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Abstract—Influence maximization is the problem of selecting
a subset of individuals in a social network that maximizes the
influence propagated in the network. With the popularity of
social network sites, and the development of viral marketing,
the importance of the problem has been increased.

Finding the most influential vertices, called seeds, in a social
network graph is an NP-hard problem, and therefore, time
consuming. Many heuristics are proposed to find a nearly good
solution in a shorter time. In this paper, we propose two heuristic
algorithms to find a good seed set. We evaluate our algorithms on
several well-known datasets and show that our heuristics achieve
the best results (up to 800 improvements in influence spread)
for this problem in a shorter time (up to 10% improvement in
runtime).

I. INTRODUCTION

Interaction of people in a social network provides a lot of
information about their behavior and the structure of the social
graph. It has also made the social network a good platform
to spread information, believes, innovation, and so on. One of
the important applications of the spread of influence in social
networks is viral marketing. For example, consider a company
that wants to market its product in a social network. A simple
and low-cost approach is to select a subset of individuals
to offer the product to them, so they will encourage their
friends to buy it. This behavior is like spreading a virus in a
society. The important portion of this type of marketing is the
initial selection of most influential individuals. This problem
is known as influence maximization.

Influence maximization problem was first introduced by
Domingos and Richardson [1], [2]. Kempe et al. [3] formally
defined the problem and proved that it is NP-hard. They also
introduced two monotone and submodular diffusion models for
the spread of influence, namely independent cascade model
and linear threshold model, and proved that a greedy hill
climbing algorithm approximates the solution within 63% of
the optimal solution for these models.

Because the greedy algorithm runs a simulation several
thousand times to find the marginal influence of each vertex,
and therefore is time-consuming, many heuristics are proposed
to improve its performance. Although the heuristics have
reduced the running time, they are still time-consuming in
large-scale networks, which is the case for most of social
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networks. On the other hand, degree-centrality based heuristics
are very fast even on large-scale networks. Although they don’t
guarantee the accuracy of the solution, they find solutions as
good as the solution of the greedy algorithm.

In this paper, we propose two maximum-degree based
heuristics that are very fast in running time and improve the
results of all previous degree-based heuristics. In other words,
the results of our algorithms are close to the results produced
by the greedy algorithm, while its running time is close to
degree-based heuristics.

The rest of this paper is organized as follows. The related
works are reviewed in Section II. In Section III the formal defi-
nition of the problem is described. We propose our heuristics in
Section IV and present the experimental results in Section V.
Finally we conclude the paper in Section VI.

II. RELATED WORK

Influence maximization problem was formally defined by
Kempe et al. [3] and proved to be NP-hard. They proposed
a greedy hill climbing algorithm that yields a solution within
(1 — L —¢) factor of optimal solution for two models they
introduced. In the approximation ratio of the algorithm, e
is the base of the natural logarithm and € is any positive
real number which is error of the Monte-Carlo simulations.
Choosing a small value for ¢ increases the running time, while
choosing a large value for it reduces the quality of result. In
their algorithm, the most influential vertices are selected by
their estimated marginal influence. Since estimated marginal
influence is computed by a large number of simulations, the
algorithm is inefficient.

In order to improve the efficiency of computations, many
studies have been made. Leskovec et al. [4] proposed Cost-
Effective Lazy forward (CELF) optimization that reduces
computation cost of influence spread using sub-modularity
property of objective function.

Chen et al. [5] proposed new greedy algorithms for inde-
pendent cascade and weighted cascade models. They make the
greedy algorithm faster by the combination of their algorithms
with CELF. They also proposed degree discount heuristic
which generates close influence spread to greedy algorithms
while is much faster and returns better solution than simple
degree and distance centrality heuristics.



In order to avoid running repeated influence propagation
simulations, Borgs et al. [6] generate a random hypergraph
according to reverse reachability probability of vertices in the
original graph and select k vertices that are most covered by
hyperedges in the hypergraph. They guarantee (1 — % —€)
approximation ratio of the solution with probability at least
1-1/ nt. Tang et al. [7], [8] proposed TIM and IMM to cover
drawbacks of Borgs et al’s algorithm [6] and improved its
running time.

Bucur and Iacca [9] and Kromer and Nowakova [10]
used genetic algorithms for influence maximization problem.
Weskida and Michalski [11] use GPU acceleration in their
genetic algorithm to improve its efficiency.

There are some community-based algorithms for influ-
ence maximization problem that partition graph into small
subgraphs and select most influential vertices from each
subgraph. Chen et al. [12] use H-Clustering algorithm and
Manaskasemsak efr al. [13] use markov clustering algorithm
for community detection. Song et al. [14] divide the graph
into communities, then select the most influential vertices by
a dynamic programming algorithm.

III. PROBLEM DEFINITION

In this section we formally define influence maximization
problem and independent cascade diffusion model.

We consider a social network as an undirected graph G =
(V, E) where V is the set of individuals of size n, and E is
the set of relationships of size m.

Let S be the subset of vertices selected to initiate the
influence prorogation and I(S) be the influence spread by S.

A. Diffusion Model

There are many diffusion models for influence propagation.
In this paper we focus on Independent Cascade Model (ICM).
In the independent cascade model for each edge (u, v), a newly
activated vertex u can activate v with probability p,, . € [0, 1].
The diffusion process is as follows:

Let S; be the set of activated vertices in timestamp 4, In
timestamp ¢ + 1 each vertex u € S; has a chance to activate
each of its inactive neighbors. Once u tried to activate neighbor
v, either it succeeds or not, u will not try to activate v in later
steps. Furthermore, each activated vertex remains active in all
subsequent timestamps. This process terminates when there
are no more activations possible.

B. Influence Maximization Problem

In the problem of influence maximization, given a graph G,
a constant k and a diffusion model M, we are asked for a set
S of k vertices with maximum influence propagation, I(.S). In
this paper, we focus on the independent cascade model as M,
and leave extending the algorithms to other models to future
work.

IV. PROPOSED ALGORITHMS

In this section we describe our heuristics for influence
maximization problem under the independent cascade (IC)
model. Although the greedy algorithm and its variants make
a guarantee about the goodness of the solution in terms
of approximation ratio, they are time-consuming on large-
scale social networks. Since heuristics are much faster and
applicable on large networks, we propose two novel heuristics
based on degree-centrality that nearly match the solution of
the state of the arts while running in a short time.

Degree-centrality heuristics select k vertices with maximum
degrees as the most influential individuals. Another clear and
more accurate approach called single discount by Chen et
al. [5] works as follows. When selecting vertex u as a seed,
degree of each neighbor v decreases according to the number
of common edges they have.

Although these heuristics have large spread of influence,
they don’t return appropriate solution because when vertex
u is selected as a seed, its neighbor v will be influenced
by wu. Also when probability p is high, the influence of u
even on its multi-hop neighbors is significant. Thus Chen
et al. [5] in degree discount heuristic ignored the indirect
influence on multi-hop neighbors and discounted degrees of
neighbors according to the expected number of adjacent active
vertices. Since the number of activated vertices and amount of
discount in degrees is small in their algorithm, still it doesn’t
work well. Our proposed degree-based algorithms improve the
spread of influence considering some features of the social
network including closeness of vertices with maximum degree
and the number of multiple edges.

In social networks, vertices with the maximum degree are
adjacent. In other words, when vertex v with the maximum
degree is selected, the probability of propagating influence
to its neighbors is high. As the number of hops between u
and its neighbors increases, the amount of influence on them
decreases. Our heuristics take advantage of this matter.

The goal of our algorithm is selecting k& vertices with the
maximum degree, avoiding selecting vertices with the chance
of being influenced by previously selected seeds. To reach
this goal we propose tow methods: ignoring the neighbors and
descending decrease in neighbors’ degrees.

A. Ignoring The Neighbors

In this method in the first step, we select the vertex u
with the maximum degree as a seed. Since the reachable
neighbor of v will be influenced by it, unlike they will have
maximum degrees we remove them from the list of vertices
and select next seed with the maximum degree from remained
vertices. This process terminates when k seeds are selected.
For more description when in each step seed u is selected,
its neighbors with h hops are determined with the breadth-
first search. Then we remove them from the list of vertices to
avoid selecting them in next steps and select next seed from
remained vertices. As mentioned before, when the number of
hops between w and its reachable neighbor v increase, the
spread of influence to v decreases. So we remove reachable



neighbors which there is i hop between them and the seed. h is
determined according to the probability of spread of influence
considered in the independent cascade model. According to
our experiments on different datasets, an appropriate value
of h could be the rounded number calculated by equation 1.
Therefore, increasing p causes increase in h.

h=12\/p (1)
B. Descending Degree Decrease

In this method, in the first step, the vertex u with the
maximum degree is selected as a seed. In the next step, the
degree of its reachable neighbors decreases to reduce their
priority. Next seed is selected among vertices with updated
degrees. The process continuous until &k vertices are selected in
the seed set. For each reachable neighbor v, the decrease in its
degree is calculated according to the hops that are between v
and the selected seed. As the more hops cause fewer activation
probabilities, in this method the more hops lead to the less
decrease in degree.

In more details for each selected seed u, its degree decrease
to constant value a.

dec(u) = «

where dec(u) is amount of decrease in degree of vertex wu,
and for each reachable neighbor v its decrease in degree is
calculated as equation 2 where c is the number of multiple
edges between u and v and f(p) is a function of influence
probability p.

dec(v) = dec(u) - ¢+ f(p) 2)
f(p) is a function of probability p and we consider as follows:
fp)=8-p

Because the small amount of dec doesn’t affect the output
significantly. We ignore dec < 0.1. So decreasing degrees of
reachable neighbors continues until the dec value is more than
error value e. According to our experiment, an appropriate
value for e is 0.1.

« and [ are constant values and our experiments show
that values 50 and 10 could be appropriate values for them
subsequently.

V. EXPERIMENTS

In this section, we evaluate experiments of our maximum
degree heuristics with some previous works on several real-
life datasets. We show that our maximum degree heuristics
outperform previous degree based heuristics in terms of the
spread of influence in a short time while output the solution
close to (1 — 1)-approximation algorithms. We also examine

e
the effect of the value of p on the operation of our heuristics.

A. Experiment setup

We evaluate our implementation on tow real-life datasets
which are commonly used in related researches including in
[5]. First dataset is NetHEPT with n = 15233 and m = 58891

and second dataset is NetPHY with n = 37154 and m =
231584.

We compare our algorithms represented by NeighborsRe-
move and DegreeDecrease with four algorithms named Sin-
gleDiscount, DegreeDiscount [5], TIM [7] and IMM [8] that
are available by their authors. Our algorithms are implemented
in C programming language and compiled with gcc 6.2.1 and
are run on a system with 3.60 x 4 GHz Core i7-3820 Intel
and 32G memory.

We use independent cascade model for calculating the
spread of influence in our experiments considering probability
p=0.01 and p = 0.1.

B. Experiment results

Figure 1 and 2 show the runtime of different algorithms
under independent cascade model for p = 0.01 on NetHEPT
and NetPHY subsequently. We see that degree-centrality
heuristics are very faster than TIM and IMM. Run-time of
DegreeDecrease algorithm is close to DegreeDiscount and
SingleDiscount while NeighborsRemove run 10% faster than
all. Figure 3 and 4 show running time of all algorithms for
p = 0.1 and confirm good efficiency of our algorithms for
more value of p.

Figure 5 and 6 report the spread of influence of different
algorithms under independent cascade model with p = 0.01.
As it can be seen, although the good performance of our
algorithms happens in larger values of p, they work well even
for p = 0.01 and return close solution to the solution of TIM
and IMM.

Figure 7 and 8 show the influence spread of algorithms
under ICM model with p = 0.1. It is clear that our max-
imum degree based heuristics outperform DegreeDiscount
significantly almost 800 improvements in influence spread
on NetPHY. The reason for this remarkable improvement is
that increase in the value of p causes more efficiency in our
algorithms. When p has a higher value, spreading the influence
increases and our strategy is to avoid selecting vertices with
the high probability of being influenced. So the selected seed
set will be an appropriate solution. Generally, the efficiency
of our algorithms is more explicit when considering high
influence spread probability in independent cascade model.
Also, without any complicated computation, the influence
spread of NeighboersRemove and DegreeDecrease is near to
TIM and IMM. Overall good performance of our algorithms
is represented clearly.

Figure 9 show influence spread of our algorithms under
independent cascade model for different values of p. As it is
seen, influence spread of our algorithms significantly increases
proportionally with the increase of probability value p in the
independent cascade model.

VI. CONCLUSION

In this paper, we propose maximum degree based heuris-
tics considering the closeness of maximum-degree vertices
for influence maximization problem under independent cas-
cade model. Experiments show that our heuristics outperform
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Fig. 1. running time of algorithms on NetHEPT under independent cascade
model (p = 0.01, £ = 50).
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Fig. 2. running time of algorithms on NetPHY under independent cascade
model for (p = 0.01, £ = 50).

previous degree-centrality heuristics in terms of the spread
of influence in the network which are close to outputs of
algorithms that guarantee the solution approximately. Also,
they run in a short time. Since algorithms that guarantee the
accuracy of the outputs are very time-consuming in large-scale
networks, proposing heuristics which have fast speed could
be an efficient solution. In future works, we will examine
maximum-degree based heuristics for other cascade models.
Also, we will study more accurate strategies to improve the
spread of influence in fast speed.
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