

Contents lists available at ScienceDirect

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Short communication

Ce-promoted Na₂WO₄/TiO₂ catalysts for the oxidative coupling of methane

Check for updates

Vida Jodaian^{a,*}, Masoud Mirzaei^{b,*} ^a Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

^b Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 917751436, Iran

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords: Oxidative coupling Methane Cerium TiO₂ Natural gas

ABSTRACT

The catalytic oxidative coupling of methane (OCM) on Ce–promoted Na₂WO₄/TiO₂ catalysts was performed at atmospheric pressure in fixed-bed micro-quartz-tube reactor. The highest methane conversion (50.1%) and C₂ yield (27.6%) were obtained over 3 wt% Ce/5 wt% Na₂WO₄/TiO₂ catalyst at 800 °C and the long-term stability test was also described.

Natural gas is composed predominantly of methane (CH₄), which is the simplest hydrocarbon. Oxidative coupling of methane (OCM) is a promising route for producing directly high value-added hydrocarbons (e.g., ethylene and ethane) from natural gas [1]. OCM processes have not been commercialized, mainly due to the limited yield of C₂ hydrocarbons (i.e. ethylene + ethane) [2]. Therefore, the development of efficient catalyst for OCM, which can obtain high yield of C₂ hydrocarbons, is still important challenge. In the past three decades, many catalysts have been reported for the conversion of methane to ethane and ethylene [3–10]. The Mn/Na₂WO₄/SiO₂ catalyst system has attracted great attention as an OCM catalyst for a practical application. Chou et al. [11] studied CeO₂ promoted Na-W-Mn/SiO₂ catalyst in a micro reactor under elevated pressure. They obtained a CH₄ conversion of 47.2% with a C₂-C₄ selectivity of 47.3% at 710 °C and 0.6 MPa. Shahri and Pour [12] investigated the effects of Ce addition on catalytic performance of 2 wt% Mn/5 wt% Na₂WO₄/SiO₂ catalyst for OCM reaction and found that 5 wt% Ce-promoted catalyst showed the highest C₂ yield (21.1%) at 840 °C under atmospheric pressure.

A survey of the literature shows that there are only a few reports for the preparation of OCM catalysts using other support materials than SiO₂ [13–16]. Yildiz et al. [17] reported that TiO₂-rutile exhibited performance similar to SiO₂, with relatively low conversion at high C₂ selectivity.

The materials supported on TiO2 (rutile or anatase), Fe2O3, Fe3O4,

* Corresponding authors. *E-mail addresses*: hvidajodaian@yahoo.co.nz (V. Jodaian), mirzaeesh@um.ac.ir (M. Mirzaei).

https://doi.org/10.1016/j.inoche.2018.12.028

Received 27 November 2018; Received in revised form 27 December 2018; Accepted 29 December 2018 Available online 29 December 2018

1387-7003/ © 2018 Elsevier B.V. All rights reserved.

Table 1

Catalytic performa	nce of Ce-Na ₂ WO ₄ ,	/TiO ₂ catalysts fo	or oxidative coup	ling of methane.
--------------------	---	--------------------------------	-------------------	------------------

Catalyst (Ce wt%)	$S_{\rm BET}~({\rm m^2/g})$	CH_4/O_2	Conversion (%)		Selectivity (%)			Yield (%)	Mole ratio
			CH ₄	02	C ₂	СО	CO_2	C ₂	C_2H_4/C_2H_6
Ce (0%)	0.8	2	28.4	91.8	38.2	35.4	26.1	10.8	1.4
		3	25.1	94.3	42.1	34.2	23.3	10.6	1.6
		4	23.2	95.5	40.8	36.2	22.7	9.5	1.5
		5	20.5	97.4	39.5	38.5	21.6	8.1	1.6
Ce (0.5%)	1.3	2	37.7	95.2	44.6	24.6	30.3	16.8	1.8
		3	35.1	96.1	47.4	23.9	28.5	16.6	1.9
		4	31.8	96.9	45.3	27.4	27.1	14.4	2.0
		5	30.3	97.5	44.7	28.7	26.2	13.5	1.9
Ce (1%)	1.4	2	41.2	97.4	48.5	19.5	31.7	20.0	2.0
		3	38.6	98.1	52.9	16.3	30.5	20.4	2.2
		4	34.7	98.9	50.1	20.7	28.8	17.4	2.1
		5	32.5	99.0	49.0	22.4	28.1	15.9	2.2
Ce (2%)	1.7	2	46.8	98.4	51.2	15.1	33.4	24.0	2.2
		3	43.7	98.8	54.3	14.0	31.3	23.7	2.4
		4	42.1	99.0	53.6	16.4	29.5	22.6	2.4
		5	39.9	99.1	52.4	18.0	29.2	20.9	2.5
Ce (3%)	2.2	2	50.1	98.7	52.3	12.8	34.2	26.2	2.4
		3	49.0	99.1	56.4	10.9	32.1	27.6	2.7
		4	44.5	99.5	55.1	13.2	31.4	24.5	2.6
		5	41.1	99.7	54.2	14.6	30.8	22.3	2.6
Ce (5%)	2.1	2	49.8	98.5	51.6	14.4	33.5	25.7	2.4
		3	48.2	98.9	53.2	13.8	32.3	25.6	2.6
		4	44.4	99.3	51.9	16.3	31.1	23.0	2.5
		5	41.5	99.4	50.8	17.5	30.9	21.1	2.6
Ce (8%)	2.1	2	49.5	98.9	49.2	17.1	33.4	24.3	2.4
		3	48.7	99.3	50.7	16.3	32.7	24.7	2.5
		4	44.2	99.1	49.5	18.4	31.3	21.9	2.6
		5	41.3	99.2	48.4	19.8	30.9	20.0	2.6

Operating conditions: T = 800 °C, GHSV = 10,000 ml·g⁻¹·h⁻¹, 0.2 g catalyst, P = 1 atm.

SiC and SiO₂ were either on the reference trajectory or well above, indicating that they could also be suitable support materials. If stability of the catalytic performance is additionally taken into account, then TiO_2 -anatase has actually to be excluded.

However, without knowing the exact nature of the active sites it is possible to say, that they are at least as good if not better than that of the reference $MnxOy-Na_2WO_4/SiO_2$. That could mean that their active sites are either less unselective in parallel or less active for the consecutive combustion of the C_2 products.

Among the remaining materials only SiO_2 , SiC, TiO_2 -rutile and the Fe_2O_3 -based support materials show catalytic performances higher than the reference $MnxOy-Na_2WO_4/SiO_2$. Considering the C_2 yield, SiO_2 results in the best catalyst, however, the other materials have active sites which are as suitable (SiC, Fe-based) or even more suitable (TiO_2-rutile) for the formation of C_2 , but seem to be present in lower numbers.

For MnxOy-Na₂WO₄, a variety of different support materials has been studied. Most of the materials show a catalytic performance inferior to the reference MnxOy-Na₂WO₄/SiO2 and/or deactivate, although MnxOy-Na₂WO₄ without a support material exhibits also significant catalytic activity, questioning suggestions of the active centres like W–O–Si bonds. However, since quartz sand has been used to dilute the catalyst, it cannot be excluded that the active component has smeared over the SiO₂ particles, although it seems unlikely.

 La_2O_3 and CaO exhibit a high activity as pure support materials, making them unattractive for fundamental research, since it will be difficult to distinguish the contribution of the support material and the active phase [18].

A surface reconstruction has been assumed with the formation of surface cluster species of tetrahedral WO₄ species, including one W–O bond and three W–O–Si bonds which were suggested as the active site. The tetrahedral WO₄ species were distorted and the distortion was responsible for the activity.

According to the EPR and Raman experiments, a W^{6+}/W^{4+} redox mechanism with W–O–Si bonds was suggested as mechanism [18]. Gas

phase O_2 was assumed to be involved in the electron transfer from the W to the vacancy, forming the F-centre. The mobility increase of surface lattice oxygen was suggested as the effect of Mn.

In this paper, a series of Ce/5 wt% Na₂WO₄/TiO₂ catalysts have been prepared by changing the content of cerium and their catalytic performances for OCM were evaluated in a continuous flow reactor. The *X* wt% Ce/5 wt% Na₂WO₄/TiO₂ (*X* = 0, 0.5, 1, 1.5, 2, 3, 5, 8) catalysts were prepared by two-step wet impregnation method. First, the TiO₂ support was impregnated with an aqueous solution containing appropriate concentration of Ce(NO₃)₃·6H₂O at room temperature and then dried at 110 °C in air for 6 h. After that, obtained material was impregnated with an aqueous solution of Na₂WO₄·2H₂O in appropriate concentration at room temperature and then dried at 110 °C overnight. The catalyst samples were then calcined at 900 °C in air for 6 h. Finally, all of catalyst samples were crushed and sieved to 30–40 mesh size. Catalyst without Ce (5 wt% Na₂WO₄/TiO₂) was also prepared using the same procedure described above.

Table 1 shows BET surface area, CH₄/O₂ mole ratio, catalyst activity, product selectivity, and yield of selective products for all the studied catalyst samples. In order to find the maximum possible yield of C2 hydrocarbons at 800 °C, the effect of CH4/O2 feed ratio was investigated. With increasing CH₄/O₂ ratio from 2 to 5, the methane conversion decreased. It is well known that the most important step in OCM is the activation of methane over the catalyst [19,20]. A higher conversion of methane is obtained with Ce-Na₂WO₄/TiO₂ catalysts in comparison with Na₂WO₄/TiO₂ catalyst, indicating that Ce enhances the activation of methane. It is essential that combinations of Ce and Na₂WO₄ supported on TiO₂ enhance both C₂ selectivity and catalytic activity, which means a considerable synergetic effect of Ce-Na₂WO₄/ TiO₂ system. The 3 wt% Ce/5 wt% Na₂WO₄/TiO₂ exhibited the highest C₂ yield because of the combination of methane conversion and C₂ selectivity. Increasing the CH₄/O₂ ratio enhanced C₂ yield passing through a maximum at $CH_4/O_2 = 3$. Furthermore, the BET surface area increased obviously with the increase in the Ce content from 0.5% to

Fig. 1. Catalytic activities of the *X* wt% Ce/5 wt% Na₂WO₄/TiO₂ (*X* = 0, 0.25, 0.5, 1, 1.5, 2, 3, 5) catalysts as related to operation temperatures. GHSV = 10,000 ml·g⁻¹·h⁻¹, 0.2 g catalyst, P = 1 atm.

3% because some cerium can inhibit the agglomeration of Na_2WO_4/TiO_2 catalyst particles. However, the surface area decreased as the Ce content decreased from 3% to 0%. The 3% Ce catalyst, which has the largest surface area, showed the best OCM activity, indicating that BET surface area is one of the most important factors responsible for the different catalytic behaviors of the Ce–Na₂WO₄/TiO₂ catalysts with

different Ce contents.

The effect of temperature on methane conversion and products selectivity are shown in Fig. 1(a–d). The conversion of methane dramatically increased with temperature, especially in the range of 750–800 °C (Fig. 1(a)). For 3 wt% Ce/5 wt% Na₂WO₄/TiO₂ catalyst, CH₄ conversion increased with temperature and passed through a

Fig. 2. Yield of C₂ hydrocarbons and C₂H₄/C₂H₆ ratio of the *X* wt% Ce/5 wt% Na₂WO₄/TiO₂ (*X* = 0, 0.25, 0.5, 1, 1.5, 2, 3, 5) catalysts as related to operation temperatures (a,b). GHSV = 10,000 ml·g⁻¹·h⁻¹, 0.2 g catalyst, *P* = 1 atm. XRD patterns of the 3 wt% Ce/5 wt% Na₂WO₄/TiO₂ catalyst: (1) before calcination, (2) after calcination, and (3) after OCM activity testing for 6 h (c).

Fig. 3. Stability test over the 3 wt% Ce/5 wt% Na₂WO₄/TiO₂ catalyst at GHSV = $10,000 \text{ ml} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$, CH₄/O₂ = 3 and T = 800 °C.

maximum at 800 °C. As seen in Fig. 1(b), the best C_2 selectivity for each catalyst obtained at 800 °C. For undesirable products, CO selectivity decreased with increasing the operating temperature, which attained a minimum at 800 °C, and then increased with a further rise of the operating temperature (Fig. 1(c)). Moreover, CO_2 selectivity increased slightly with Ce addition (Fig. 1(d)).

The variation of the yield of C₂ hydrocarbons and C₂H₄/C₂H₆ ratio with the temperature is presented in Fig. 2(a) and (b). The C₂ hydrocarbons yield increased with the increase of temperature and passed through a maximum value at 800 °C and then decreased gradually (Fig. 2(a)). The 3 wt% Ce catalyst showed the highest C₂H₄/C₂H₆ ratio at 800 °C (Fig. 2(b)). Although the 5–8 wt% Ce catalysts exhibited the high methane conversion, they exhibited a low C₂ yield, indicating that they converted methane to fully oxidized CO and CO₂. Fig. 2(c) shows the XRD patterns of the 3 wt% Ce/5 wt% Na₂WO₄/TiO₂ catalyst before calcination, after calcination, and after OCM activity testing for 6 h. Only the peaks of anatase phase TiO₂ (2 θ = 25.39, 37.04, 37.88, 38.65 and 48.13) can be observed in the diffraction pattern of the catalyst before calcination (Fig. 2(c)(1)).

After calcination at 900 °C, all the characteristic XRD peaks of anatase disappeared, while those of rutile appeared at $2\theta = 27.52$, 36.16, 39.27, 41.33 and 44.13 (Fig. 2(c)(2)). This indicated that anatase completely transformed to rutile phase during calcination. Beside the XRD peaks of rutile TiO₂, the peaks correlated with Na₂WO₄ ($2\theta = 16.89$, 32.54 and 48.87) and CeO₂ ($2\theta = 28.63$, 33.16 and 47.54) can be identified in the XRD pattern of the fresh catalyst. The used catalyst, which tested in OCM reaction for 6 h, did not show significant differences in the XRD patterns compared to the fresh catalyst (Fig. 2(c)(3)) though. The result suggests that there was a strong interaction between cerium (Ce), sodium (Na) and tungsten (W) with the TiO₂ support.

As it is well-known, the long-term stability of a catalyst is an important factor for its potential application in industry. Fig. 3 shows the results of stability test for the 3 wt% Ce/5 wt% Na₂WO₄/TiO₂ catalyst. It can be seen that CH₄ conversion remained at about 49% even after 50 h on stream. It was interesting that C₂ selectivity maintained at about 56%. CO selectivity increased with time on stream, while the opposite trend was found for CO₂ selectivity. In other words, the total amount of CO and CO₂ remained almost constant. Furthermore, the surface area of the fresh catalyst slightly decreased from 2.1 to 1.7 m²/g after 50 h.

In summary, it has been demonstrated that $Ce-Na_2WO_4/TiO_2$ is a very promising catalyst for the oxidative coupling of methane.

Combination of Ce and Na₂WO₄ in the catalyst showed the essential synergetic effect in the OCM activity and C₂ selectivity. The 3 wt% Ce/5 wt% Na₂WO₄/TiO₂ catalyst showed the best performance and was rather stable up to 50 h at 800 °C, and the highest C₂ selectivity and yield were 56.4% and 27.6%, respectively.

Acknowledgements

We would like to thank the Islamshahr Branch, Islamic Azad University for financial support.

References

- A. Galadima, O. Muraza, Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: a review, J. Ind. Eng. Chem. 37 (2016) 1–13.
- [2] M.C. Alvarez-Galvan, N. Mota, M. Ojeda, S. Rojas, R.M. Navarro, J.L.G. Fierro, Direct methane conversion routes to chemicals and fuels, Catal. Today 23 (2011) 15–23.
- [3] S.C. Oh, Y. Wu, D.T. Tran, I.C. Lee, Y. Lei, D. Liu, Influences of cation and anion substitutions on oxidative coupling of methane over hydroxyapatite catalysts, Fuel 167 (2016) 208–217.
- [4] J. Wu, H. Zhang, S. Qin, C. Hu, La-promoted Na₂WO₄/Mn/SiO₂ catalysts for the oxidative conversion of methane simultaneously to ethylene and carbon monoxide, Appl. Catal. A Gen. 323 (2007) 126–134.
- [5] S.L.S. Kuś, M. Otremba, M. Taniewski, The catalytic performance in oxidative coupling of methane and the surface basicity of La₂O₃, Nd₂O₃, ZrO₂ and Nb₂O₅, Fuel 82 (2003) 1331–1338.
- [6] S. Ji, T. Xiao, S. Li, C. Xu, R. Hou, K.S. Coleman, M.L.H. Green, The relationship between the structure and the performance of Na-W-Mn/SiO₂ catalysts for the oxidative coupling of methane, Appl. Catal. A Gen. 225 (2002) 271–284.
- [7] A. Palermo, J.P. Holgado Vazquez, A.F. Lee, M.S. Tikhov, R.M. Lambert, Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na₂WO₄/SiO₂ catalysts for the oxidative coupling of methane, J. Catal. 177 (1998) 259–266.
- [8] S. Pak, P. Qiu, J.H. Lunsford, Elementary reactions in the oxidative coupling of methane over Mn/Na₂WO₄/SiO₂ and Mn/Na₂WO₄/MgO catalysts, J. Catal. 179 (1998) 222–230.
- [9] V. Choudhary, S.A. Mulla, B. Uphade, Oxidative coupling of methane over alkaline earth oxides deposited on commercial support precoated with rare earth oxides, Fuel 78 (1999) 427–437.
- [10] D.V. Ivanov, L.A. Isupova, E.Y. Gerasimov, L.S. Dovlitova, T.S. Glazneva, I.P. Prosvirin, Oxidative methane coupling over Mg, Al, Ca, Ba, Pb-promoted SrTiO₃ and Sr₂TiO₄: influence of surface composition and microstructure, Appl. Catal. A Gen. 485 (2014) 10–19.
- [11] L. Chou, Y. Cai, B. zhang, J. Niu, S. Ji, S. Li, CeO₂-promoted W-Mn/SiO₂ catalysts for conversion of methane to C₃–C₄ hydrocarbons at elevated pressure, Chem. Commun. (2002) 996–997.
- [12] S.M.K. Shahri, A.N. Pour, Ce-promoted Mn/Na₂WO₄/SiO₂ catalyst for oxidative coupling of methane at atmospheric pressure, J. Nat. Gas Chem. 19 (2010) 47–53.
- [13] T.W. Elkins, H.E. Hagelin-Weaver, Characterization of Mn–Na₂WO₄/SiO₂ and Mn–Na₂WO₄/MgO catalysts for the oxidative coupling of methane, Appl. Catal. A Gen. 497 (2015) 96–106.
- [14] H. Liu, D. Yang, R. Gao, L. Chen, S. Zhang, X. Wang, A novel Na₂WO₄–Mn/SiC monolithic foam catalyst with improved thermal properties for the oxidative coupling of methane, Catal. Commun. 9 (2008) 1302–1306.
- [15] Z.Q. Yu, X.M. Yang, J.H. Lunsford, M.P. Rosynek, Oxidative coupling of methane over Na₂WO₄/CeO₂ and related catalysts, J. Catal. 154 (1995) 163–173.
- [16] D.J. Wang, M.P. Rosynek, J.H. Lunsford, Oxidative coupling of methane over oxidesupported sodium-manganese catalysts, J. Catal. 155 (1995) 390–402.
- [17] M. Yildiz, U. Simon, T. Otremba, Y. Aksu, K. Kailasam, A. Thomas, R. Schomäcker, S. Arndt, Support material variation for the Mn_xO_y-Na₂WO₄/SiO₂ catalyst, Catal. Today 228 (2014) 5–14.
- [18] Mahmut Yildiz, Influences of Support Material Variation on Structure and Catalytic Performance of MnxOy-Na₂WO₄/SiO₂ Catalyst for the Oxidative Coupling of Methane, genehmigte Dissertation, von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades, Berlin, D83 (2014).
- [19] J.A. Sofranko, J.J. Leonard, C.A. Jones, The oxidative conversion of methane to higher hydrocarbons, J. Catal. 103 (1987) 302–310.
- [20] C.A. Jones, J.J. Leonard, J.A. Sofranko, The oxidative conversion of methane to higher hydrocarbons over alkali-promoted MnSiO₂, J. Catal. 103 (1987) 311–319.