the Iran region. Table 5 summarizes the assess-
ment results based on these 2 months of CALIOP 5-km data
(1,307,000 and 1,286,900 features for Tabriz and Mashhad,

Table 5 A preliminary
assessment of the feature
discrimination algorithm
performance of expert manual
classification of the CALIOP 5-
km VFM over the Iran region, on
August 2009 and July 2013

Total features No. of

misclassified aerosols (%)

No. of

misclassified clouds (%)

No. of

no confidence (%)

2009/8 2013/7 2009/8 2013/7 2009/8 2013/7

Tabriz 1,307,000 3.98 0.06 0.98 4.02 2.78 0.05

Mashhad 1,286,900 4.27 0.04 0.82 3.54 2.01 0.04

�Fig. 4 a The CALIOP ground track over Iran on July 28, 2013. b
Attenuated backscatter measured by CALIOP at 532 nm in km−1 sr−1,
the color bar on the right indicates the value of total attenuated backscatter
that assigned to ranges of attenuated backscatter. c The CALIOP
depolarization ratio measurement. d The CALIOP vertical feature
mask, feature types: 1, clear air; 2, cloud; 3, aerosol; 4, stratospheric
layer; 5, surface; 6, subsurface; 7, no signal (total attenuated); and L,
low/no confidence; and finally e the CALIOP aerosol subtype, feature
sub-types: N/A, not applicable; 1, clean air; 2, dust; 3, polluted continen-
tal; 4, clean continental; 5, polluted dust; and 6, smoke. Meanwhile, the
latitude and longitude based on Bdegrees.^ The black rectangle in these
scenes depicts the east side of Iran

b
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respectively) and the measured meteorological data. We note
that this assessment will not be representative of the whole
CALIOP dataset, and it just provides a general idea about the
performance of the feature discrimination algorithm for most
regions of Iran.

In contrast to the cloud and aerosol feature and its sub-type
discrimination computer code that performs feature classifica-
tion in isolation (based on the properties of a single vertical
layer), this expert manual reclassification identifies features by
simultaneous investigations of two-dimensional vertical-hori-
zontal images of a few different CALIOP measurements
(CAD score, attenuated backscatter, attenuated backscatter
color ratio, and volume depolarization ratio). We also make
use of the additional information, such as the layer structures,
geographic locations, connections with the surrounding
layers, and textures in the expert manual classification of the
feature types. For this purpose, a computer program has been
developed to facilitate this type of image-based manual iden-
tification of features. The number of aerosols that were
misclassified is less than clouds that were misclassified for
July 2013, due to the mixed layers of cloud and aerosol at
the edges of the clouds, and also the cloud layers below the
dense aerosols, whose optical properties are not correctly es-
timated. Meanwhile, the percentage of aerosols, which were
misclassified, is larger on August 2009. This happens due to
the large fractions of the optically thin aerosols not being
reliably detected during daytime scans due to detection issues,
such as the detector transient response. Figure 4 provides an
example of the aerosol feature and its sub-type classification
over the east regions of Iran. The data were acquired by
CALIOP on July 28 2013 from a nighttime orbit across north-
east to southern Iran. Figure 4a shows the CALIOP ground
track. Figure 4b, c presents the attenuated backscatter mea-
sured by CALIOP at 532 nm and the CALIOP depolarization
ratio measurement, respectively (Rogers et al. 2011;Winker et
al. 2013). Figure 4d, e shows the CALIOP vertical feature
mask and the CALIOP aerosol subtype, respectively.

These scenes show a spatially extensive wind of 120 days,
and dust layer of moderate optical thickness, which extends from
~ 40° N to the right hand side of the images at ~ 25° N. The
winds, which are the major source of dust influencing Iran, are
strong frommid-May to mid-September, when a persistent high-
pressure system over the high mountains of the Hindu Kush in
northern Afghanistan combines with a summertime thermal low
over the desert lands of eastern Iran and western Afghanistan.
This dust layer is easily identified from the depolarization ratio
measurement (green-yellow colors in Fig. 4c). Meanwhile, dust
aerosol can be well distinguished from the other aerosol types,
based on checking of the volume depolarization ratio using a
threshold of 0.06 (Liu et al. 2008). Vertically, this dust layer
extends from the surface up to several kilometers (> 5 km for
its highest part). Another aerosol subtype between (25 and 40)°
N appears to be polluted dust (brownish color in Fig. 4e). The

VFM image presented in Fig. 4d shows that the classification
algorithm has identified some features correctly for this region.
But several types of misclassifications have occurred with some
frequency. These misclassifications or lesser identification might
be due to the reduction of signal-to-noise ratio (SNR) during
daytime, as a result of solar background illumination (Vaughan
et al. 2005). Among these instances, the most prevalent are sur-
face, cloud, and smoke aerosol. However, a few mixed layers of
dust (blue strips between (25 and 37)° N in Fig. 4e) are correctly
classified. Vertically, surface and subsurface layers (from the
classification algorithm) between (25 and 36.5)° N extend from
zero elevation up to a few kilometers (>2 km for its highest part).
In addition, smoke, particularly over or near the source regions, is
another aerosol type that can be misclassified, since the mean
attenuated backscatter and mean attenuated total color ratio of
this layer type are both relatively large. Thus, similar to what
would be expected for cloud at the same altitude, this feature
can be occasionally misclassified as cloud. The features colored
in red, in depolarization ratio image (between (25 and 40)° N,
from surface to 2 km in Fig. 4c) represent those features with
large depolarization ratio (value of 0.5), comparable to those of
dust particles (with value of 0.2). Finally, Fig. 5 shows the mea-
sured relative humidity and temperature profiles for the east part
of Iran on July 28, 2013.

We used these measurements in order to validate and inter-
pret the feature layers, which were associated with each other.
So, four groups of measurements were used: (i) upper atmo-
sphere (upper-air meteorological data), (ii) synoptic meteoro-
logical station datasets, provided by the East Azerbaijan and
Khorasan Razavi Meteorological Organization, (iii) ground-
based PM10 concentrations, acquired from the Department of
Environment (DOE) of Tabriz and Mashhad, Iran, and (iv)
AOD products of MODIS, obtained from the NASA
Langley Research Center Atmospheric Science Data Center.

According to past studies, the behaviors of relative humid-
ity and its inversion are certainly unknown yet, but the results
indicate that humidity inversion near, and on top of cirrus
cloud could happen (Nygård et al. 2014; Sedlar et al. 2012;
Vihma et al. 2012). Furthermore, the probability of tempera-
ture inversion in cloudy condition is low, but the possibility of
aerosol existence is increased. Figure 5a provides an example
of observed relative humidity, and Fig. 5b shows temperature
inversion below 5 km, as well as for the tropopause range
((10–20) km). Based on Fig. 5a, increasing mean relative hu-
midity causes cloud formation below 5.0 km, which the
CALIOP has also been able to detect the features as a cloud
in the VFM product (Fig. 4d) for this range. The relatively
strong temperature inversion layer below 5 km, which is
shown in Fig. 5b, confined the aerosols to the region below
this temperature inversion layer. Also, based on the VFM
product (Fig. 4d), the conditions below 5 km of the tempera-
ture inversion layer (Fig. 5b) mean that this is the most appro-
priate level for aerosols and smoke formation.
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Fig. 5 The measured relative humidity and temperature profiles for the eastern part of Iran (from the Khorasan Razavi Meteorological Organization). a
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Fig. 6 Daily (a) and (c) ground level of PM2.5 concentration (Blue) and PM2.5 / PM10 (Red) on August 2011, and monthly (b) and (d) ground level of
PM2.5 concentration (Blue) and PM2.5 / PM10 (Red) of Tabriz and Mashhad, Iran, for 2011
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Table 6 The seasonal statistical of MODIS-AOD,MODIS-DBOD, and ground-level PM10 concentration (μg/m3) of Tabriz andMashhad cities, Iran,
from January 2005 to December 2014

Season Tabriz Mashhad

Min Max Mean STD Min Max Mean STD

Spring AOD 0.23 0.60 0.33 0.09 0.24 0.72 0.37 0.12

DBOD 0.22 0.68 0.34 0.10 0.23 0.66 0.34 0.09

PM10 (μg/m
3) 62.74 243.53 131.31 47.91 64.89 241.22 138.53 54.14

Summer AOD 0.32 0.89 0.48 0.16 0.33 0.94 0.47 0.12

DBOD 0.24 0.50 0.33 0.07 0.26 0.61 0.35 0.09

PM10 (μg/m
3) 66.42 264.77 127.65 42.87 69.11 251.4 126.89 38.01

Fall AOD 0.21 0.49 0.29 0.07 0.22 0.45 0.30 0.06

DBOD 0.18 0.38 0.23 0.05 0.19 0.36 0.24 0.05

PM10 (μg/m
3) 69.24 180.04 99.82 24.72 71.80 186.25 104.06 26.06

Winter AOD 0.19 0.74 0.29 0.12 0.20 0.49 0.29 0.08

DBOD 0.18 0.47 0.24 0.06 0.19 0.56 0.26 0.08

PM10 (μg/m
3) 66.10 179.29 111.56 29.89 68.90 235.46 118.82 39.86

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
P 

yl
ht

n
o

M
1

0
 

 
n

oit
art

nec
n

o
C ss

a
M

             (
)

Monthly Deep Blue Aerosol Optical Depth  at 0.55

/

(a)

0

50

100

150

200

250

300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
o

n
th

ly
 P

M
1

0
 M

a
ss

 C
o
n

ce
n

tr
a
ti

o
n

 (
  

  
  

  
  

  
 )

Monthly Deep Blue Aerosol Optical Depth  at 0.55

(b)

/

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

M
P 

yl
ht

n
o

M
1

0
 

 
n

oit
art

nec
n

o
C ss

a
M

            (
)

Monthly Aerosol Optical Depth  at 0.55

(c)

/

= . + .

= .

=

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

M
o

n
th

ly
 P

M
1

0
 M

a
ss

 C
o
n

ce
n

tr
a
ti

o
n

 (
  
  
  
  
  
  

)

Monthly PM10 Mass Concentration 0.55 

(d)

/

= . + .

= .

=

= . + .

= .

=

= . + .

= .
=
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4 Statistical analysis of the seasonal
MODIS-AOD, MODIS-DBOD, and ground-level
PM10 concentration

The monthly-mean MODIS-AOD, MODIS-DBOD, ground-
level PM10 concentration, and ground-based meteorological
values for each air-quality monitoring station were calculated,
using their daily values for years 2005 to 2016. Recent studies
evaluated the Deep Blue algorithm and found it performs bet-
ter than bright surfaces in terms of retrieval availability and
PM2.5 and PM10 estimations (Barladeanu et al. 2012; Geng et
al. 2015; Seo et al. 2014; You et al. 2015, 2016; Zheng et al.
2013). Daily and monthly time-series of PM2.5 and PM10 con-
centrations from 2005 to 2016 were analyzed. Figure 6 shows
that in some periods of a season or a year, PM10 concentra-
tions dominated over PM2.5 concentrations. Thus, a ground
level of PM10 concentration was used in the processing.

We used 3652 and 3593 datasets from 2005 to 2014 for
modeling, and 731,719 datasets from 2015 to 2016 for the
validation of statistical models according to stations that mea-
sured the PM10 data in Tabriz and Mashhad, respectively.
Note that the monthly-mean values were only used for vali-
dation, and also data with the number of daily samples in a
month less than five per monitoring station were excluded.
Table 6 that shows the significant seasonal variability summa-
rizes the seasonal statistics of PM10 mass concentration,
MODIS AOD, and DBOD.

The MODIS AOD values during summer were the highest
and had the lowest values in winter, and also MODIS DBOD
values showed the highest and lowest values in spring and fall,
respectively (Table 6). However, for the PM10 mass concentra-
tion, the largest monthlymean valuewas in summer of 2009, and
the lowest monthly mean was in spring of 2005. Themean PM10

mass concentrations in spring and summerwere almost the same.
To illustrate the relation between the MODIS AOD andMODIS
DBOD values with ground-level PM10 concentration, we devel-
oped a simple linear regression model between the MODIS-
derived AOD and ground-level PM10 concentration for both
Tabriz and Mashhad cities, Iran. Figure 7 shows the scatterplots
of monthly ground-level PM10 concentration versus MODIS
AOD and MODIS DBOD at 0.55 (μm) for Tabriz and
Mashhad cities, Iran on 2005 to 2014.

The R2 value between the monthly ground-level PM10 con-
centration and monthly MODIS DBOD is more correlated
than the monthly MODIS AOD. Figure 7 clearly shows a
relatively good relationship between ground-level PM10 con-
centration and MODIS DBOD for both cities. Accordingly,
the simple linear regression model of MODIS DBOD and
ground-level PM10 were implemented to estimate PM10 con-
centrations for 2015 to 2016. Table 7 provides the validation
of the linear regression model of estimated monthly PM10

concentration (μg/m3) based on the monthly DBOD at five
independent air-quality monitoring stations of Tabriz and
Mashhad, Iran from 2015 to 2016.

5 Summary and future work

In this study, we examined a vertical profile of CALIPSO
mean aerosol extinction coefficient, the relative extinction
coefficient uncertainty using profile descriptive flags in-
cluded in the CALIOP level two profile data products for
basic quality screening and MODIS Deep Blue Aerosol
Optical Depth (DBOD) at wavelengths of 0.55 μm. The
ground-based PM10 measurements were analyzed and
evaluated for different times, seasons and years, from
2005 to 2016, over Tabriz and Mashhad cities in the
north-western and north-eastern regions of Iran.

We investigated the profiles of the particle backscatter and
extinction coefficient, as well as information on the deter-
mined feature type (e.g., clouds or aerosols) and aerosol sub-
type (e.g., dust, and smoke) from the VFM data product on
two crucial months of August 2009 and July 2013 that were
statistically selected from 2009 to 2016. The cloud and aerosol
discrimination algorithm and the VFM data product work
properly for some feature types, but several specific layer
types are still misclassified. Among these, the most prevalent
are cloud and smoke layer types, which are misclassified with
less frequency. Meanwhile, the clouds that can extend from
the surface to several kilometers in altitude are misclassified as
aerosol. However, smoke layers are misclassified as cloud less
frequently than dust layers are. The evaluation of comparison
of the relative humidity, temperature, and their inversion
shows that the performance of the CALIOP in the detection

Table 7 Validation of the linear regressionmodel of the seasonal statistical ofMODIS-DBOD and ground-level PM10 concentration (μg/m3) of Tabriz
and Mashhad cities, Iran, from 2015 to 2016 (No.: The number of samples)

Tabriz Mashhad

Season Spring Summer Fall Winter Spring Summer Fall Winter

No. 731 719

RMSE (%) 21.63 20.61 23.59 30.25 18.96 22.65 17.47 23.24
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of aerosols in mid-troposphere (around 5.0 km) is better than
in cloud detection.

Additionally, the correlations of the PM10 concentration,
MODIS AOD, and MODIS DBOD were investigated for
January 2005 to December 2014. The overall correlation anal-
ysis shows that monthly ground-based PM10 concentration
measurements have good correlation (r = (0.65 and 0.67) for
Tabriz and Mashhad, respectively) with monthly MODIS
DBOD than MODIS AOD for different seasons.

Differences in investigation of the CALIPSO dataset with the
actual measured values show that some modifications of the
relative humidity, temperature and its inversion (instead of satel-
lite measurements), MODIS DBOD, and ground-based PM10

concentration should be made, and also considered in the cloud
and aerosol discrimination algorithm for this region. Therefore,
in the future study, combining field measurements, including
relative humidity, temperature and its inversion, with CALIOP
datawill be necessary.More importantly, the vertical aerosol type
distributions should be further partitioned according to geograph-
ic region, day vs. night, and season. Finally, an attempt to opti-
mize the use of CALIOP data and improve the results, which is
combined with other meteorological and A-Train data, would be
the objectives of subsequent studies.
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