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In the past decades, there has been a burst of activity to simplify implementation of
complex software systems. The solution framework in software engineering community for

this problem is called component-based software design (CBSD), whereas in the modeling

and simulation community it is called composability. Composability is a complex feature
due to the challenges of creating components, selecting combinations of components, and

integrating the selected components.

In this paper, we address the challenge through the analysis of Component Selection
(CS), the NP-complete process of selecting a minimal set of components to satisfy a set

of objectives. Due to the computational complexity of CS, we consider approximation

algorithms that make the component selection process practical. We define three varia-
tions of CS and present good approximation algorithms to find near optimal solutions.

In spite of our creation of approximable variants of Component Selection, we prove that

the general Component Selection problem is inapproximable.

Keywords: Component selection; approximation algorithms; NP-completeness; set cover;

red-blue set cover.

1. Introduction

Over recent decades, one of the approaches used to overcome the highly increasing

demand for new products was the concept of reusing. In software engineering,

component-based software design considers building applications from existing com-

ponents as a way of reusing rather than writing them from scratch, for example

[4, 7, 16]. In simulation, composability is the ability to combine reusable simulation

components to satisfy a set of user objectives. Composability is highly demanded

for model and simulation developers because of the benefits afforded by reuse, for

example [2, 17].
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Component Selection (CS) is the problem of choosing the minimum number of

components from a set of components such that their composition satisfies a set of

objectives. Component Selection is an NP-complete [15] optimization problem, and

has been formally shown to be embedded in composability [15]. For composability

to be achievable in reasonable time, the selection of a set of components must be

possible in polynomial time. Fox et al. [9] conjectured that in its general form CS

is inapproximable.

Baker et al. [1] investigated CS and proposed a greedy algorithm and a sim-

ulated annealing algorithm to solve the problem. Fahmi and Choi [8] introduced

case based reasoning in component selection and evaluated the approach. Khan and

Mahmood [11] gave a component selection process that uses a signed graph and

groups related goals into clusters, based on the usage, non-functional and threat

dependencies.

In this paper we focus on CS and try to solve it approximately in different cases.

The results we have obtained can be summarized as below:

• Proving that CS is inapproximable when compositions exhibit emergent or anti-

emergent behavior, a conjecture which is suggested by Fox et al. [9].

• Proposing an approximation algorithm for CS, when each component has a unit

cost and the number of emergent and non-emergent compositions is bounded.

We also give an approximation ratio for the algorithm and a tight example that

attains the ratio.

• Defining a new version of CS, in which each component has a real valued cost.

We then present an approximation algorithm for the problem, prove an approxi-

mation ratio and show a tight example which produces that ratio.

• Defining a new version of CS, in which each component may have several types of

cost, possibly common with other components. We then present an approximation

algorithm for the problem with a provable approximation ratio.

This paper is an extended version of [12] in which all omitted proofs of theorems

in that paper are presented completely and some recent related works are cited.

In the following we will examine component selection in three different cases. In

Sec. 2, we will study the well-known problem of component selection with unit cost.

Then in Sec. 3, we will extend the problem to the case in which each component

has a real valued cost. In Sec. 4 the multi-cost component selection problem is

defined and an approximation algorithm for it is presented. Finally, in Sec. 5 we

will summarize the results of this paper.

2. Component Selection with Unit Cost

In this section we consider the simplest form of component selection, CSUC, in

which adding each component charges a unit cost to the composition. Informally,

the problem is to select and compose the minimum number of components from
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a repository of components such that the composition will meet a given set of

objectives.

Let O = {o1, o2, . . . , on} be a set of objectives and C = {c1, c2, . . . , cm} be a

set of components. A simulation system S is a subset of C, i.e. S ⊆ C. If |S| > 1

then S is a composition. Let ◦ denote the composition of components, e.g. (c ◦ c′)
is the composition of c and c′. Let � and 2 denote satisfies and does not satisfy

an objective respectively, e.g. c � o means c satisfies o and c 2 o means c does

not satisfy o. These two operators may also be used with compositions and sets of

objectives and have the expected meanings, e.g. c ◦ c′ � o and S 2 O. A simulation

system S � O if and only if for every oi ∈ O, S � oi.
In some variants of CSUC, the set of objectives satisfied by a composition may

not be the union of the objectives satisfied by the components individually. With

regard to the set of objectives satisfied by a composition of a set of components

there may be three different situations which can be seen in Table 1. Two of these

situation (emergent and non-emergent) were introduced by Page and Opper [13]

and the third one (anti-emergent) was later defined by Petty et al. [15]. Informally,

if none of c, c′ and c ◦ c′ satisfy o, then the composition is non-emergent. If c and

c′ do not satisfy o but c ◦ c′ satisfies o, then the composition is emergent. If one

or both of c and c′ satisfy o but c ◦ c′ does not satisfy o, then the composition is

anti-emergent. In Table 1 all different possible logical combinations of satisfaction

of an objective by components have been shown.

Petty et al. [15] defined a general problem which subsumes all these different

variations of the problem. They showed that even in the presence of an oracle func-

tion that can determine in one step which objectives are satisfied by a component

or a composition, the problem of component selection with unit costs (CSUC) is

NP-complete. The formal definition of the decision version of CSUC is as follows:

CSUC

Input: A set C = {c1, c2, . . . , cm} of components, a set O = {o1, o2, . . . ,
on} of objectives, an oracle function σ : 2C → 2O, and a positive

integer K ≤ |C|.
Question: Is there a composition S ⊆ C such that |S| ≤ K and O ⊆ σ(S)?

Table 1. Different types of compositions.

Objective Satisfaction Objective Satisfaction

of Components of Composition Composition Type

c � o c′ � o (c ◦ c′) � o Non-emergent
c 2 o c′ � o (c ◦ c′) � o Non-emergent

c � o c′ 2 o (c ◦ c′) � o Non-emergent

c 2 o c′ 2 o (c ◦ c′) 2 o Non-emergent
c 2 o c′ 2 o (c ◦ c′) � o Emergent

c � o c′ � o (c ◦ c′) 2 o Anti-emergent

c 2 o c′ � o (c ◦ c′) 2 o Anti-emergent
c � o c′ 2 o (c ◦ c′) 2 o Anti-emergent
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Since this problem has been proved to be NP-complete, it is very unlikely to

find a polynomial time algorithm to solve CSUC (unless P = NP). Therefore it is

natural to look for an algorithm that approximately computes the minimum number

of components needed to satisfy all the objectives in O.

Fox et al. [9] have demonstrated that the greedy algorithm is not an approxima-

tion algorithm for CSUC. Since the greedy algorithm is one of the best algorithms

for Set Cover, which is very closely related to CSUC, they conjectured that there

is no algorithm that can approximate CSUC. In the following two theorems, we

prove that when the compositions have emergent or anti-emergent behavior, CSUC

cannot be approximated.

Theorem 1. CSUC with emergent compositions cannot be approximated to within

o(
√
m), where m is the number of components.

Proof. For the sake of contradiction, assume there exists a polynomial time approx-

imation algorithm A for the problem with an approximation ratio r ∈ o(
√
m).

Consider the following instance I: Let m1 = m
r+1 and m2 = m−m1 and assume for

each compositions S ⊂ C, where |S| < m1, σ(S) = ∅, and for each S ⊆ C, where

|S| > m2, σ(S) = O. This implies that for each ci ∈ C, σ({ci}) = ∅.

Let A be executed on I. We will show that there is a composition S1 of cardi-

nality m1 such that for each S2 ⊇ S1 where |S2| ≤ m2, A does not check σ(S2). If

we prove the existence of such S1, we could assume that for each S ⊇ S1, σ(S) = O

and for all S + S1 where |S| ≤ m2, σ(S) = ∅. In fact we imagine an adversary

that chooses values of σ(·) for each composition to deceive A in such a way that

there will not be any contradiction in previous queries, i.e. σ(S) ⊆ σ(S′) whenever

S ⊆ S′. With this construction, the optimum answer is S1 with m1 components

while the answer returned by A has more than m2 components.

We call S1 ⊆ C of m1 components a good composition if for all S2 ⊇ S1 where

|S2| ≤ m2, the algorithm A does not check the value of σ(S2), and otherwise a

bad composition. Assume by contradiction that there does not exist such a good

composition. Therefore for each composition S1 with cardinality m1, A must query

the value of σ(·) for S1 or one of its supersets of cardinality at most m2. The number

of candidates for good compositions is
(
m
m1

)
. When A queries the value of σ(S) for

some composition S, where m1 ≤ |S| ≤ m2, it makes
(|S|
m1

)
candidates of being good

compositions bad. The maximum number achieved when |S| = m2. Therefore, A
must query σ(·) for at least(

m
m1

)(
m2

m1

) ≥ ( m

m2

)m1

=

(
r + 1

r

)m/(r+1)

=

(
1 +

1

r

)m/(r+1)
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=

(
(1 +

1

r
)r+1

)m/(r+1)2

≥ em/(r+1)2

compositions in polynomial time, which grows exponentially if r ∈ o(
√
m). The last

inequality obtained from (1 + 1/x)x+1 > e, which holds for any positive x, where

e ≈ 2.71828 is the base of the natural logarithm.

This contradiction proves that there is at least one good composition. The exis-

tence of such a good composition shows that the approximation ratio of A is greater

than m2

m1
= r, which contradicts our first assumption.

Theorem 2. CSUC with anti-emergent compositions is not approximable.

Proof. For the sake of contradiction, assume there exists a polynomial time approx-

imation algorithm A for the problem. Consider the following instance I of the

problem: Let m = 2n, where n is the number of objectives and m is the number of

components. Each objective oi ∈ O is satisfied by components c2i and c2i+1. There-

fore from each group Gi = {c2i, c2i+1} at least one component must be selected in

the final solution. Notice that the total number of candidate solutions is 2n, which

is not polynomial.

Consider an adversary that returns σ(S) = ∅ for each composition S queried by

A among candidate solutions. Therefore A abandons further queries after a polyno-

mial time and returns no result, but the optimal answer is a particular composition

of n components selected by the adversary. In this instance of the problem, A can-

not even find a possible composition of components that satisfy all the objectives.

It follows that no approximation algorithm exists for CSUC with anti-emergent

compositions.

While we have proved that CSUC in its general form (if emergent or anti-

emergent compositions exist) is not approximable, we can present an approximation

algorithm for CSUC if the compositions exhibit only non-emergent behavior. We

can use a greedy algorithm similar to the algorithm used for Set Cover and get an

approximation ratio of H(k) =
∑k
i=1

1
i , where k = max{|σ({c})| : c ∈ C}. The

greedy algorithm when CSUC only has non-emergent rules is shown in Algorithm 1.

In the following theorem, it will be proved that the approximation ratio of the

algorithm is H(k).

Theorem 3. Greedy-CSUC when σ has no emergent or anti-emergent behavior,

approximates the solution with ratio H(k) =
∑k
i=1

1
i where k = max{|σ({c})| :

c ∈ C}.

Proof. We prove this ratio with a transformation of the problem to Set Cover [5].

For clarity, we here state the formal definition of Set Cover.
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Algorithm 1. The algorithm for CSUC with only non-emergent rules.

1: function Greedy-CSUC(C,O, σ)

2: U ← O . To be satisfied objectives

3: S ← ∅ . Selected components

4: while U 6= ∅ do

5: Select a ci ∈ C that maximizes |σ({ci}) ∩ U |
6: S ← S ∪ {ci} . Select the component

7: U ← U − σ({ci}) . Remove satisfied objectives

8: return S

9: end while

10: end function

Set Cover

Input: A set X, a family F of subsets of X, such that each element of X

belongs to at least one subset in F , i.e. X =
⋃
S∈F S.

Question: Find a subset C ⊆ F of minimum size such that X =
⋃
S∈C S

A greedy algorithm similar to Greedy-CSUC can approximate Set Cover (SC)

with ratio H(k) where k is the size of the largest set in F [10].

In order to prove the ratio for CSUC, we establish a one-to-one correspondence

between instances of CSUC and SC. The optimum solution of SC also corresponds

to the optimum solution of CSUC. The transformation is as follows. Let X = O.

For each ci ∈ C create a set Si containing each oj ∈ σ({ci}) and add Si to F .

For each possible solution S for CSUC, O ⊆ σ(S) =
⋃
ci∈S σ({ci}) and so for the

corresponding subfamily C ⊆ F , X ⊆
⋃
S∈C S. The correspondence in the opposite

direction is shown similarly. Since the cost of any solution C of SC is the number of

sets in C, which is equal to the number of components in the corresponding solution

S of CSUC, the approximation ratio of the greedy algorithm holds for CSUC and

is at most H(k).

We have to mention here that if the number of emergent and anti-emergent

compositions are polynomially bounded and can be iterated by σ, CSUC can be

approximated with the greedy algorithm. The trick is to treat each emergent or

anti-emergent composition as a new component such that the satisfied objectives

for that component is as the corresponding rule, and also the cost of the component

is the number of components used inside that. We should also note that if these new

components are selected, the inner components cannot be selected concurrently. By

using the algorithm presented in Sec. 3, this problem can easily be approximated.

It is interesting to see that the approximation ratio is tight. We give an example,

depicted in Fig. 1, which shows the tightness of this ratio. Consider the problem

in which we have k · k! objectives, oij where 1 ≤ i ≤ k and 1 ≤ j ≤ k!. For each

r, 1 ≤ r ≤ k!, for each s, 1 ≤ s ≤ k, and for each t, 1 ≤ t ≤ k!(k − s + 1), we

consider two groups of components cr1 and cst2 . Clearly the number of components
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Fig. 1. An instance of CSUC that shows the approximation ratio of the greedy algorithm is tight.

In the figure, the golden circles are objectives, the green bars are the components in the optimum

solution, while the red bars are the components that may be returned by the greedy algorithm.

in the first group is k! and in the second one is k! · (1 + 1/2 + · · ·+ 1/k) = k! ·H(k).

Each oij is satisfied by two components: cj1 from the first group and c
i,bj/(k−i+1)c
2

from the second group. Therefore each component cr1 satisfies k objectives, while

each component cst2 satisfies k − s+ 1 objectives.

It is easy to see that the optimal solution is the set of components in the first

group, but the greedy algorithm may return the set of components in the second

group. The reason is that in the first k!/k iterations of the while loop of Algorithm 1,

both cr1 and c1t2 for 1 ≤ r ≤ k! and 1 ≤ t ≤ k!/k maximizes |σ({c}) ∩ U | to k,

so the algorithm may select the components in the second group. If the algorithm

selects these components, in the next k!/(k − 1) iterations of the while loop, both

components in cr1 and c2t2 for 1 ≤ r ≤ k! and 1 ≤ t ≤ k!/(k − 1) maximizes

|σ({c}) ∩ U | to k − 1 and again the algorithm may select the components in the

second group. Similarly, in the next k!/(k− i+ 1) iterations for i = k− 2 . . 1, both

components in cr1 and cit2 for 1 ≤ r ≤ k! and 1 ≤ t ≤ k!/(k − i + 1) maximizes

|σ({c})∩U | to k−i+1. Therefore after k! ·H(k) iterations, the algorithm may select

all the components of the form cst2 , while the optimum solution is the components

of the form cr1. The ratio of the size of the greedy solution to the optimum solution

is k! ·H(k)/k! = H(k) which is equal to the bound proved in Theorem 3.

3. Component Selection with Real Costs

In this section, we extend CSUC by assigning a positive real number to each compo-

nent or composition as its cost; therefore we call this extension Component Selection

with Real Costs (CSRC). This problem has more applications than the previous
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one. For example, suppose that a few components satisfy most of the objectives of

the problem, but they need many modification and integration efforts. Moreover,

we can use a lot of cheaper components to satisfy the same objectives. The ques-

tion here is: should we select either few costly components or many inexpensive

components? This problem can easily be modeled by CSRC.

The formal definition of the decision version of CSRC is as follows:

CSRC

Input: A set C = {c1, c2, . . . , cm} of components, a set O = {o1, o2, . . . ,
on} of objectives, an oracle function σ : 2C → 2O, a cost function

ω : 2C → R+, and a positive real number K ≤ |C|.
Question: Is there a composition S ⊆ C such that ω(S) ≤ K and O ⊆ σ(S)?

CSRC is as hard as CSUC, since it contains CSUC as a special case. When

the cost of each composition is equal to the number of components it contains, i.e.

ω(S) = |S|, the problem converts to CSUC. Therefore we immediately conclude the

following theorem.

Theorem 4. CSRC is NP-complete.

Because CSRC is NP-complete, we hope to find an approximation algorithm

for CSRC as we did for CSUC. Since CSUC is a special case of CSRC, similar

results about the complexity of CSRC can be obtained. Specifically, CSRC can-

not be approximated to within o(
√
m) if the number of emergent compositions is

unbounded, and cannot be approximated at all if the number of anti-emergent com-

positions is unbounded. In the case of non-emergent compositions, like CSUC, it

cannot be approximated to within (1 − o(1)) · lnn unless P=NP. This is because

it is as hard as Minimum Set Cover, which cannot be approximated to within

(1−o(1))·lnn unless P = NP [6]. Therefore, we should not expect a better algorithm

than the greedy algorithm.

CSRC has an additional function, ω, that can exhibit three different behaviors

like σ. These behaviors are cumulative, convergent and divergent. When the cost of a

composition is equivalent to the sum of the costs of its components the composition

is cumulative. When the cost is less than that value, the composition is convergent

and when it is greater, the composition is divergent.

It can be proved, as was the case for emergent and anti-emergent behaviors,

that when CSRC has unbounded number of convergent compositions, it cannot

be approximated to within o(
√
m), and when has unbounded number of divergent

compositions, it cannot be approximated at all. In contrast to these behaviors, when

CSRC contains only cumulative compositions, it can be approximated to within

O(log n). The approximation algorithm is a modified version of the greedy algorithm

for CSUC and is shown in Algorithm 2.

Theorem 5. Greedy-CSRC when σ is non-emergent and ω is cumulative,

approximates the solution to within H(k) =
∑k
i=1

1
i where k = max{|σ({c})| :

c ∈ C}.
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Algorithm 2. The algorithm for CSRC with non-emergent and cumulative

behavior.
1: function Greedy-CSRC(C,O, σ, ω)

2: U ← O . To be satisfied objectives

3: S ← ∅ . Selected components

4: while U 6= ∅ do

5: Find the most cost effective component,

i.e. ci ∈ C that minimizes ω(ci)
|σ({ci})∩U |

6: S ← S ∪ {ci} . Select component

7: U ← U − σ({ci}) . Remove satisfied objectives

8: return S

9: end while

10: end function

Proof. Imagine that when the greedy algorithm chooses a component c, it evenly

divides the cost of choosing c between any objective newly satisfied by c. At the

end, the total cost of satisfying all the objectives equals the cost of the greedy

solution.

Consider a component c selected in the optimal solution, and assume σ({c}) =

{o′1, o′2, . . . , o′l}, and the greedy algorithm satisfies these objectives in the order

o′l, o
′
l−1, . . . , o

′
1. When the greedy algorithm satisfies o′j , for 1 ≤ j ≤ l, at least j

objectives of c are still unsatisfied, and because the greedy selection strategy is to

choose the most cost effective component, it charges o′j at most ω(c)/j, because c at

this iteration is a possible choice. Summing this value over all j, the total cost paid

for all objectives satisfied by c is at most ω(c) · H(l), and summing over all com-

ponents selected in the optimum solution, the overall cost is at most OPT ·H(k),

where k is the maximum number of objectives satisfied by a component and OPT

is the cost of the optimum solution.

In order to show that the ratio is tight, consider the instance in which we have

n objectives and n + 1 components. Each component ci, for 1 ≤ i ≤ n, has cost

ω(ci) = 1/(n − i + 1) and satisfies oi. The component cn+1 has cost ω(cn+1) =

1 + ε, for some small ε > 0, and satisfies all the objectives. Clearly the optimum

composition consists of only cn+1 with cost 1 + ε, but the greedy algorithm selects

the components ci for 1 ≤ i ≤ n, because in the i-th iteration of the while loop of

Algorithm 2 for 1 ≤ i ≤ n, the most cost effective component is ci with effective

cost 1
n−i+1 while the component cn+1 has effective cost 1+ε

n−i+1 . Therefore in this

iteration, the component ci will be selected, and after n iterations all the objectives

will be satisfied. The total cost in this solution is
∑n
i=1 1/(n− i+ 1) = H(n), while

the cost of the optimum solution is 1 + ε. Thus the ratio will be H(n)/(1 + ε) and

with a very small ε, the upper bound will be obtained.
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4. Component Selection with Multi-Costs

Although CSRC in its general form is strong enough to model all situations, its

inapproximability when the cost function is convergent or divergent makes CSRC

less usable. In this section we extend the component selection problem to alleviate

this shortcoming.

This problem extends cumulative CSRC by adding a more general cost function

to components; therefore we call the problem Component Selection with Multi-Costs

(CSMC). In CSMC we have a set of known costs, and assign to each component a

subset of these costs. The goal is to choose a composition such that the union of

the costs charged by the selected components has the smallest weight.

As a simple example, assume there are two component providers, A and B, each

providing two components to satisfy objectives o1 and o2. Company A provides cA1

and cA2, and B provides cB1 and cB2. We know cA1 and cB1 satisfy o1, while cA2

and cB2 satisfy o2. Furthermore, A sells its components in a package with cost $1.5,

whereas the cost of each component provided by B is $1. It means that if we use

any or both components of A, we should pay $1.5. If we model this problem with

CSRC, the cost function ω(·) will be convergent, and therefore Algorithm 2 is not

applicable. On the other hand, if we model the problem with CSMC, as we will see,

there is an approximation algorithm for it.

The formal definition of the decision version of CSMC is as follows:

CSMC

Input: A set C = {c1, c2, . . . , cm} of components, a set O = {o1, o2, . . . ,
on} of objectives, a set D = {d1, d2, . . . , dp} of costs, an oracle

function σ : 2C → 2O, a cost function ω : C → 2D, a weight

function for costs δ : D → R+, and a positive real number K.

Question: Is there a composition S ⊆ C such that
∑
d∈

⋃
c∈S

ω(c) δ(d) ≤ K and

O ⊆ σ(S)?

In CSRC, for each composition S, ω(S) will return a real number specifying

the cost of using S. On ther other hand, ω in CSMC is defined over the set of

components, and for each component c, ω(c) will return a subset of costs in D

imposed by using c in the composition. The cost of a composition is the union of

all costs charged by the components of that composition. The goal in the problem

is to minimize the total weights of costs for the composition.

This problem has two differences with CSRC. First, in CSRC we have only one

type of cost, which is a real number for each composition, whereas in CSMC we may

have several types of costs. Second, some components in CSMC may have common

costs. This means if we select a component, we can use other components with the

same cost without paying the cost twice.

The general form of CSRC is more powerful than the general form of CSMC, so

we may not see an immediate benefit of studying CSMC. If we are to use a conver-

gent cost function in CSRC, we can convert any instance of CSMC to an instance
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of CSRC. However, in the following, we show that an approximation algorithm

exists for CSMC. This makes CSMC look very different from CSRC. In fact, CSMC

extends cumulative CSRC, and makes it possible to have convergent compositions

while being approximable.

In terms of complexity, CSMC is at least as hard as CSRC with cumulative

behavior. To prove this claim, we should convert each instance of CSRC with cumu-

lative behavior to CSMC. Let P = (C,O, σ, ω) be an instance of CSRC. We create

P ′ = (C ′, O′, D′, σ′, ω′, δ′) an instance of CSMC. Let C ′ = C and O′ = O and

σ′ = σ. For each component, ci ∈ C, add a cost dci to D′ and let ω′(ci) = dci
and δ′(dci) = ω(ci). Now, for each composition S ⊆ C of components, the set of

objectives satisfied for P is equal to the set of objectives satisfied for P ′. Similarly,

the cost of compositions for P is equal to the cost of compositions for P ′. Therefore

the two problems are equivalent, and we can conclude the following theorem.

Theorem 6. CSMC cannot be approximated to within (1 − o(1)) · lnn, where

n = |O|, unless P = NP.

We can prove a stronger claim about the approximation ratio of CSMC. This

ratio comes from another problem called Red Blue Set Cover. The definition of the

decision version of the problem is as follows:

Red Blue Set Cover

Input: Two finite sets R = {r1, r2, . . . , rρ} and B = {b1, b2, . . . , bβ}, a fam-

ily S ⊆ 2R∪B of n subsets of R ∪B, and an integer K ≤ |S|.
Question: Is there a subfamily C ⊆ S that covers all elements of B, but covers

at most K elements of R?

This problem is shown to be NP-complete [3]. It has been proved that

the problem cannot be approximated to within 2log
1−εn, for any 0 < ε < 1,

under some plausible complexity theoretic assumptions, such as P 6= NP or

NP * DTIME(nO(polylog n)) [14]. In the following, we show that CSMC when σ has

only non-emergent behavior is as hard as Red-Blue Set Cover (RBSC) and hence a

similar lower bound on its approximation ratio arises.

Theorem 7. Non-emergent CSMC cannot be approximated to within 2log
1−εn,

unless P = NP.

Proof. The proof is done by presenting an approximation ratio preserving reduc-

tion from RBSC to CSMC. Let P = (B,R,S) be an instance of RBSC. We will

create P ′ = (C ′, O′, D′, σ′, ω′, δ′), an instance of non-emergent CSMC, such that P

has a solution if and only if P ′ has a solution. For any bi ∈ B, 1 ≤ i ≤ β, add an

objective oi to O′. For any rj ∈ R, 1 ≤ j ≤ ρ, add a cost dj to D′. For any Sl ∈ S,

1 ≤ l ≤ n, add a component cl to C ′. For any bi ∈ Sl, add oi to σ({cl}) and for

any rj ∈ Sl, add dj to ω(cl). For any dj ∈ D′ let δ(dj) = 1. We assume the set of

objectives satisfied by a composition is equal to the union of the set of objectives
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satisfied by each component in the composition. Obviously, this creates an instance

of non-emergent CSMC.

Now it is sufficient to show that: (i) any subfamily C ⊆ S that covers all elements

of B has an equivalent composition S′ ⊆ C ′ that satisfies all objectives in O′ and

the number of elements of R covered by C is equal to the number of elements of D′

imposed by S′, that is the cost of S′, and (ii) any composition S′ ⊆ C ′ with the

specified requirements has an equivalent subfamily in C ⊆ S, with equal cost.

We here prove the second claim. The other claim is proved similarly. Let S′ be a

composition that satisfies all objectives in O′. According to the construction of C ′

and σ, there must be a subcollection C ⊆ S such that B ⊆
⋃
S∈C S. We also have

Cost(S′) =
∑

di∈
⋃
cl∈S′

ω(cl)

δ(di)

=
∑

di∈
⋃
cl∈S′

ω(cl)

1

=

∣∣∣∣∣ ⋃
cl∈S′

ω(cl)

∣∣∣∣∣
=

∣∣∣∣∣ ⋃
Sl∈C

(R ∩ Sl)

∣∣∣∣∣
= The number of elements of R covered by C.

Therefore the cost of S′ is equal to the cost of C.
From the above arguments, it follows that any approximation algorithm for

CSMC is an approximation algorithm for RBSC with the same approximation ratio.

Since RBSC cannot be approximated to within 2log
1−εn for any 0 < ε < 1, CSMC

cannot be approximated to within the same bound.

In spite of the lower bound for the approximation ratio of RBSC, the best known

approximation algorithm has the ratio 2
√
n log β where n = |S| and β = |B|. This

algorithm was introduced by Peleg [14]. In Algorithm 3, we present an adaptation

of Peleg’s greedy algorithm for CSMC.

Theorem 8. Approx-CSMC approximates CSMC to within 2
√
m log p, where m

is the number of components and p is the number of different costs.

Proof. The approximation ratio of the proposed algorithm by Peleg (Low-Edge2

[14]) is 2
√
|S| log|B|, which means the ratio between the cost of the approximate

solution with the optimum is at most 2
√
|S| log|B|. Algorithm 3 is a direct adap-

tation of Peleg’s algorithm for CSMC, based on the transformation used in the

proof of Theorem 7. Therefore, the same approximation ratio, that is 2
√
m log p,

holds for CSMC, where m is the number of components and p is the number

of costs.
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Algorithm 3. The approximation algorithm for CSMC problem.

1: function Greedy-CSMC(C,O,D, σ, ω, δ)

2: Modify CSMC instance into an instance T of CSRC as follows:

CT ← C, OT ← O, σT ← σ,

ωT : 2C → R+ such that ∀ci ∈ C, ωT (ci)←
∑

dj∈ω(ci)
δ(dj).

3: return Greedy-CSRC(CT , OT , σT , ωT ).

4: end function

5: function Bad-Costs(C,O,D, σ, ω, δ,X)

6: CX ← {ci ∈ C :
∑

dj∈ω(ci)
δ(dj) ≤ X}. . Discard components with cost

more than X

7: If O * σ(CX) return C. . CX is not feasible

8: n← |C|, β ← |O|.
9: Y ←

√
n

log β .

10: Separate costs to good and bad costs:

DG ← {dj ∈ D :
∑

ci:dj∈ω(ci)
1 > Y }

DB ← D −DG.

11: Discard the costs in DG and define ωX,Y : 2CX → 2DB

such that for all ci ∈ CX , ωX,Y (ci)← ω(ci)−DG.

12: return Greedy-CSMC(CX , O,DB , σ, ωX,Y , δ).

13: end function

14: function Approx-CSMC(C,O,D, σ, ω, δ))

15: t←
∑
dj∈D

δ(dj).

16: Smin ← C.

17: for X ← 1 to t do

18: S ← Bad-Costs(C,O,D, σ, ω, δ,X).

19: if Cost(Smin) > Cost(S) then

20: Smin ← S.

21: end if

22: end for

23: return Smin.

24: end function
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5. Conclusion

Composability is the ability to combine reusable simulation components to satisfy

a set of user objectives. Composability is a highly demanded goal for model and

simulation developers because of the benefits afforded by reuse. Component Selec-

tion (CS) is an NP-complete optimization problem formally shown to be embedded

within composability.

The first important result of this paper was that CS in the general formulation

is not approximable. We proved this claim in two cases: compositions have emergent

rules and compositions have anti-emergent rules. We showed in the first case the

problem is not approximable to within o(
√
m), and in the second case it is not

approximable to within any ratio.

In the next part of the paper, we considered three special versions of CS. In

the first problem each component has a unit cost. In the second one, each com-

ponent has a real number as its cost. The third problem is the case that each

component can have several types of costs with different weights, and also each com-

ponent may have some costs common with other components. For each problem,

we first formally defined the problem, and then gave an approximation algorithm to

solve it.
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