
Received: 19 April 2018 | Accepted: 7 August 2018

DOI: 10.1002/jcb.27582

RE S EARCH ART I C L E

Exosomes and their importance inmetastasis, diagnosis,
and therapy of colorectal cancer

Hamid Cheshomi1 | Maryam M. Matin1,2

1Department of Biology, Faculty of
Science, Ferdowsi University of Mashhad,
Mashhad, Iran
2Novel Diagnostics and Therapeutics
Research Group, Institute of
Biotechnology, Ferdowsi University of
Mashhad, Mashhad, Iran

Correspondence
Maryam M. Matin, PhD, Department of
Biology, Faculty of Science, Ferdowsi
University of Mashhad, P.O. Box
9177948974, Mashhad, Iran.
Email: Matin@um.ac.ir

Abstract

Extracellular vesicles are known as actual intermediaries of intercellular

communications, such as biological signals and cargo transfer between different

cells. A variety of cells release the exosomes as nanovesicular bodies. Exosomes

contain different compounds such as several types of nucleic acids and proteins.

In this study, we focused on exosomes in colorectal cancer as good tools that

can be involved in various cancer‐related processes. Furthermore, we

summarize the advantages and disadvantages of exosome extraction methods

and review related studies on the role of exosomes in colorectal cancer. Finally,

we focus on reports available on relations between mesenchymal stem cell–
derived exosomes and colorectal cancer. Several cancer‐related processes such

as cancer progression, metastasis, and drug resistance of colorectal cancer are

related to the cargoes of exosomes. A variety of molecules, especially proteins,

microRNAs, and long noncoding RNAs, play important roles in these processes.

The microenvironment features, such as hypoxia, also have very important

effects on the properties of the origin cell–derived exosomes. On the other hand,

exosomes derived from colorectal cancer cells also interfere with cancer

chemoresistance. Furthermore, today it is known that exosomes and their

contents can likely be very effective in noninvasive colorectal cancer diagnosis

and therapy. Thus, exosomes, and especially their cargoes, play different key

roles in various aspects of basic and clinical research related to both progression

and therapy of colorectal cancer.
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1 | INTRODUCTION

Colorectal cancer (CRC) is the third most frequently
diagnozed cancer in both men and women worldwide.1

CRC prevalence and death rates have been decreasing in
developed countries for some decades due to a better
control on risk factors especially changes in lifestyle, such
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as decreased red meat consumption and smoking and
increased use of aspirin, and also because of the
introduction and availability of screening tests and
advances in therapeutic strategies.2,3 However, the trend
observed in most developing countries and also some
developed countries is different and due to growing
population and aging effects, CRC incidence rates have a
steep gradient.4

In the last decade, many studies have focused on
extracellular vesicles (EVs) as important mediators for
cellular communications, including the transfer of
biological signals and various cargoes between cells,
which result in regulation of several pleiotropic biological
procedures.5 Exosomes are small EVs with 30 to 200 nm
in diameter that can include different materials, such as
many types of nucleic acids and proteins (for example,
messenger RNAs [mRNAs], microRNAs [miRNAs], long
noncoding RNAs [lncRNAs], small interfering RNAs
[siRNAs], tetraspanins, and tetraspanin‐associated pro-
teins) from their originating cells and thus, playing
fundamental roles in intercellular communications.6-8 In
other words, these EVs play pleiotropic roles in cancer
progression and metastasis, including invasion, angio-
genesis, immune modulation, and even drug resistance.9

Studies have shown that exosomes are secreted by all
cell types in culture and are also found to a great extent in
body fluids, such as urine, blood, breast milk, and
saliva.10 Generally, exosomes are made during endocy-
tosis. At first, endosomes are produced by internalization
of the cell membrane. Then, multivesicular bodies
(MVBs) are formed by generation of several small vesicles
inside the endosomes. Finally, these large particles, fuse
with the cell membrane, and exosomes are released into
the extracellular space as the intraluminal endosomal
vesicles.11 Various EVs can be secreted in diverse
methods, for instance, microvesicles are directly shed
from the plasma membrane, while exosomes are released
from different cell types by fusion with the cell
membrane.12 In fact, when MVBs fuse with the plasma
membrane, it can be said that exosomes are released by
exocytosis.13

In addition, it is known that several molecules act as a
regulatory network for creation and secretion of exo-
somes in maternal cells. For example, both P53 and its
downstream effector TSAP6 could enhance exosome
creation.14 In addition, it is revealed that syndecan‐
syntenin interacts directly with ALIX protein via
Leu‐Tyr‐Pro‐X(n)‐Leu motif, which is an important
interaction for exosome formation to support the
intraluminal budding of endosomal membranes.15 An-
other key example for this topic is the Rab27a and
Rab27b, which are related to secretion of exosomes and
knockdown of these molecules or SYTL4 and EXPH5, as

their effectors could have a negative effect on exosome
secretion.16 However, because of differences in the
cellular origins and modes of formation of the exosomes,
it is suggested that even among exosomes themselves
several subtypes can be defined.17

It should be noted that several methods with various
advantages and disadvantages are used for exosome
extraction. Generally, these methods should display high
effectiveness in isolating exosomes from different
sources.18 Some of the widely used methods include
ultracentrifugation, immune isolation, microfluidics‐
based techniques, exosome precipitation, filteration
density‐based separation, and chromatography.19,20 Dif-
ferent methods lead to differences in the purity,
concentration, and size of exosomes and exosomal
contents.21 Therefore, to promote the clinical applica-
tions of these particles, various isolation strategies must
be optimized and validated. Some advantages and
disadvantages of the more important exosome isolation
techniques are shown in details in Table 1.

Another point to consider about exosomes is their
function. Generally, it is revealed that exosomes are
components involved in intercellular communications
and are messenger vesicles, which purposefully deliver
several signaling macromolecules between very particu-
lar cells.10 Especially in malignancies, it is shown that
these vesicles have conflicting roles such that depending
on different conditions, they can play a role as promoters
of tumor progression or have antitumor properties.
However, to explore the properties of exosomes in
different cancer types, more studies are required to
determine the complication and heterogeneity of these
particles. On the other hand, today exosomes and
especially their contents have developed as a potentially
suitable tool in the field of diagnosis and treatment of
various types of cancers.10,33

In recent years, some studies have confirmed that
exosomes play roles in cancer pathogenesis via several
strategies, such as formation of metastatic niche, epithelial‐
to‐mesenchymal transition, hypoxia, and transforming
growth factor beta (TGF‐β) and Wnt‐β‐catenin signaling.
In addition, it is specified that the isolation, quantification,
and further scrutiny of tumor‐derived exosomes have
enormous and valuable clinical significance toward the
development of cancer diagnosis and therapy, especially
personalized therapy of these diseases.34

Recently, these vesicles have increased intense interest
in scientific society as probable diagnostic biomarkers
and therapeutic vehicles for cancer, infectious diseases,
neurodegenerative illnesses, and several other different
diseases.6 One of the most important features of these
vesicles is that they have the lipid bilayer membrane,
which protects their cargo from RNases and proteases
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and also allows them to act as preferable delivery
transporters in therapeutic processes (Figure 1).35

2 | EXOSOMES IN CRC
PROGRESSION

Tumor‐released exosomes may contribute to cancer
progression in crucial stages of the process by contribut-
ing to the intercellular relationships. Cell‐cell commu-
nication via these EVs in the tumor microenvironment
and with distant cells appears to play a key role in the
progression of cancer.36 Tumor cells from different sites
or organs may interconnect via transporting genetic
information by cancer cell–derived exosomes and, in this
way, increase tumor progression during multiorgan
tumorigenesis.37 It is also noted that exosomes have the
potential to facilitate tumor progression both locally and
systemically by supplying the tumor niche and with
genetic contents and molecules that stimulate related
processes, such as proliferation, invasion, metastasis, and
drug resistance.38

In addition to the release of soluble proteins and other
biological particles, CRC cells have been shown to release

a variety of EVs including exosomes. EVs have been
known as capable vehicles for simplifying intercellular
communication in this type of cancer.38 It is noted that
exosomes derived from the CRC cells have been enriched
for cell cycle–related molecules such as mRNAs and can
stimulate proliferation of endothelial cells, thus suggest-
ing that these cancer cell–derived microvesicles could be
involved in CRC progression by simplifying some
processes including angiogenesis.39

Moreover, it has been noted that proteins also play
important roles in this regard. Although detailed func-
tions of most of these molecules in various processes
associated with exosomes such as CRC progression are
not completely clear, it was shown that some related
proteins such as CD44, ADAM10, macrophage migrating
inhibitory factor and TAGLN2 play a role in CRC
progression. Nevertheless, some of these proteins were
not identified in CRC cells, HT‐29‐, and LIM1215‐derived
EVs. Some other proteins through exosome‐related
strategy play a role in cytoskeleton organization (ACTR2;
actin related protein 2/3 complex subunit 1B; actin
related protein 2/3 complex subunit 2; capping actin
protein of muscle Z‐line alpha subunit 2; capping protein
(actin filament) muscle Z‐line, beta; CORO1B; copine 3;

FIGURE 1 Schematic showing that exosomes are enclosed by a lipid bilayer membrane and contain different molecules derived from
their cell of origin, such as many types of RNAs and proteins with different structural and functional roles. GC, Golgi complex; MVB,
multivesicular body; N, nucleus, RER, rough endoplasmic reticulum
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and FSCN1) and cancer progression (CD276, epithelial
cell surface adhesion molecule [EpCAM], and intercel-
lular adhesion molecule 1).40-42 Serine/threonine kinase
receptor–associated protein, upregulated in CRCs, is also
referred to as an enhancer of tumorigenicity by promot-
ing anchorage‐independent growth.43 Furthermore, tet-
raspanins, as integral transmembrane proteins, play key
roles in cell proliferation, migration, adhesion, and
apoptosis. These proteins have diverse roles via activities
through their corresponding interactions, for example,
CD151 and tetraspanin‐8–containing exosomes support
tumor progression by stimulating matrix metalloprotei-
nases and induction of angiogenesis, respectively.7,44-46

On the other hand, it is shown that alteration in surface
proteins of cancer cells such as alteration in O‐GlcNAc
extent on EV proteins of metastatic cells may be of notice
as a prognostic biomarker for metastasis and progression
in CRC.47

It has been made clear that exosomes derived from
hypoxic cancer cells, such as oral squamous cell
carcinoma cells,48 glioma cells,49 and leukemia cells,50

promote tumor progression by regulating phenotypic
modulation of endothelial cells or normoxic tumor cells.
In the case of exosomes derived from hypoxic CRC cells,
it has been reported that these exosomes stimulate the
proliferation and migration of endothelial cells. The
cellular role and fundamental mechanisms of hypoxic
exosomes have not been well described.48

Another thing to consider is that exosomal miRNAs
play an important role in cancer progression via two
mechanisms: first, because exosomes have the cap-
ability to protect miRNAs in circulation from degrada-
tion and also function as carriers to transfer these
molecules from donor cells to recipient cells; and
second, investigations of miRNA profiles in tumor
versus normal tissues and in the circulating blood have
resulted in the detection of several miRNAs that are
related to cancer progression and patient survival.51,52

CRC cells secrete some miRNAs inside exosomes that
may lead to inhibition of this cancer. For example,
miR‐375 targets genes that play a key role in regulating
signaling pathways, such as mitogen‐activated protein
kinase, Wnt, TGF‐β, and by these ways, it results in
inhibition of CRC progression.53,54 Moreover, miR‐379
in HT‐29 and HCT‐116, as two well‐known CRC cell
lines, also decreases cell proliferation and migration.55

Furthermore, the study of plasma samples from patients
with CRC and also SW480 and WiDr cell lines in vitro has
shown that miR‐21, as a CRC‐derived exosomal miRNA,
can promote cell proliferation and progression and also can
induce CRC metastasis and, therefore, it can be used as a
poor prognosis CRC biomarker.56 Studies related to the
functions of different miRNAs in CRC‐derived exosomes
are summarized in Table 2.

In addition, a few studies that focus on exosomal
lncRNAs revealed that these molecular particles have key
roles in CRC‐related processes (Table 3). For example, it is
noted that exosomal colon cancer associated transcript 2
lncRNA stimulates cell proliferation and migration and
promotes angiogenesis in vivo and tube formation in
vitro.74,75 Furthermore, several studies have also shown that
some specific lncRNAs such as H19 and UCA1 are strongly
associated with proliferation and tumor growth.76-84 Other
studies reported that upregulated lncRNA CRNDE‐h (color-
ectal neoplasia differentially expressed‐h) is related to cell
proliferation.85-87 Moreover, studies revealed that exosomal
Hox antisense intergenic RNA, as one of the best frequently
reported lncRNAs implicated in cancer progression, is an
activator of the Wnt pathway in intestinal cells.88,89

3 | EXOSOMES IN CRC
METASTASIS

Since cancer cells release exosomes into the extracellular
environment, these microvesicles as the most efficient

TABLE 3 The list of CRC‐related exosomal lncRNAs

CRC‐drived
exosomal lncRNA Description/function/importance References

CCAT2 Stimulates cell proliferation and migration/promotes angiogenesis in vivo and tube
formation in vitro

74,75,90

HOTAIR Activator of the Wnt pathway/cancer development 88,89

BCAR4 Downregulated in the serum of patients with colon adenoma/suitable as part of panel for
diagnosis of CRC. (BCAR4, KRTAP5‐4, and MAGEA mRNAs)

91

CRNDE‐h Increased in patients with CRC/positively associated with regional lymph node metastasis
and distant metastasis/correlated with shorter overall survival of patients with CRC

92

Abbreviations: CCAT2, colon cancer associated transcript 2; CRC, colorectal cancer; CRNDE‐h, colorectal neoplasia differentially expressed‐h; HOTAIR, hox
antisense intergenic RNA; lncRNA, long noncoding RNA; mRNA, messenger RNA.
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intercellular communicators play a critical role in metas-
tasis.7 According to current knowledge, there is reasonable
evidence that tumor‐derived exosomes play a key role in the
communication between cancer and host, and in this
regard, it is noted that the transmembrane 4 superfamily or
tetraspanins are probably effective on the functional activity
of exosomes involved in metastasis.93 Of course, this should
be noted that tetraspanins have a diversity of the functional
roles in metastasis process, for example, some of them such
as CD9, CD63, and CD82 mediate metastasis inhibition,
whereas some others including CD151 and tetraspanin‐8
have increasing effects on this process by several me-
chanisms.7,39,44-46,51

Cancer cells lose their cellular adherence properties as
they develop into malignant forms. Hence, metastatic
cancer cell–derived EVs may not represent the cell
adhesion features of the cell of origin.40 In the case of
the CRC cells, specifically about the secretome protein
profiles released in vitro from primary SW480 cell line
and its lymph node metastatic variant SW620, it has been
shown that many of the proteins that are selectively
enriched in metastatic CRC cell–derived exosomes can
act both as secreted modulators of the metastatic niche
such as main metastatic factors (MET, S100‐A8, S100‐A9,
and tenascin C) and in key signaling pathways (Ephrin
B2, epidermal growth factor receptor [EGFR], jagged1,
SRC, and TRAF2 and non-catalytic region of tyrosine
kinase adaptor protein (NCK) interacting kinase) relative
to primary CRC cell exosomes.94 Furthermore, by using
high‐throughput proteomic analysis to compare EVs
derived from these two related cell lines, it was found
that despite the importance of both types of EVs in the
field of metastasis, SW620 EV‐enriched proteins have
more complex effects and can act as metastatic factors
and also play roles in essential signaling pathways.9,43

Moreover, other proteomic studies focused on the
discovery of candidate protein markers for CRC metas-
tasis and have shown that some proteins such as jagged
1 protein, ephrin‐B2, cadherin‐17, met‐proto‐oncogene,
TRAF2, tenascin C, and NCK‐interacting protein kinase
are important in this regard.95

MiRNAs are another type of specific metastatic factors
and signaling pathway components related to colon
cancer cell–derived exosomes and these molecules have
a cross‐talk between tumor and stromal cells in the tumor
microenvironment. Nowadays, the number of identified
miRNAs with a variety of incremental or decreasing
effects in related to metastatic colon and rectal cancers is
constantly growing. Studies have shown that miR‐135b
was increased in CRC metastatic and tumor tissues,
whereas some other miRNAs, such as miR‐375, miR‐215,
miR‐378, and miR‐422a, were significantly decreased in
these tissues. It has been shown that miR‐375 via the

Bcl‐2 pathway plays a key role in governing the pathways
responsible for inhibition of CRC.72 Moreover, down-
regulated miR‐375 in several solid tumors, found in
primary tumor specimens as well as in circulating fluids
via exosomes, may subclinically detect the existence or
the persistence of cancer, underlining a poor prog-
nosis.72,96 Furthermore, in vitro analyses on DLD‐1 and
HCT‐116, as two colon cancer cell lines, showed that
ectopic expression of miR‐215 increases apoptosis,
stimulates cell cycle arrest, and also reduces migration
and viability. In other words, miR‐215 could be used as a
potential therapeutic target for prevention of metastasis
and also as a new main biomarker in the pathogenesis of
CRC.97 In contrast, a study on HCT‐8 cell line has shown
that miR‐210 was upregulated in exosomes derived from
these cells and this miRNA resulted in cancer cell
metastasis and homing processes70 (Table 2). Further-
more, it is shown that exosomal CRNDE‐h lncRNA levels
in patients with CRC were higher and it was positively
associated with distant metastasis and especially regional
lymph node metastasis (Table 3).92

4 | EXOSOMES IN CRC DRUG
RESISTANCE

Another important role of the RNAs and proteins that have
been extracted from the tumor‐derived EVs is induction
and/or enhancement of drug resistance in cancer cells.47

Generally, two suggested patterns and fundamental me-
chanisms may contribute to drug resistance of cancer stem
cells (CSCs) in the recurrent CRC tumors. One is related to
specific properties of CSCs such as having a variety of ABC‐
transporters that make them intrinsically resistant to
chemotherapy; and the second mechanism is related to
the exosomes in tumor microenvironment, which lead
to further drug resistance of CSCs.98 There are a number of
important components such as carcinoma‐associated fibro-
blasts (CAFs) and especially CAF‐derived exosomes, which
are extensively involved in chemotherapeutic resistance.99 It
has also been revealed that CSCs resistant to chemotherapy
via exosomes can spread their resistance to other cancer
cells.100

Moreover, applying changes to microenvironment can
have important effects on drug resistance properties of
the tumor cells. For example, Lugini et al101 showed that
tumor exosomes induce a disorder in colon‐derived
mesenchymal stem cells (cMSC). Colon cancer cells
might change the cMSC niche to preserve their stem cell
element that consequently becomes resistant to che-
motherapy.101

Furthermore, a study on DLD‐1, a colorectal adeno-
carcinoma cell line, has shown that some other
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CRC‐derived exosomal miRNAs, such as miR‐34a and
miR‐145, can contribute to the maintenance of CRC cell
proliferation and also, especially, to the induction of drug
resistance.61 Moreover, other related studies on
CRC‐derived exosomal miRNAs have shown that miR‐
192 and miR‐215 can induce chemoresistance to fluor-
opyrimidine and antifolates in CRC cells (Table 2).59,66,67

5 | EXOSOMES FOR DIAGNOSIS
OF CRC

Despite progress in curative surgical interventions and
adjuvant chemotherapies, 20% to 50% of all patients
with CRC will eventually face disease recurrence from
which 74% of them develop within the first 3 years of
diagnosis.102 Therefore, diagnosis of early‐stage CRC
appears to be an important factor to decrease its mortality
and problems associated with the disease. Unfortunately,
despite many progresses in the development of new
methods for diagnosis of CRC, there is still no accurate
biomarker or biomarker panel for early diagnosing
purposes, and half of all patients with CRC are diagnosed
at stage II or stage III of the disease.102,103 In general, a
perfect screening system should have high specificity and
sensitivity for early‐stage CRC diagnosis and it should be
noninvasive and economical so that it can be easily
accepted by patients.103,104

Furthermore, many factors have been used for diagnosis
and prognosis of CRC, including carcinoembryonic antigen,
EpCAM, EGFR, claudin‐3, glycoprotein A33, galectin 4,
S100‐A8 calcium‐binding protein, SRC, and S100‐A9
calcium‐binding protein.95 Since all cancer cells produce
exosomes from early stages and these EVs play efficient
roles in recipient cells, the molecular content of these
exosomes may provide unique molecular markers for early
diagnosis and prognosis. Therefore, researchers propose
that circulating exosomes may provide an effective tool for
noninvasive diagnosis and prognosis of human can-
cers.104,105 Moreover, several reports on CRC have also
revealed that specific circulating exosomes in the plasma of
patients are related to poor prognosis and can be reliable
biomarkers for diagnosis of this cancer.106-108

Furthermore, proteome analysis of exosomes derived
from colon cancer cell lines has led to the documentation
of other candidate markers for this cancer, such as
ephrin‐B1 and cadherin‐17.41,109 It was also found that
collapsin response mediator protein‐2 (CRMP‐2) was
exclusively detected in the colon adenocarcinoma cell
lines Colo205 and SW480 secretome. CRMP‐2 was
eventually confirmed in serum, indicating its importance
for discriminating patients with CRC from healthy
donors.110

Another study reported that the plasma glypican
1 (GPC1) positive exosomes could be used as a biomarker
for CRC. The percentage of GPC1+exosomes and the
GPC1 protein expression in exosomes from cancerous
tissues and plasma of patients with CRC before the
surgery were meaningfully higher than those in the
plasma of healthy controls and the normal tissues. It was
also shown that together with GPC1 expression and
GPC1+exosomes, miR‐96‐5p and miR‐149 could be
suitable markers for diagnosis, evaluation of therapeutic
efficacy, and likely targets for molecular therapy of
CRC.62

Recently, more efforts have been made to use miRNAs
in plasma or serum as diagnostic markers of different
cancers, such that several miRNAs with high levels of
expression in cancer tissues have been reported as
suitable candidates for diagnosis of CRC.111,112 For
example, miR‐21, miR‐29a, and miR‐92a as noninvasive
screening tools in patients with colorectal adenomas can
be incorporated into routine clinical practice in the not‐
so‐distant future pending validation in large‐scale poten-
tial trials.60 On the other hand, nowadays, more research
is focused on the exosomal miRNAs in body fluids that
might be useful and specific as diagnostic biomarkers for
the detection of various cancers such as CRC.65 For
example, several studies revealed that some of the
identified exosomal miRNAs such as miR‐100, miR‐200,
miR‐223, miR‐1229, miR‐1224‐5p, and let‐7a could assist
as noninvasive screening tools in patients with CRC and
this approach may easily complement existing conven-
tional invasive detection approaches.59,60,63,68,69

Another example for exosomal miRNAs as CRC
biomarkers is the plasma exosomal miR‐125a‐3p that
may provide a chance to distinguish between early‐stage
CRC and normal controls.64 Furthermore, it was demon-
strated that miR‐21 is significantly overexpressed
(five folds) in exosomes derived from patients with colon
cancer, particularly in patients at the first diagnosis or
before any treatments.113 Generally, a unique miRNA
like miR‐21 is not an exact diagnostic marker in CRC; it
requires to be accompanied with other miRNAs for
improved specificity.60

Another study in this area showed that exosomal
miR‐193a may be used as a biomarker for predicting the
progression of colon cancer.57 Furthermore, increased
exosomal miR‐19a in human serum samples correlates
with early recurrence of CRC.65 Moreover, a study
showed that expression of serum exosomal miR‐4772‐3p
is also a prognostic biomarker for recurrence of CRC at
stage II and stage III.52 In the same field, data from
cultured cells and patient‐derived samples suggest the
presence of a set of exosome miRNAs that includes
miR‐18, miR‐1229, let‐7a, miR‐150, miR‐1246, miR‐223,
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miR‐21, and miR‐23a, which can be used as a reliable
package for CRC diagnosis (Table 2).71,73

On the other hand, although the significance of
circulating lncRNAs in predicting and diagnosis of
various cancers is extensively investigated, and it is
known that some of these molecules can also be probable
biomarkers for CRC diagnosis, a few studies have
considered the use of exosomal lncRNAs as suitable
biomarkers for diagnosis of this cancer.76-84,87 Moreover,
several studies reported that some particular exosomal
lncRNAs, such as UCA1, H19 and upregulated lncRNAs
CRNDE‐h and Zinc finger antisense 1 in CRC are related
to poor prognosis and had specific advantages for
diagnosis of this cancer.76-87,92 Furthermore, a recent
study, after a series of bioinformatic analyses, screening
important pathways and GO terms that were related to
upregulated and downregulated transcripts, noted that
lncRNA BLACAT1 and four downregulated lncRNAs
including LOC344887, LINC00675, DPP10‐AS1, and
HAGLR are all biomarkers for diagnosis of CRC.114 In
this regard, studies revealed that exosomal BCAR4
lncRNA is downregulated in the serum of patients with
colon adenoma compared with normal subjects. In
addition, the combination of two mRNAs, KRTAP5‐4,
and MAGEA, with this lncRNA provided a suitable panel
for diagnosis of CRC (Table 3).91 However, despite some
challenges in the clinical application of exosomes, some
specific properties of these EVs give the promise that
exosomes can be novel diagnostic markers for CRC in the
near future.

6 | EXOSOMES IN CRC THERAPY

Since CRC is the second important cause of cancer‐
related death in the world, more investigation to find
better strategies for highly effective targeted therapy is
necessary. Studies have shown that exosomes have
specific properties such as antigen‐presenting capability,
which make them a theoretically smart vehicle for cancer
immunotherapy.115-117 Furthermore, because exosomes
can easily cross biological barriers, they represent a fine
potential delivery vehicle for targeted transfer of ther-
apeutic molecules such as proteins and different types of
RNAs, especially miRNAs into cancerous cells. There-
fore, exosome engineering with the aim of loading
specific molecules into the exosomes may overcome the
problems associated with in vivo delivery of these
molecules as the most major challenge in this type of
therapy.38

Generally, miRNA‐based therapy appears to be a very
ingenious and promising new approach in gene therapy
of CRC. Furthermore, it is known that exosomes can be

engineered to overexpress these molecules and, thus,
affect the recipient cancer cells. For example, it was noted
that exosomes can be engineered to overexpress miR‐379
and these exosomes could be transferred to recipient
cancer cells and reduced CRC cell proliferation and
migration (Table 2).38

Furthermore, major vault protein (MVP) that is over-
expressed in multidrug‐resistant cancer cells binds to tumor
suppressor miR‐193a, forming an MVP protein‐miR‐193a
complex in the exosomes. It was found that patients with
colon cancer at more progressive stages show higher levels of
circulating exosomal miR‐193a. MiR‐193a causes tumor
progression inhibition, cell cycle arrest at G1, and cell
proliferation repression through targeting Caprin1, which
upregulates Ccnd2 and c‐Myc.57,118,119 So, MVP protein‐miR‐
193a complex is packed into exosomes leading to the
reduction of cytoplasmic miR‐193a and it is obvious that
knockout of MVP leads to accumulation of miR‐193a in the
cytoplasm instead of exosomes and ultimately leads to
inhibition of tumor growth.57

On the other hand, some studies have proposed that
loading chemotherapeutic drugs into exosomes can be
considered as one of the most effective strategies for
exosome‐based cancer therapy, especially to target CSCs
in vivo. Furthermore, another study showed that
chemotherapeutic drug delivery by exosomes has more
anticancer effects than the free drugs in animal tumor
models.120 For example, exosome‐delivered doxorubicin
minimized tumor size much more efficient than free or
liposome‐delivered doxorubicin in a colon adenocarcino-
ma mouse model.121

Furthermore, understanding the molecular heteroge-
neity of tumor is of specific correlation to forecast
medical consequence of targeted therapies, an example
is an observation that anti‐EGFR therapy in CRC does
not have an effect in Kirsten rat sarcoma viral oncogene
homolog (KRAS) mutant CRC.122 The efficiency of
EGFR‐targeted therapy is meaningfully associated with
KRAS and BRAF (B‐raf serine/threonine kinase
proto‑oncogene) mutations in patients with CRC.
However, a relative measurement for the presence of
KRAS and BRAF mutations in the serum exosomes and
primary tumor tissues from patients with CRC revealed
that serum exosomal mRNAmay be used as a unique and
innovative source for rapid and noninvasive genotyping
of patients with CRC.123

Furthermore, two separate phase I clinical trial studies
for CRC revealed that ascite‐derived exosomes combined
with granulocyte‐macrophage colony‐stimulating factor,
and plant exosomes to deliver curcumin, both have a
useful tumor‐specific antitumor cytotoxicity.124,125

However, some studies have shown that there are
many challenges and complications in exosome‐based
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approaches for cancer therapy and thus more studies are
needed to improve the quality and accuracy of these types
of treatments. For example, it is known that Wnt/β‐
catenin is a typical pathway in cancer and without Wnt
signaling, β‐catenin is degraded in the cytoplasm.
Whereas, β‐catenin with Wnt signaling is accumulated
in the cytoplasm and as a transcriptional cofactor
translocates into the nucleus.126,127 However, some
exosomes by delivering Wnt mRNAs can affect on
β‐catenin levels in the recipient cells and help to change
cell fate. Moreover, hypoxic tumor microenvironment is
essential for effective angiogenesis‐targeted therapy in
metastatic CRC, and it was also shown that hypoxic CRC
cell–derived exosomes by delivering Wnt4 mRNAs could
stimulate β‐catenin in endothelial cells and thus, facil-
itate endothelial cell proliferation and migration.49

7 | MSCs, EXOSOMES, AND
CANCER

In recent decades, stem cell therapy as the advanced and
promising therapeutic approach to treat different types of
diseases has attracted much attention. Furthermore,
because of MSCs unique features, they are one of the most
reliable cells in therapy compared with other stem cells.128

MSCs may be involved in several vital processes, such as
regulation of immunological responses, homeostasis‐related
processes, tissue maintenance and repair, and also these
cells can differentiate into mesodermal lineage and many
other cell types with dissimilar embryonic origins, such as
lung, muscle, liver, bone marrow, and skin cells.129

Moreover, MSCs are easily isolated, and therefore, there is
a high tendency to test MSCs and their components in
various clinical applications.128

Recently, MSC‐derived exosomes are being studied for
their likely roles in stem cell–based therapy.130 Several
studies related to different strategies of MSC‐based therapy
suggest that the capacity of MSC‐derived EVs can be used
for treatment of some diseases. The therapeutic potential of
MSC‐derived EVs has been observed in different species,
such as human, mouse, and rat, and for several types of
disease models, including brain and neurological injury,
myocardial diseases and kidney injury. Although the
numbers of related studies are still restricted, but results
powerfully support the idea that MSC‐derived EVs are
suitable vehicles for therapeutic applications in a wide
range of diseases.131-137 Furthermore, exosomes can reflect
the phenotype of their parent cell and thus, therapeutic
effects of MSC‐derived factors, including cytokines and
growth factors, can be relatively due to their released EVs.
In addition, lung barrier is one of the main challenges for
systemic administration of MSCs, thus exosomes may

provide an advantage over the use of MSCs in that these
microvesicles can pass through this barrier.138

However, cancer‐related studies have shown that MSCs
within the tumor microenvironment can display both
pro‐ and antitumor activities. These cells may cause
immunosuppression via their effects on tissue remodeling
activity at inflammatory positions, which ultimately leads to
tumor formation or progression.139 In a study on T24, as a
bladder cancer cell line, it has been made clear that human
cord blood Wharton’s jelly MSCs‐EVs induced apoptosis
and cell cycle arrest by upregulating caspase‐3 cleavage
while suppressing Akt phosphorylation pathways.140

Furthermore, several studies have shown that conditioned
medium derived from human liver stem cells (HLSCs)
express the MSC‐related phenotypes and some embryonic
stem cell markers specifically Lefty A. Lefty A can disrupt
Nodal signaling pathways, and thus, HLSCs have displayed
antitumor effects in several specific cells, such as HepG2,
MCF7, KP6, KS, and Jurkat, as cell lines with high level of
Nodal signaling pathways.141-143 Other studies have shown
that subcutaneous coinjection of MSCs or MSC‐EVs with
SGC‐7901 and SW480, as human gastric and colon cancer
cells, respectively, increased tumor burden and growth. It
was shown that only CXCR4 and VEGFmRNA and protein
expressions were increased both in vivo and in vitro and no
detectable changes in proliferation and cell cycle could be
observed when compared with controls. Thus, despite the
promoting effects of MSC‐EVs on the angiogenic program,
which affects on tumor seeding and tumor growth, the
increased tumor burden observed in vivo is likely an
indirect consequence of MSC‐EVs.144 Finally, selective
overexpression of specific molecules, which are known as
necessary for a special therapeutic effect, in the parental
MSCs may lead to improvement of the therapeutic
efficiency of the MSC‐derived exosomes.145-148

8 | CONCLUSIONS

Exosomes are small EVs that can include different
important cargoes such as mRNAs, miRNAs, IncRNAs,
siRNAs, tetraspanins and tetraspanin‐associated proteins,
and many other structural and functional proteins.6,7,149

Furthermore, these microvesicles, depending on their
content and specific features, have a variety of key
functional roles in CRC‐related processes such as cancer
progression, metastasis, drug resistance, and of course
processes associated with the diagnosis and treatment of
this malignancy. Despite many challenges to be ad-
dressed over time, the therapeutic strategies for CRC are
still developing,150 and due to very unique features of
exosomes and growing studies—which almost every day
prove the importance of using these microvesicles,
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specially MSC‐derived EVs—we believe that in the not
too distant future, the importance of these nano‐sized
EVs will be understood which would lead to their
applications in different cancer diagnosis and therapy,
especially for CRC.
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