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Introduction: Researchers have employed surface electromyography (EMG) to study the human 
masticatory system and the relationship between the activity of masticatory muscles and the 
mechanical features of mastication. This relationship has several applications in food texture analysis, 
control of prosthetic limbs, rehabilitation, and teleoperated robots.  
Materials and Methods: In this paper, we proposed a model by combining the concept of fuzzy interface 
systems and principal dynamic mode analysis (PDM). We hypothesized that the proposed approach 
would provide nonlinear and dynamic characteristics improving the estimation results compared to 
those obtained by the classical PDM analysis and still having the benefits of a PDM model including the 
sparse presentation of the system dynamics. After developing PDM, the nonlinear polynomial function 
of the PDM model was replaced with adaptive neuro-fuzzy inference system (ANFIS) network 
architecture. After training, the relevant fuzzy rules were extracted and used for creating the fuzzy 
block (as the nonlinear function block) and predicting the output signal. The proposed approach was 
later employed to predict bite force using EMG of the temporalis and masseter muscles.  
Results: Our proposed method outperformed the classical PDM analysis (in terms of our evaluation 
criteria) in predicting masticatory force . The inter-subject evaluation of the model performance 
proved that the model created using the data of one subject could be used for predicting masticatory 
force in other subjects.  
Conclusion: The proposed model can be helpful in food analysis to predict masticatory force based on 
the electrical activity of the masseter and temporalis muscles. 
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Introduction 

In the human masticatory system, chewing is 
carried out by a group of interwoven muscles located 
on both sides of the face. The key muscles involved in 
this process are the masseter and temporal muscles 
[1]. Recording surface electromyography (sEMG) 
signals from chewing muscles has been an essential 
tool for the documentation of human masticatory 
system [2]. Researchers have used EMG for the early 
diagnosis of the malfunction of muscles and joints that 
play a role in the mastication process [3]. 
Furthermore, using the obtained data, the mechanical 
properties of the chewed food have been studied [4]. 
For instance, it has been demonstrated that increased 
EMG activity is observed for harder foods [5]. 

Food scientists have become interested in 
identifying the relationship between food texture, 

masticatory force, and the recorded EMG signals from 
the muscles involved in this process [6]. Creating a 
model to investigate the association between 
electrical activity and the mechanical properties of 
food or the created force during chewing can be of 
essential importance; however, some factors such as 
diversity in the anatomical structures of the jaws of 
different individuals and food texture (i.e., hardness 
and adhesion) can be problematic.  

Investigating the link between the electrical 
activity of muscles and the force produced by them is 
of significant importance and is useful in many 
domains including orthopedics, rehabilitation, 
ergonomic design, and human machine interface [1, 
7]. Several parametric and nonparametric methods 
have been developed for muscle force estimation using 
EMG signals, including artificial neural networks [7-11], 
parallel cascade identification [12], fast orthogonal 
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search [13], and Laguerre expansion technique (LET) 
[14, 15]. Moreover, applying a hybrid technique, which 
is a combination of physical modeling of the system and 
identification approaches, Wang and Buchanan 
estimated joint torque using EMG signals [16].  

This paper proposes a new EMG-based model for 
estimating masticatory force. In doing so, we exploited 
the concepts of fuzzy interface system (FIS) and 
principal dynamic mode analysis (PDM) to introduce an 
ANFIS-PDM model. PDM has been employed for 
characterizing nonlinear physiological systems [14]. 
The PDM modeling approach separates the 
representation of system dynamics (PDMs) from its 
nonlinearities. The PDMs are obtained by utilizing 
Volterra-Wiener kernels based on the expansion of 
Laguerre polynomials [14]. We modified the PDM 
technique by replacing the concept of FIS for creating 
nonlinear mapping with output signals. We 
hypothesized that the proposed approach would 
provide nonlinear and dynamic characteristics that 
would improve estimation results compared to those 
obtained from the classical PDM analysis and still have 
the benefits of a PDM model including the sparse 

presentation of system dynamics. The proposed model 
was employed to predict masticatory force based on 
EMG signals from the masseter and temporalis muscles. 

 
Materials and Methods 
The Experimental Protocol  

We recruited six healthy male volunteers (mean 
age: 22±2 years). All the subjects were free of any 
muscular pain and had no past history of orthopedic 
and neurological disorders. Ethical approval was 
obtained from Ferdowsi University of Mashhad, 
Mashhad, Iran. Time-locked EMG and force signals 
were recorded during the biting tasks with a 
frequency of 1000 Hz. The positioning of EMG 
electrodes is shown in Figure 1a. To record the 
electrical activity of muscles, a 16-channel EMG 
system was employed [6]. For each subject, EMG 
signals were recorded from four muscles, namely the 
right and left masseter and the right and left 
temporalis [12]. In addition, to measure mastication 
force, a device was designed and manufactured 
(Figure 1b).  

 

 

 

 
(a) (b) 

 

 

(c) 
Figure 1. (a)The experimental setup and electrode positioning on a subject's face, (b) Force-sensing resistor (FSR) sensors, and (c) the 

experimental protocol
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This device is made of three Force-sensing 
resistor (FSR) sensors that are able to record forces 
up to 100 N. Moreover, the shape of this device was 
designed based on the jaw of the volunteers with the 
goal of allowing a natural masticatory process. 
During the recording sessions, the sensors were 
covered by sterile disposable wooden tongue 
depressors. The subjects were seated in a 
comfortable chair and asked to sit still during the 
recording sessions. They were able to see the 
computer screen by which a visual feedback was 
provided to facilitate control of timing during the 
masticatory task.  

EMG and force signals were recorded 
synchronously. After placing the sensors in the 
mouths of the volunteers, they were requested to 
exert pressure on the wooden sticks at three 
different levels (15, 20, and 30 N) and hold the 
applied pressure for 5 seconds. Then, they were 
requested to relax the sensor slightly and again exert 
the same pressure after 5 seconds. This process was 
repeated eight times with 10 seconds of relaxation at 
the end (Figure 1c). For each pressure level, every 

volunteer was tested three times. To rule out the role 
of muscle fatigue, the nine (3 levels of pressure×3 
repetitions) trials were ordered randomly. Although 
force signals were recorded from three sensors, in 
this paper, only the force signal recorded from the 
right premolars was considered for the identification 
and validation of our proposed model. 

Figure 2 presents the recorded EMG signals from 
the left and right sides of the face and the force signal 
of one of the volunteers. The volunteer was 
requested to exert a force on the sensors located 
between her right premolars at the level of 30 N at 
specific times cued visually on the computer screen. 

Raw EMG signals were passed through a 
bandpass (15–400 Hz) third order Butterworth filter 
[15]. In this paper, the EMG signal processing 
method described by Assefi et al [15] was utilized. To 
pre-process the force signal, first, a moving average 
window of size 200 was applied to the raw signal. 
Next, the signal was normalized to the corresponding 
maximum voluntary contraction (MVC). The 
sampling rates of both SEMG and force signals were 
reduced to 250 Hz to reduce the computational load. 

 

 

 

 
(a) (b) 

 

 

(c) (d) 

 

(e) 
Figure 2. Electromyography and force signals recorded when the sensor was placed between the right premolar teeth. (a) The right 

masseter muscle, (b) the left masseter muscle, (c) the right temporalis muscle, (d) the left temporalis muscle, and (e) the force signal 
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Methods 
In this paper, an ANFIS-PDM model is proposed. 

PDMs were introduced through the pursuit of 
parsimony in presenting the dynamics of a nonlinear 
system [14]. In our proposed method, the polynomial 
nonlinear function of the PDM model,  in Figure 3 
was replaced with an ANFIS network architecture 
[17]. There are many benefits to the use of ANFIS 
instead of the ordinary polynomial function. These 
benefits are based on the fact that ANFIS exploits the 
capabilities of both neural networks and fuzzy 
systems in learning nonlinearities [17-20].  

In the following sections, a brief review of the 
PDM analysis and ANFIS network is presented, which 
will later lead to the introduction of our proposed 
approach. This section only provides a brief 
introduction. Readers may refer to the previously 
published articles for more detailed description of 
the methods [15, 19, 21].  
 
PDMs 

PDM method is a nonparametric method 
proposed to improve the LET [22, 23]. From the 
viewpoint of optimal presentation of the model, LET 
could not be considered as the most efficient 
approach. In other words, if it is desired to find the 
most efficient model in the sense of parsimony of 
system representation, the minimum number of 
linear filters that can present a proper 
approximation of the system output should be 
determined. The aforementioned combinations of 
linear filters are called the fundamental modes of the 
system. The output signal of the system could be 
expressed as below: 

 

                          (1) 
where is the adjoined vector of filter bank 

and  denotes a symmetric matrix called the matrix 
of coefficients and calculated using least-squares 
estimation of the unknown expansion coefficients of 
LET. Since  is a symmetric matrix, there always 
exists an orthogonal matrix  whose columns are 
eigenvectors of the matrix , therefore, the output 
signal of the system could be expressed as  

 

(2) 

where  is a diagonal matrix whose diagonal 
elements, , are eigenvalues of the matrix . Analysis 
of the amplitude of eigenvalues sorted based on their 
absolute value helps distinguish the components of 

 which play important roles in generating the 
system output. Once  is determined, it can be 
utilized to calculate the system PDMs [22, 23]. 
ANFIS 

Fuzzy inference systems (FIS) represent a 
knowledge-based method, where each fuzzy rule 
describes a local behavior of the system [18, 20]. The 
learning algorithm for ANFIS is a hybrid algorithm, 

which is a combination of the gradient descent and 
the least-squares methods. As can be noted in Figure 
3, ANFIS consists of five layers. Layer 0 is the input 
layer and state variables are nodes in this layer. 
Layer 1 in schematic ANFIS performs fuzzy 
formation. This layer consists of input variable 
membership functions. The purpose of this layer is to 
supply the input values to the next layer. In layer 2, 
membership degrees of input signals of each node 
are multiplied by a rule firing strength ( ). In layer 
3, the normalized firing strengths are obtained ( ). 
Layer 4 is the conclusive part of the fuzzy rule. For 
instance, we have: 

 

        (3) 
where  is ith node output in the fourth layer and 

 represents the outputs of the first order Sugeno 
fuzzy inference system. In layer 5, rule outputs are 
added to create the ANFIS output: 

 

        (4) 

Where  is the ith node output in the fifth layer.  
 
The Proposed Algorithm 

In this paper, an ANFIS-PDM model is proposed 
for the improvement of the masticatory force 
prediction accuracy. In the proposed method, a 
neuro-fuzzy block is used instead of a nonlinear 
polynomial block of the PDM. Since neuro-fuzzy 
models usually perform well in presenting the 
performance of nonlinear systems, replacing the 
polynomial block by them leads to better model 
functionality. The neuro-fuzzy block, which was 
applied in this paper, is an ANFIS-based block. The 
proposed algorithm works as follows. First, using the 
identification data, a PDM model was developed 
based on the algorithm described in the previous 
sections. In this step, the nonlinear function 
consisted of a polynomial function. Next, the 
constructed PDMs were extracted. The convolution 
of the input data with PDMs was calculated to obtain 
the PDM outputs that were later employed to 
develop the ANFIS. The ANFIS, which can be 
considered as a replacement for the nonlinear 
polynomial function, aimed at constructing a 
nonlinear map between the PDM outputs and the 
model output (the force signal). As an example, for 
two PDMs and four inputs from the EMG signals, the 
ANFIS processed eight inputs (4 inputs×2 PDMs) to 
create one output (the force signal). The numbers of 
membership functions and ANFIS parameters were 
determined through an error minimization process 
using trial and error. The gradient descent method 
was applied for training. After training, the relevant 
fuzzy rules were extracted and used for creating the 
fuzzy block (as the nonlinear function block ). 
Since the parameters of the fuzzy system are 
adjusted using the adaptation law, we hypothesized 
that the proposed model will outperform models in 
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which the nonlinear map is created using a 
predetermined structure. The block diagram of the 

ANFIS-PDM algorithm is presented in Figure 3. 

 

 
Figure 3. The block diagram of the proposed adaptive neuro-fuzzy inference system-principal dynamic mode modeling approach for two 

inputs and two principal dynamic modes 
 
To validate the proposed methodology, three 

criteria were utilized, namely cross-correlation (CC), 
relative mean square error (RMSE), and average 
absolute error (AAE). 

 

(5) 

 

(6) 

 

(7) 

where  is the number of data points and  
presents the similarity between  and . Moreover, 

 and   indicate the real and estimated outputs, 
respectively [15].  

 
Results 
Simulation Results 

The first step of the validation process was 
allocated to checking the performance of the 
proposed model in a simulation scenario. We 
considered a second-order single-input and single 
output system. The functional characteristics of the 
simulated system were defined by the first- and 

second-order Volterra kernels, which were created 
to resemble the ones that have been experimentally 
observed. The output signal was created using the 
following equation. 

 
(8) 

The system was simulated for a band-limited 
Gaussian white noise input of 5000 data points. 
Figure 4a presents 500 samples of the input and 
output data along with the prediction results for two 
PDMs. Figure 4b shows that the ANFIS-PDM model 
performance is superior to the PDM model in terms 
of prediction accuracy. In addition, Table 1 
demonstrates the evaluation criteria for the two 
models in the identification and validation phases. As 
predicted, employing two PDMs improved model 
performance, however, in all cases, the ANFIS-PDM 
model provided better estimation results in terms of 
the evaluation criteria. 
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(b) (a) 

Figure 4. (a) Gaussian noise input signal and (b) estimates of the output signal using simulated data for adaptive neuro-fuzzy inference 
system-principal dynamic mode (ANFIS-PDM) and PDM models using only two PDMs 

Table 1. Comparing adaptive neuro-fuzzy inference system-principal dynamic mode (ANFIS-PDM) and PDM on the simulated data using 
one and two PDMs 

 
Phase 

 %RMSE  %CC  AAE 
 PDM ANFIS-PDM  PDM ANFIS-PDM  PDM ANFIS-PDM 

1 PDM Identification  37.54 10.12  73.22 93.23  0.42 0.23 
Validation  24.35 7.51  76.12 96.56  0.39 0.19 

2 PDMs Identification  23.31 6.46  80.98 97.87  0.35 0.18 
Validation  11.34 3.32  91.54 98.99  0.27 0.14 

 

 
Figure 5. Comparison between principal dynamic mode (PDM) and adaptive neuro-fuzzy inference system- (ANFIS)-PDM model using only 

two PDMs in the validation phase 
 

Table 2. Identification and validation results in terms of mean (standard deviation) averaged over all the subjects and force levels for 
ANFIS-PDM and PDM models 

 
 

 %RMSE  %CC  AAE 
 PDM ANFIS-PDM  PDM ANFIS-PDM  PDM ANFIS-PDM 

1 PDM 
Identificat
ion 

 45.6(5.11) 12.71(3.22)  66.18(4.23) 90.67(2.14)  0.52(0.05) 0.27(0.05) 

Validation  87.74(4.56) 13.23(2.31)  58.01(3.45) 89.89(1.98)  0.63(0.04) 0.27(0.02) 

2 PDMs 
Identificat
ion 

 14.22(4.41) 4.55(2.45)  89.42(3.56) 98.62(1.88)  0.28(0.03) 0.15(0.02) 

Validation  23.54(5.45) 6.78(1.33)  79.11(4.14) 97.61(0.54)  0.37(0.54) 0.18(0.01) 
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Figure 6. Results of inter-subject evaluation of the identified principal dynamic mode (PDM) and adaptive neuro-fuzzy inference system 

(ANFIS)-PDM models for all the subjects; the results are averaged over all force levels 
 
Validation results 

Figure 5 exhibits the ability of the PDM and 
ANFIS-PDM models in predicting bite force according 
to the EMG recordings obtained from one of the 
subjects. Two PDMs were employed for both models. 
In general, the validation results demonstrated that 
ANFIS-PDM outperformed the PDM model in 
predicting bite force. Table 2 presents the evaluation 
criteria for both identification and validation phases 
averaged over all the subjects and force levels in 
predicting bite force. For both one and two PDMs, the 
RMSE and AAE/CC corresponding to the 
employment of ANFIS-PDM were smaller/larger 
compared to those corresponding to cases where 
PDM was used.  

Two-way ANOVA with factors model (ANFIS-PDM 
with one and two PDMs, one PDM and two PDMs) 
and force level (15, 20, and 30 N) followed by 
multiple comparisons was performed for all the 
subjects to compare the performance of ANFIS-PDM, 
one PDM, and two PDMs. P-value less than 0.05 was 
considered statistically significant. In general, our 
results showed that ANFIS-PDM provided lower 
%RMSE (P<0.05) and AAE (P<0.05) and higher %CC 
(P<0.05) compared to the PDM method (for both one 
and two PDMs). Moreover, the above-mentioned 
criteria significantly improved from ANFIS-PDM 

(with one PDM) to ANFIS-PDM (with two PDMs; 
P<0.05). The effect of model×force level was not 
significant, demonstrating that the improved 
performance of ANFIS-PDM in comparison to PDM 
was not dependent on the force level. 

We also investigated the efficiency of the PDM 
and ANFIS-PDM models (both with two PDMs) 
identified using signals obtained from one subject in 
predicting the output signals for another subject. 
Figure 6 indicates the evaluation results for the 
validation phase. Each bar in the figure represents 
the mean CC/AAE for predicting bite force across all 
the subjects and averaged for the three force levels, 
with the vertical bar indicating standard deviation. 
Overall, the performance of ANFIS-PDM was superior 
to that of the PDM in all the subjects. Moreover, it can 
be concluded that the models identified using the 
data obtained from one subject can be generalized to 
the other subjects.  

Next, we compared the ability of PDM and ANFIS-
PDM techniques with fast orthogonal search (FOS) 
and parallel cascade identification (PCI) to estimate 
the EMG-force relation during biting. In doing so, we 
sought to compare the successful employment of the 
aforementioned techniques in estimating the EMG-
force relation [15, 16]. RMSE of each method was 
compared to those of others.  

 

 

                                                                     (a) (b) 
Figure 7. Comparison of four methods using a box plot graph (a) in the identification phase and (b) in the validation phase 
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Figure 7 presents the obtained results for each 
method. These results were attained by 
implementing the identification and validation 
phases. Overall, ANFIS-PDM had a better 
performance. The input to the cascade structure was 
chosen similar to what was previously selected [15, 
24, 25]. RSME tends to be larger for FOS during the 
validation phase compared to ANFIS-PDM. In this 
method, a set of candidate functions (e.g., 
polynomial, sigmoid, and trigonometric functions) 
are used to predict force. Selecting the appropriate 
functions has a direct impact on the accuracy of 
estimation. In this paper, the pool of basic functions 
for FOS was similar to that of [15], although the 
terms related to the joint angle were omitted since 
this value was not measured during the experimental 
protocol.   

 
Discussion 

Compared to the conventional PDM, FOS, and PCI 
techniques, we found that our proposed method, 
ANFIS-PDM, performed better in predicting 
masticatory force. The benefits of the proposed 
approach is based on the more complex nonlinear 
map provided by the fuzzy block that replaced the 
nonlinear polynomial function. The number of PDMs 
was set to either one or two. The chosen number of 
PDMs provided force predictions with reasonable 
accuracy. The reason behind this observation was 
the overlap of the frequency content of PDMs. For 
systems with PDMs of non-overlapping frequency 
contents, more PDMs will be required for efficient 
model using both PDM and ANFIS-PDM approaches. 

Generalization is one of the characteristics 
required for the developed model to be applicable in 
real scenarios. It was suggested [6, 7] that the 
identified model for one subject may not be valid for 
another. In Figure 6, we evaluated that the models 
trained on the data recorded from one subject can be 
reasonably generalized to the other subjects. This 
confirmed that these models are more 
comprehensive than the previous ones. The 
improvement may be due to our use of a fuzzy block 
to provide the nonlinear behavior of the system 
under study.  

In this paper, estimations were made for three 
different force levels. Although visual feedback was 
provided during the experiments, regulating the 
force level at its desired value was a challenging task 
for the participants. For this reason, implementing 
the experiments with a large number of levels was 
not feasible. Once it is demonstrated that the 
proposed approach can be used for predictions at 
different force levels, it can be employed for 
predicting masticatory force for different food 
textures in real masticatory tasks.  

 

Conclusion 
We demonstrated that the recorded EMG signals 

from the masseter and temporalis muscles are 
sufficient for predicting masticatory force. It could 
also be concluded from the obtained results that the 
proposed ANFIS-PDM approach could predict the 
nonlinear dynamic relationship between the 
electrical activity of masticatory muscles and the 
produced force. The improved nonlinear mapping 
between the PDM outputs and the force signal 
resulted in more accurate predictions of the force 
signal.  

Biomechanical modeling of the human 
masticatory system performance has been of special 
interest in recent years. Studies on biomechanical 
modeling have been carried out with different goals 
including the evaluation of variations in the 
mechanical properties and structure of food during 
chewing. This has been performed by studying jaw 
movements and measuring the produced force. 
Considering these facts, the proposed model will be 
helpful in the field of food analysis, using which the 
created force during chewing can be predicted based 
on the electrical activity of the masseter and 
temporalis muscles. 

The proposed approach can be employed for 
predicting masticatory force for different food 
textures in real masticatory tasks. 

 
Acknowledgment 

We wish to thank all the subjects who voluntarily 
participated in our study. 

 
References 

 
1. Xu W, Borland  JE. Mastication robots: biological 

inspiration to implementation. Springer-Verlag 
Berlin Heidelberg Press. 2010. 

2. Smit HJ, Kemsley EK, Tapp HS, Henry CJ. Does 
prolonged chewing reduce food intake? Fletcherism 
revisited. Appetite. 2011 Aug 1;57(1):295-8. 

3. Brown WE, Langley KR, Mioche L, Marie S, Gérault S, 
Braxton D. Individuality of understanding and 
assessment of sensory attributes of foods, in 
particular, tenderness of meat. Food Quality and 
Preference. 1996 Jul 1;7(3-4):205-16. 

4. Plesh O, Bishop B. Effect of gum hardness on 
chewing pattern. Exp Neurol. 1986; 92: 502-12.   

5. Helkimo E, Ingervall B. Bite force and functional 
state of the masticatory system in young men. 
Swedish Dental journal. 1978; 2: 167–75. 

6. Kalani H, Moghimi S, Akbarzadeh A. Towards an 
SEMG-based tele-operated robot for masticatory 
rehabilitation. Comput Biol Med. 2016; 75: 243–56. 

7. Kalani H, Moghimi S, Akbarzadeh A. SEMG-based 
prediction of masticatory kinematics in rhythmic 
clenching movements. Biomed Signal Process 
Control. 2015; 20: 24–34. 

8. Savelberg HCM , Herzog W. Prediction of dynamic 
tendon forces from electromyographic signals: An 

www.SID.ir

Archive of SID



 Nazanin Goharian et al.                                                                                                          Dynamic Modeling Of The EMG Signal And Masticatory Force 
   

86    Iran J Med Phys, Vol. 15, No. 2, April 2018 
 
 

artificial neural network approach. J Neurosci 
Methods. 1997; 78: 65-74. 

9. Luh JJ, Chang GC, Cheng CK, Lai JS, Kuo TS. Isokinetic 
elbow joint torques estimation from surface EMG 
and joint kinematic data: using an artificial neural 
network model. Journal of Electromyography and 
Kinesiology. 1999 Apr 1;9(3):173-83. 

10. Mobasser F, Hashtrudi-Zaad K. A comparative 
approach to hand force estimation using artificial 
neural networks. Biomedical engineering and 
computational biology. 2012 Jan; 4. 

11. Hashemi J, Morin E, Mousavi P, Mountjoy K,  
Hashtrudi-Zaad K. EMG–force modeling using 
parallel cascade identification. J Electromyography 
Kinesiol. 2012; 22: 469–77. 

12. Goharian N, Kalani H, Moghimi S. A time-delay 
parallel cascade identification system for predicting 
jaw movements.  Biomedical Engineering (ICBME). 
2014;  281 –6. DOI: 10.1109/ICBME.2014.7043936  

13. Kalani H, Akbarzadeh A, Moghimi S. Prediction of 
Clenching jaw Movements Based on EMG Signals 
Using Fast Orthogonal Search. ICEE 2015.  DOI: 
10.1109/IranianCEE.2015.7146175.  

14. Marmarelis VZ. Nonlinear dynamic modeling of 
physiological systems. Wiley-Interscience. 2004. 

15. Assefi M, Moghimi S, Kalani H, Moghimi A. Dynamic 
Modeling of SEMG-Force Relation in the Presence of 
Muscle Fatigue during Isometric Contractions. 
Biomed Signal Process Control. 2016, 28: 41-9. 

16. Wang L, Buchanan S. Prediction of Joint Moments 
Using a Neural Network Model of Muscle Activations 
From EMG Signals. IEEE Trans Neural Syst Rehabil 
Eng. 2002; 10: 30-7. 

17. Liu H.J,  Young K.Y. Upper-Limb EMG-Based Robot 
Motion Governing Using Empirical Mode 
Decomposition and Adaptive Neural Fuzzy 
Inference System.  J Intell Robot Syst. 2012; 68: 275–
91. 

18. Koçer S. Classification of Emg Signals Using Neuro-
Fuzzy System and Diagnosis of Neuromuscular 
Diseases.  J Med Syst. 2010; 34: 321–9. 

19. Subasi A. Classification of EMG signals using 
combined features and soft computing techniques. 
Appl Soft Comput. 2012; 12: 2188–98. 

20. Boyacioglua MA, Avcib D. An Adaptive Network-
Based Fuzzy Inference System (ANFIS) for the 
prediction of stock market return: The case of the 
Istanbul Stock Exchange. Expert Syst Appl. 2010; 37: 
7908–12. 

21. Güler I, Übeyli E. D. Adaptive neuro-fuzzy inference 
system for classification of EEG signals using 
wavelet coefficients. J Neurosci Meth. 2005; 148: 
113-21.  

22. Marmarelis VZ, Chon KH, Holstein-Rathlou NH, 
Marsh DJ. Nonlinear Analysis of Renal 
Autoregulation in Rats Using Principal Dynamic 
Modes. Ann Biomed Eng. 1999; 27: 23–31. 

23. Marmarelis VZ, Shin DC, Song D, Hampson RE, 
Deadwyler SA, Berger TW. On parsing the neural 
code in the prefrontal cortex of primates using 
principal dynamic modes. Journal of computational 
neuroscience. 2014 Jun 1;36(3):321-37. 

24. Korenberg MJ. Parallel cascade identification and 
kernel estimation for nonlinear systems. Annals of 
biomedical engineering. 1991 Jul 1;19(4):429-55. 

25. Hashemi J, Morin E, Mousavi P, Hashtrudi-zaad K. 
Enhanced Dynamic EMG-Force Estimation Through 
Calibration and PCI Modeling. IEEE Trans Neural 
Syst Rehabil Eng.  23 (2014) 41-50. 
 
 

www.SID.ir

Archive of SID


