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Genomic prediction using a large number of markers is challenging, due to the curse

of dimensionality as well as multicollinearity arising from linkage disequilibrium between

markers. Several methods have been proposed to solve these problems such as

Principal Component Analysis (PCA) that is commonly used to reduce the dimension

of predictor variables by generating orthogonal variables. Usually, the knowledge from

PCA is incorporated in genomic prediction, assuming equal variance for the PCs or a

variance proportional to the eigenvalues, both treat variances as fixed. Here, three prior

distributions including normal, scaled-t and double exponential were assumed for PC

effects in a Bayesian framework with a subset of PCs. These developed PCR models

(dPCRm) were compared to routine genomic prediction models (RGPM) i.e., ridge

and Bayesian ridge regression, BayesA, BayesB, and PC regression with a subset of

PCs but PC variances predefined as proportional to the eigenvalues (PCR-Eigen). The

performance of methods was compared by simulating a single trait with heritability of

0.25 on a genome consisted of 3,000 SNPs on three chromosomes and QTL numbers

of 15, 60, and 105. After 500 generations of randommating as the historical population, a

population was isolated and mated for another 15 generations. The generations 8 and 9

of recent population were used as the reference population and the next six generations

as validation populations. The accuracy and bias of predictions were evaluated within

the reference population, and each of validation populations. The accuracies of dPCRm

were similar to RGPM (0.536 to 0.664 vs. 0.542 to 0.671), and higher than the accuracies

of PCR-Eigen (0.504 to 0.641) within reference population over different QTL numbers.

Decline in accuracies in validation populations were from 0.633 to 0.310, 0.639 to 0.313,

and 0.617 to 0.298 using dPCRm, RGPM and PCR-Eigen, respectively. Prediction biases

of dPCRm and RGPM were similar and always much less than biases of PCR-Eigen. In

conclusion assuming PC variances as random variables via prior specification yielded

higher accuracy than PCR-Eigen and same accuracy as RGPM, while fewer predictors

were used.
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INTRODUCTION

Advances in high-throughput genotyping technology allow the
collection and storage of thousands to millions of SNP markers
frommany livestock species (Van Tassell et al., 2008;Matukumalli
et al., 2009). These genotyped markers are a rich source of
information, which can greatly enhance the performance of
selection process for the genetic improvement of livestock. The
information embedded in genotyped markers can be efficiently
extracted by accurate models that can describe and predict the
genetic merit of animals.

In genomic selection, relatively small number of phenotypes
or pseudo-phenotypes are regressed on a large number of marker
variables, simultaneously (Meuwissen et al., 2001). Regressing
phenotypes on many marker variables raises several statistical
and computational issues, such as how to confront the so-
called “curse of dimensionality” as well as the complexity
of a genetic mechanism that can involve various types and
orders of interactions (Pérez and de Los Campos, 2014).
It is expected that such data imbalance between markers
and phenotypes still represents the main constraint on the
implementation of genomic selection, especially for breeds
other than Holstein (Pintus et al., 2012). Besides the “curse of
dimensionality,” another challenging problem is multicollinearity
arising from inter-correlation of marker genotype due to linkage
disequilibrium (Long et al., 2011). These statistical challenges
have been considered before, and several methods, such as partial
least square regression (Wold, 1985), and principal component
analysis (Peason, 1901; Hotelling, 1933) have been proposed to
reduce the dimensionality of a data set.

Principal Component Analysis (PCA) belongs to the general
framework of multivariate analysis and is one of the classical data
analysis tools for dimension reduction (Jolliffe, 2002). In PCA,
we seek to reduce the dimensionality of an m-dimensional data
vector to a smaller p-dimensional vector, where p<<m, which
represents an embedding of the data in a lower dimensional
space. This technique is a widely used tool in genome-wide
association studies to reduce the number of correlated traits
(Bolormaa et al., 2010), to trace the respective contributions
of population structure and LD between single nucleotide
polymorphisms (NP) and quantitative trait locus (QTL) in the
accuracy of genomic predictions (Price et al., 2006; Daetwyler
et al., 2012), and for genomic prediction (Solberg et al., 2009a;
Pintus et al., 2012). Macciotta et al. (2010) applied PCA approach
to a PC-BLUP genomic prediction using eigenvalues as prior PC
variances and conclude that results were better than the previous
assumption of equal variance for PC effects in Solberg et al.
(2009a), since the assumption of one single variance for all PC
effects could be unrealistic.

In practice, however, when some principal components are
excluded from the analysis by a selective criterion the sum of
eigenvalues in remaining principal components is not equal
to one. So the estimated variance will be smaller than the
original variance, which makes scaling inevitable. In addition,
when some variables are excluded from the analysis the ranking
of the remaining variables is not necessarily the same as
before. Exploiting this information may enhance the accuracy

of predictions in a statistical analysis. Unfortunately, neither
assumption of equal variance nor the assumption of eigenvalues
as the prior variance for the predictors would accommodate
such information as both techniques consider the variance(s) of
predictors as fixed quantities.

External information can be incorporated into the regression
on principal components through a Bayesian analysis, in which
all parameters are considered as random effects with a probability
density function that describes their contributions. Bayesian
methods are common in genomic prediction with markers;
however, genomic prediction models with PCs using realistic
prior specification for PC scores have not been investigated yet.
So, the aim of this study was to investigate the performance
of a new Bayesian technique for genomic prediction with
principal components to improve the accuracy of predictions by
incorporating prior knowledge to PC effects and their variances.

MATERIALS AND METHODS

Simulation Genome and Population
Data were simulated using the QMSim software package
(Sargolzaei and Schenkel, 2009) in 10 replicates for each scenario
as follows. A single trait with phenotypic variance of one and
heritability of 0.25 were produced. The genome consisted of 3
chromosomes, each one Morgan long. In total, 3,000 bi-allelic
marker loci (single nucleotide polymorphism; SNP) and 105,
60, and 15 multi-allelic QTL were simulated on the genome.
Markers and QTL positions were randomly selected across the
genome. Mutation rate was set to 1 × 10−3 for markers and
1 × 10−5 for QTL, respectively. All genetic variance was due
to additive QTL effects, which were randomly sampled from
a gamma distribution with shape parameter 0.4. Phenotypes
were generated for both sexes by adding random residuals from
independent distributions∼ N(0, Iσ 2

e ) to the sum of QTL effects,
therefore, no sex difference was simulated.

In order to achieve mutation-drift balance, historical
generation was started with 400 females and 20 males and
continued as follows: During 100 generation of random mating,
the size of population increased to 1,000 animals. The population
with the same size randomly mated for 400 more generations.
The number of male animals in the last generation increased
to 70. From generation 500, 35 males and 455 females were
randomly selected as the generation zero and were mated for
15 generations. The mating design in the last 15 generations
was also random, but to mimic a situation with selection, male
and females were selected from the best animals with high
breeding values of previous generation. Generations 8 and 9 were
selected as training animals and generations 10 to 15 as selection
candidates.

Statistical Computation
In this research two different groups of models were studied,
SNP and PC based models, that used SNPs and PC scores as
independent variables, respectively.

The general model for the record of individual i, yi, with
observed marker genotype j labeled Zijin the first group of
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models was:

yi = µ + sexk +
∑m

j= 1
Zijbj + ei, (1)

Where µ is the overall mean, sexk is the effect of kth sex, bj is the
effect of marker genotype j, and there are m markers, and ei is
residual. In matrix notation the model is written as:

y = Xs+ Zb+ e, (2)

Where y a column vector of records of length n, s is a vector
of fixed effects, X is incidence matrix that relates observations
to fixed effects and Z is an n × m matrix with elements Zij

represented the marker genotype coded as −1, 0, and 1. A SNP
genotype was removed if the SNP minor allele frequency (MAF)
was less than 0.01 and if it deviated greatly fromHardy–Weinberg
equilibrium (P < 1× 10−5 ).

The alternative methods in the first group includes Bayesian
Ridge regression (Bayes-Ridge), BayesA, BayesB, which differed
in the prior used for b that are well known and most commonly
used in genomic selection (Meuwissen et al., 2001; Habier et al.,
2007, 2011). In Bayes-Ridge, the column vector of SNP effects
is assumed to have the normal distribution b ∼ N(0, Iσ 2

b
),

where σ 2
b

is the prior variance of the SNP effect sampling

from scaled inverse chi-square prior with scale parameter S2
b

and νb degrees of freedom as hyper-parameters. In BayesA, the
marginal distribution of marker effects is a scaled-t density. But,
it was shown that this is equivalent to assuming that the marker
effect at locus j has a univariate normal with a null mean and
unknown locus-specific variance σ 2

bj
(Gianola et al., 2009). In

BayesB marker effects are assigned IID priors that are mixtures
of a point of mass at zero and a slab that is a scaled-t density.
The slab is structured as BayesA by introducing an additional
parameter π represents the prior proportion of zero effects that
is treated as unknown as previously emphasized that shrinkage
of SNP effects is affected by π , and thus should be treated as
an unknown being inferred from the data (Habier et al., 2011),
therefore, it is assigned a Beta prior with the default hyper-
parameters set by BGLR (Pérez and de Los Campos, 2014). In all
the Bayesian models a flat prior (Sorensen and Gianola, 2002) is
used for fixed effects and conditional on the residual variance, σ 2

e ,
a normal distribution with null mean and co-variance matrix
Iσ 2

e is used for the vector of residuals. Further, σ
2
e is treated

as an unknown with a scaled inverse chi-square prior. Variance
hyper-parameters, i.e., scale and degrees of freedom, were set
as BGLR defaults such that a proper but weakly informative
prior distribution is postulated (Pérez and de Los Campos, 2014).
Variance components with weakly informative priors will be less
dependent on the prior setting and their posterior distribution
will be dominated by the data (Sorensen and Gianola, 2002). The
fourth model in the first group of models was Ridge-regression

BLUP (Ridge-R) which used
σ 2
a
m as a variance of SNP effects.

The mixed model equations of Ridge-R were simply solved in a
non-Bayesian manner by Cholesky decomposition in R.

The second group of models using PC scores as the predictor
variable were performed as follows. PCA was implemented on

the correlation matrix of marker genotype (Wm×m) as below
(Janss et al., 2012):

W = UDUT
=

∑m

j= 1
λjUjU

T
j , (3)

Where U = [U1,U2, . . . , Um] of order m × m is the matrix
of eigenvectors of W with the Uj represent the jth column, and
D is a diagonal matrix with elements equal to the eigenvalues
λ1, λ2, . . . , λm associated with the m eigenvectors. Properties
of the eigenvalues and eigenvectors are λ1 > λ2 > . . . > λm
and UjU

T
j =UT

j Uj= I, repectively. The choice of the number of

PCs to be retained is arbitrary and several methods have been
proposed (Jolliffe, 2002). In this study, we retain a k number of
components until the cumulative variance reaching to 0.999 and
then PC score were calculated for animals as:

Zpc = Z
x×m

% ∗% Um×k, (4)

Where x denotes the number of individuals of training
population or each of selection candidate sets. This Zpc matrix
was replacement as the incidence matrix for different PC based
models as follows:

y = Xs+Zpcbpc + e, (5)

The alternative PC based methods hereinafter differ only in the
prior used for the vector of predictor variables,bpc, and their
variance. Principal component regression with eigenvalue as
prior variance of predictor variable (PCR-Eigen) assumes that
contribution of each PC score is proportional to their eigenvalues
and therefore variances of each PC score was ccalculated as
σ
2
pcj = σ

2
aλj, where σ

2
a is the additive genetic variance (Macciotta

et al., 2010). It’s BLUP mixed model equations were constructed
and solved in R using Cholesky decomposition. In Bayesian
principal component regression with normal distribution (PCR-
Normal), regression coefficients are assigned to IID normal
distributions, with mean zero and variance σ

2
pc that the variance

parameter is assigned a scaled-inverse Chi-squared density,
with parameters dfpc and Spc. Bayesian principal component
regression with t-density (PCR-t) was performed with assuming
a scaled-t density as marginal distribution of predictor effects
with parameters dfpc and Spc. However, as discussed in Gianola
et al. (2009), this density is implemented as a univariate
normal with null mean and unknown locus-specific variance σ

2
pcj

and the variance parameter is assigned an IID scaled-inverse

TABLE 1 | Average number of SNPs and PCs after quality control, over 10

replicates.

105 QTL 60 QTL 15 QTL

SNP 2868.4 ± 11.64 2871.1 ± 19.81 2865.8 ± 26

PC 1583.7 ± 7.55 1595.7 ± 15.56 1587 ± 21.97
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Chi-squared density, with parameters dfpc and Spc. A double
exponential distribution was assumed as marginal distribution
of PC score in Bayesian principal component regression with
a LASSO density (PCR-Lasso). The prior of double exponential
distribution can be represented as an infinite mixture of scaled
normal distributions (Park and Casella, 2008). Predictor effects
are assigned independent normal densities with null mean and
maker-specific variance parameter τ 2pcj ×σ 2

ε , in the first. Second,

τ 2pcj are assigned IID exponential densities with rate parameter

γ
2/2. Finally γ 2 assigned to a Gamma prior. A Gibbs-Sampling

algorithm was used to estimate PC effects and their variance
simultaneously.

Predictive Ability
Different models were compared on how accurately they predict
the true breeding values of animals. The correlation between
genomic estimated breeding values and true breeding values was

used as the accuracy of a model. The accuracies of genomic
estimated breeding values were calculated in two approaches. In
the first approach, training animals were first divided into five
groups from which in turn, four groups were used to estimate
marker effects and the left out group used to calculate accuracies.
In the second approach, in order to investigate the persistency
of accuracy over generations, estimated marker effects based
on animals in reference population, were used repeatedly for
measuring the accuracies in the candidate animals (candidate
populations) from generation 10 to 15. Unbiasedness of genomic
predictions was measured by the regression of true breeding
values on estimated genomic breeding values. This regression
does not deviate largely from one if the prediction is unbiased.

RESULTS

Table 1 illustrates the average number of SNP markers and
retained PCs which explain 0.999 of the original variance.

FIGURE 1 | The proportion of variance (%) accounted for by each PC (Top), and the cumulative variance of successive PCs (Bottom) for replicate 1 of the scenario

with 105 QTL.
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TABLE 2 | Pearson correlations between predicted genomic breeding values and true breeding values for different methods with five-fold cross validation in training

populations.

QTL Ridge-R Bayes-Ridge| BayesA BayesB PCR-Normal PCR-t PCR-Lasso PCR-Eigen

105 0.658 ± 0.007 0.671 ± 0.008 0.664 ± 0.009 0.667 ± 0.009 0.664 ± 0.008 0.662 ± 0.009 0.653 ± 0.009 0.641 ± 0.009

60 0.643 ± 0.01 0.654 ± 0.01 0.648 ± 0.01 0.653 ± 0.01 0.651 ± 0.01 0.646 ± 0.01 0.643 ± 0.01 0.625 ± 0.01

15 0.542 ± 0.02 0.553 ± 0.02 0.556 ± 0.02 0.565 ± 0.02 0.551 ± 0.02 0.548 ± 0.02 0.536 ± 0.02 0.504 ± 0.02

Ridge-R, Ridge regression-BLUP; Bayes-Ridge, Bayesian Ridge regression; PCR-Normal, Bayesian principal component regression with normal distribution of effects; PCR-t, Bayesian

principal component regression with scaled t distribution of effects; PCR-Lasso, Bayesian principal component regression with double exponential distribution of effects; PCR-Eigen,

Principal component regression-BLUP with eigenvalues as prior variance of effects.

TABLE 3 | Intercept and regression coefficient of true breeding value on predicted genomic breeding value and coefficient of determination for different estimation

methods for 5-fold cross validation in training population.

Ridge-R Bayes-Ridge BayesA BayesB PCR-Normal PCR-t PCR-Lasso PCR-Eigen

105 b0 0.88 ± 0.03 0.86 ± 0.04 0.88 ± 0.03 0.86 ± 0.03 0.83 ± 0.04 0.85 ± 0.04 0.85 ± 0.04 0.66 ± 0.04

b1 1.22 ± 0.04 1.002 ± 0.04 1.05 ± 0.04 1.05 ± 0.05 1.004 ± 0.04 1.09 ± 0.07 1.2 ± 0.08 0.76 ± 0.03

R2 0.48 ± 0.02 0.49 ± 0.02 0.50 ± 0.02 0.50 ± 0.03 0.49 ± 0.02 0.49 ± 0.03 0.48 ± 0.03 0.46 ± 0.02

60 b0 0.85 ± 0.05 0.84 ± 0.05 0.83 ± 0.06 0.84 ± 0.05 0.78 ± 0.05 0.79 ± 0.05 0.81 ± 0.05 0.63 ± 0.05

b1 1.141 ± 0.05 0.964 ± 0.03 1.007 ± 0.04 1.09 ± 0.05 0.962 ± 0.03 1.05 ± 0.05 1.09 ± 0.05 0.706 ± 0.03

R2 0.46 ± 0.03 0.47 ± 0.03 0.48 ± 0.03 0.48 ± 0.04 0.47 ± 0.03 0.48 ± 0.04 0.46 ± 0.03 0.43 ± 0.03

15 b0 0.94 ± 0.08 0.92 ± 0.08 0.92 ± 0.08 0.90 ± 0.07 0.87 ± 0.08 0.89 ± 0.08 0.90 ± 0.08 0.79 ± 0.1

b1 0.97 ± 0.1 0.85 ± 0.07 1.02 ± 0.1 0.93 ± 0.06 0.85 ± 0.07 1.007 ± 0.09 1.08 ± 0.1 0.58 ± 0.07

R2 0.35 ± 0.04 0.36 ± 0.05 0.36 ± 0.05 0.38 ± 0.05 0.36 ± 0.05 0.36 ± 0.05 0.35 ± 0.05 0.30 ± 0.05

b0, Intercept; b1, regression coefficient; R2, determination coefficient.

Although we considered a non-strict criterion for retaining PCs,
the number of PCs is nearly half of the number of SNPs. This is
the ability of PCA in reducing the variables without considerable
loss of variance. Dimauro et al. (2011), selected a strict criteria for
retaining PCs and reported that 300 and 700 PCs explain 85 and
95% of the original variance, respectively.

The percentage of explained variance by each PC, and also
the cumulative variance of PCs for replicate 1 in scenario with
105 QTL is shown in Figure 1, as an example. The first five and
100 PCs are adequate for explaining 60% and 90% of the original
variance, respectively. The curve of cumulative variance reached
a plateau around 200th PC. In agreement with previous findings
on simulated data, PCA has been able to efficiently reduce the size
of predictors. Since, a small amount of variance will be explained
by each PC after plateau, a large number of PCs must be included
in the model to capture a relatively small variance; in this study,
about 1,400 PCs after plateau explain less than 1% of the original
variance. These results highlight that PC analysis can compress
the total variation in a smaller set of variables.

Cross validation accuracies of genomic predictions obtained
using SNP/PC based models are shown in Table 2. On average,
the accuracies were highest in 105 QTL senario. Accuracy of
genomic predictions clearly declined with decreasing QTL from
105 to 15 in all eight methods. As expected, the accuracy of
BayesA and BayesB increased with decreasing number of QTLs,
and at 15 QTL outperformed Bayes-Ridge model. Previous
studies have reported that a BLUP mixed model, assuming equal
variance for all SNP, perform as well as variable selection models

for most traits in dairy cattle (Hayes et al., 2009; VanRaden
et al., 2009), but in traits controled with major genes such as
fat percentage, variable selection models are superior over BLUP
models (Cole et al., 2009; Legarra et al., 2011). Across all senarios,
Ridge-R in SNP based models, and PCR-Eigen in PC based
models had lowest accuracies.

In all senarios, the performance of PCR-Normal was better
than the other three PC based models but the diffrences of
PCR-Normal and PCR-t were negligible. Macciotta et al. (2010),
investigated the accuracy of PC based estimated breeding values
differently. They sequentially added PCs to a PC-BLUP model to
reach the highest accuracy and found that the accuracy increased
up to a plateau at PC 250 to 300. Retaining more PCs, in their
study resulted in no increased accuracy.

In scenario with 105 QTL, the accuracy of Bayes-Ridge, 0.671,
was similar to the accuracy of PCR-Normal, that was 0.664, while,
in the latter, the size of predictors was nearly half. That is a huge
reduction in pridictor variables without any loss of prediction
accuracy. In this senario, accuracy of PCR-Normal is exactly
similar to the accuracy of BayesA. In 60 QTL senario this two
models yielded similar accuracies (0.654 vs. 0.651). This is also
true in the case of BayesA and PCR-t, both using the same prior
for unknown parameters but the former for SNPs and the later for
PC scores. BayesB had the highest accuracy in 15 QTL senario,
0.556, which is only 0.014 higher than the accuracy obtained with
PCR-Normal, but 0.052 higher than PCR-Eigen which assumes
predictor variances are fixed quantities scaled proportional to
their eigenvalues.
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FIGURE 2 | Persistency of accuracy across validation generations measured as correlation between true and estimated genomic breeding values with different

estimation methods. (Top): 105 QTL; (Middle): 60 QTL; (Bottom): 15 QTL.

A necessary condition for unbiased genomic prediction
is that the regression coefficient of true breeding values on
genomic prediction is close to 1. Compared with the BLUP
models (Ridge-R and PCR-Eigen), the bias in Bayesian models
was reduced (Table 3). PCR-Eigen overestimated the genomic
breeding values with a regression coefficient of less than 1. In
a simulation study by Macciotta et al. (2010) with eigenvalues
as prior variance the regression slope was 0.76, and with a
single prior variance for PCs it was 0.69. In a simulation study

with PCs extracted from different marker densities assuming a
single PC variance, regression slopes varied from 0.65 to 0.695
(Solberg et al., 2009a). The data simulated in these studies
were different but the methods were comparable to our PCR-
Eigen. In contrast to the models with a fixed variance for
predictors, Bayesian PC models produced unbiased predictions
(Table 3). The unbiased models in 105 QTL scenario were
Bayes-Ridge and PCR-Normal and in 60 QTL scenario were
BayesA, followed by Bayes-Ridge and PCR-Normal. PCR-t led
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FIGURE 3 | Regression coefficient of true breeding values on estimated genomic breeding values for different generations of selection candidates. (Top): 105 QTL;

(Middle): 60 QTL; (Bottom): 15 QTL.

to unbiased estimated genomic breeding values in 15 QTL
scenario.

Figure 2 depicts the persistency of selection accuracy over six
generations of selection candidates using SNP/PC based models.
Accuracies decreased as the number of QTL decreased and as
generation increased. This figure shows the marginal differences
between SNP based and PC based models for different number
of QTL, such that it is difficult to determine which model
outperforms the others over the generations. The superiority

of Bayesian PCR models over PCR-Eigen is more evident in
scenario with 60 QTL followed by 15 QTL.

Figure 3 shows the regression coefficients of true breeding
values on estimated breeding values over six generations. Across
all models, absolute values of regression coefficients decreased as
generation increased. PCR-Lasso had an inflated regression slope
in the training populations of 105 QTL (b1 = 1.2) and 60 QTL
(b1 = 1.09) scenarios, but in generations 10, 11 and even 12
the slope was around 1. PCR-Eigen, consistently overpredicted
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breeding values such that the regression slope at generation 15 in
15 QTL scenario fell down to 0.19.

DISCUSSIONS

Genomic prediction faces a statistical challenge of smaller
observations than marker data. Some research in this decade
has focused on this challenge and several solutions have been
proposed. VanRaden et al. (2009) compared a 40K SNP set
with two 20K and 10K subsets that were obtained by keeping
every other or every fourth SNP sequentially across genome,
respectively, and reported more accurate predictions using 40K
SNP panels. The reduction of predictor variables by selecting
subsets of SNPs that were evenly spaced or based on their
relevance to the trait was investigated by Vazquez et al.
(2010). They reported that the accuracy of genomic prediction
substantially decreased with subsetting SNPs. Moser et al. (2009)
compared several methods to predict genomic breeding values
and showed that least squares regression which exploits a reduced
subset of selected SNP consistently had lower accuracy and a
larger bias of prediction than the other methods using all SNP.
Weigel et al. (2009) sorted markers based on magnitude of
the estimated marker effects and included only those with the
largest effects in the model, but accuracies always declined with
subsetting SNPs. In all methods mentioned, eliminating some
SNPs produced lower accuracies, while in the genomic prediction
reducing dimension of model is advantageous provided that
accuracy does not drop considerably. Compared to other subset
selection of variables, the multivariate reduction via PCA has the
advantage that no marker is discarded, while a smaller set of
uncorrelated predictors preserve as much of the variation present
in the original markers as possible.

With huge numbers of dense SNPs, the multicollinearity
problem due to linkage disequilibrium is unavoidable (Long
et al., 2011). Solberg et al. (2009a) employed partial least
squares regression (PLSR) and PCA to reduce the dimensionality
and showed that when marker density is low, the accuracy
of both methods is comparable with BayesB, but with denser
markers, BayesB outperforms PLSR and PCA. They concluded
that reduction in computational complexity via multivariate
methods did not counterbalance their lower accuracy compared
with BayesB. Accuracies of genomic predictions obtained using
PCR and G-BLUP models was also investigated by Dadousis
et al. (2014), who reported across test datasets and traits,
G-BLUP outperformed the PCR model. However, in the present
study Bayesian estimation of effects and variances of PC
scores led to accuracies similar to BayesB and better accuracies
than PCR-Eigen where PC variances were proportional to the
eigenvalues. Three Bayesian PCR methods performed the same
but considering parsimony PCR-Normal with a single variance
parameter for PCs is preferred in practice. The performance of
models characterized by different prior specifications showed
negligible differences in this study. However, it can be the
case that the differences in performance of these PCR methods
become more visible under broader differences in genetic
architectures of the traits.

The persistence of the accuracy of genomic prediction over
generations depends largely on the extent of LD and the
ability of statistical methods to exploit LD information. BayesB
exploits LD information considerably better than Bayesian ridge
regression and thus is expected to produce stable accuracy
(Habier et al., 2007). Recombination between markers and QTL
over generations breaks down linkage disequilibrium and reduces
the accuracy of selection. Depending on the cost of genotyping
and the number of markers genomic selection programs will be
more cost effective if the estimated marker effects could be used
over multiple generations (Solberg et al., 2009b). In this study,
there were little differences between Bayesian SNP basedmethods
and Bayesian PC based methods in persistency of accuracies
across scenarios where BayesB was slightly better than others.
Habier et al. (2010) reported that the accuracy of GEBVs decayed
over generations but this decay in the accuracy was less in BayesB
compared to G-BLUP.

In all scenarios, accuracy of GEBV increased with assuming
a prior density for effects and variances of PC scores instead
of specifying predefined weights for the PCs; i.e., PCR-Eigen.
Although, we can consider the heterogeneous structure of
variance by specifying eigenvalues as prior variance for PC
scores, but assumption of fixed quantity limits the ability of
this proposal. In Bayesian setting, assigning an informative prior
density for PC variance(s) combined with information brought
by the data leads to more robust estimation of PC effects that in
turn leads to greater accuracy. The decay of accuracy in selection
candidates over generations tended to be smaller for developed
Bayesian PCR; it is even evident when QTL number was smaller.

CONCLUSION

The present study assessed the performance of PC based
models as a dimensionality reduction method, in comparison
to commonly used SNP based models. Accuracies of genomic
predictions using prior knowledge of PC effects and variances
in a Bayesian hierarchical framework were considerably higher
compared to specifying fixed PC variances proportional to
eigenvalues. Bayesian PC based models and SNP based models
performed similarly at different QTL densities, while the
number of predictors in PC models was nearly half of the
number of SNPs. Reducing dependency among predictors
due to LD as well as dimension reduction via conforming
PCs, and then Bayesian updating of PC variance(s) can
potentially improve prediction accuracies. Finally, developed
methods in this study are recommended according to the
ease of implementation and good statistical properties for
analysis of correlated high dimensional datasets that are
becoming available. These results when confirmed on real
data sets, will support the use of Bayesian PCR in genomic
predictions.
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