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Abstract

It is known that Dp-brane effective action at the leading order of α′ in flat space–time which is given 
by DBI action, transforms to Dp−1-brane effective action under standard T-duality transformations of the 
open string gauge bosons and transverse scalar fields. Extending this duality to order α′, one may find 
corrections to the DBI action which include the second fundamental form � and the covariant derivative 
of gauge field strength DF , as well as the corrections to the T-duality transformations. Using this idea, up 
to two parameters, we have found all 81 covariant couplings of DFDF and �� with zero, two, four and 
six F ’s. The four gauge field couplings that the T-duality constraint fixes are consistent with the known 
couplings in the literature.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the most exciting discoveries in string theory is T-duality [1,2]. This duality may 
be used to construct the effective field theory at low energy which may provide a manifestly 
background independent formulation of string theory [3,4]. One approach for constructing this 
effective action is the Double Field Theory [5–9] in which the T-duality is manifest, as the ef-
fective action is O(D, D)-invariant by constructions. However, coordinate transformations in 
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this approach receive α′ corrections [10,11]. Another T-duality based approach for construct-
ing the effective action, is to use the constraint that the dimensional reduction of an effective 
action on a circle must be invariant under the T-duality transformations [12]. In this approach, 
the couplings are invariant under the standard coordinate transformations, however, the T-duality 
transformations receive α′-corrections [13,14]. Using the T-duality constraint, the standard grav-
ity and dilaton couplings in the effective actions at orders α′, α′ 2, α′ 3 have been reproduced in 
[15,16]. It has been observed in [15] that the form of α′ corrections to the Buscher rules depends 
on the scheme that one uses for the effective action.

The effective field theory of a Dp-brane in bosonic string theory includes various world-
volume couplings of open string tachyon, transverse scalar fields, closed string tachyon, graviton, 
dilaton and B-field. Because of tachyons, the bosonic string theory and its Dp-branes are all un-
stable. Assuming the tachyons are frozen at the top of their corresponding tachyon potentials, the 
effective action at the leading order of α′ in flat spacetime is then given by DBI action [17,18]:

Sp ⊃ −Tp

∫
dp+1σ

√
−det(G̃ab + Fab) (1)

where Tp is tension of Dp-brane, Fab is gauge field strength of Aa and G̃ab is metric which is 
pull-back of the bulk flat metric onto the world-volume1 i.e.,

G̃ab = P [η]ab = ∂Xμ

∂σa

∂Xν

∂σb
ημν

= ηab + ∂aχ
i∂bχ

jηij (2)

where Xμ is coordinate of space–time and ημν is flat space–time metric. In the second line 
the pull-back is written in the static gauge, i.e., Xa = σa and Xi = χi . The DBI action (1)
is invariant under the general coordinate transformations and is covariant under the standard 
T-duality transformation [19]. With our normalization for the gauge field, the DBI action is at 
the leading order of α′. It involves infinite number of F and ∂χi∂χjηij . The first correction to 
this action is at order α′ which includes DFDF or �� and infinite number of F ’s. The higher 
derivative corrections to the Born–Infeld action in the bosonic and superstring theories, for only 
gauge field, have been studied in [20–25].

The world-volume couplings in the DBI action in the string frame are independent of p, the 
dimension of the Dp-brane. This has been used in [19] to observe that the DBI action is covariant 
under T-duality transformation. Assuming the higher derivative couplings on the world-volume 
of Dp-brane are also independent of the dimension of the brane, one expects the effective action 
of Dp-brane at any order of α′ to be covariant under the T-duality transformation. Using this 
constraint, we are going to study the α′ corrections to the DBI action in this paper. Since there 
are infinite number of F ’s involved in the couplings at order α′, we consider couplings which 
have zero, two, four and six F ’s. The couplings which have zero F are

Sp ⊃ −α′Tp

∫
dp+1σ

√
−det(G̃ab)

[
C⊥̃μνG̃

abG̃cd(�
μ

ab � ν
cd − � μ

ac � ν
bd )

]
(3)

1 Our index convention is that the Greek letters (μ, ν, ...) are the indices of the space–time coordinates, the Latin letters, 
(a, b, c, ...) are the world-volume indices and the letters (i, j, k, ...) are the normal bundle indices. The killing coordinate 
y is along the world-volume. The world-volume indices after the reduction of Dp -brane to Dp−1-brane are (ã, ̃b, ̃c, ...).
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where C is a constant, G̃ab is inverse of the pull-back metric and the second fundamental form 
� in the bosonic theory is defined to be [26]2

� α
ab = ∂2Xα

∂σa∂σb
+ ∂Xμ

∂σa

∂Xν

∂σb
	μν

α (5)

The tensor ⊥̃μν in (3) is a projection operator, i.e., ηνα⊥̃μν⊥̃αβ = ⊥̃μβ , which projects space–
time tensors to the transverse space. It is defined as ⊥̃μν = ημν − ημαηνβG̃αβ where the first 
fundamental form G̃μν is defined as

G̃μν = ∂Xμ

∂σa

∂Xν

∂σb
G̃ab (6)

which is another projection operator, i.e., ηναG̃μνG̃αβ = G̃μβ . It projects space–time tensors to 
the world-volume.

In flat spacetime and in static gauge, the second fundamental form (5) is zero when the space-
time index α is a world volume and it is the second derivative of the transverse scalar fields when 
α is a transverse index, i.e.,

� α
ab = ∂a∂bχ

iδi
α (7)

The covariant action (3) includes infinite number of transverse scalar fields through the expansion 
of pull-back metric. We have chosen the relative coefficients of the two terms in (3) to have 
no corrections to the propagators of the transverse scalar fields. This action, however, is not 
total derivative term for terms with more than two transverse scalars. The coefficient C is a 
parameter which should be fixed by some calculations in string theory, e.g., by studying the 
S-matrix element of two gravitons off the Dp-brane this parameter has been found in [26] to 
be C = 1. There are similar actions with some extra F ’s, which we will find some of them in 
section 2. The parameters in these couplings and in (3) may be found by S-matrix calculations, 
however, we are interested in this paper to find them by imposing the T-duality constraint.

There are also couplings at order α′ which include DFDF and some extra F ’s. The covariant 
derivative of F is

DaFbc = ∂aFbc − 	̃ d
ab Fdc − 	̃ d

ac Fbd

= ∂aFbc − ηij G̃
de∂eχ

i∂a∂bχ
jFdc + ηij G̃

de∂eχ
i∂a∂cχ

jFdb (8)

where the Christoffel symbol 	̃ c
ab is made of the pull-back metric G̃ab. As we will see in the 

next section, at the level of zero extra F , the couplings are total derivative terms, and at the level 

2 The second fundamental form in the superstring theory is defined in [27] to be

� α
ab = ∂2Xα

∂σa∂σb
− ∂Xα

∂σc
	̃ab

c + ∂Xμ

∂σa

∂Xν

∂σb
	μν

α

where 	̃ab
c is the connection made of the pull-back metric. In flat spacetime and in the static gauge it becomes

� α
ab = ⊥̃i

j ∂a∂bχj δα
i (4)

If one uses this expression for the couplings in (3), one would find that the resulting couplings for four transverse scalar 
fields are not consistent with the S-matrix element of four transverse scalar vertex operators. Moreover, we have found 
that this expression for the second fundamental form is not consistent with the T-duality constraint in the bosonic theory 
at the level of six F ’s.
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of two and more extra F ’s, there are nontrivial couplings that their coefficients may be found by 
the T-duality constraint. As we will see, all parameters in the actions with zero, two, four and six 
extra F ’s for which we have done the calculations explicitly, can be fixed up to two parameters. 
We choose one of them to be the coefficient C which is fixed by the S-matrix calculations to be 
C = 1.

The outline of the paper is as follows: In section 2, we find all independent couplings of 
DFDF and �� with two, four and six extra F ’s. To this end, we first write all contractions of 
DFDF and �� with two, four and six F ’s. The terms involving �� are all independent, how-
ever, the terms involving DFDF are not all independent as they are related by total derivative 
terms and the Bianchi identity. We introduce a method for imposing the Bianchi identity to find 
all independent couplings. In section 3, we impose the T-duality constraint on the independent 
couplings found in section 2 to fix their corresponding unknown coefficients in terms of two 
parameters. We show that the coefficients of the four gauge field couplings that the T-duality 
constraint fixes are consistent with the coefficients that one finds by the S-matrix method. We 
find also covariant couplings of six and eight gauge fields which have not been found by the 
S-matrix method.

2. Independent couplings

In this section we are going to find DFDF and �� couplings with two, four and six ex-
tra F ’s. We begin with the couplings with two extra F ’s. There are 18 contractions with structure 
FFDFDF . However, not all of them are independent.3 Some of them are related by total deriva-
tive terms and some other terms are related by the Bianchi identity D[aFbc] = 0. Note that 
using integration by part one can easily observe that the couplings with structure FFFDDF

can be written in terms of FFDFDF . To find the independent couplings we first construct the 
current Ia from 9 contractions of terms with structure FFFDF . The 9 total derivative terms 
D[FFFDF ], however, produce terms with structures FFFDDF and FFDFDF . The two 
covariant derivatives in DaDbFcd can be written as symmetric and antisymmetric parts, i.e.,

DaDbFcd = 1

2
{Da,Db}Fcd + 1

2
[Da,Db]Fcd (9)

The antisymmetric part is identical to R̃F . On the other hand, using the Gauss–Codazzi equation

R̃abcd = ⊥̃ij (�ac
i�bd

j − �ad
i�bc

j ) (10)

the antisymmetric part in (9) produces couplings with structure FFFF��. They will change 
the unknown coefficients in the couplings with structure FFFF��. Hence, if one uses all con-
tractions of FFFF��, with arbitrary coefficients, as independent couplings, one is allowed 
to ignore the antisymmetric part in DaDbFcd , i.e., the two covariant derivatives is symmetric. 
Using this symmetry, one finds there are 6 terms in total derivative terms which have struc-
ture FFFDDF . Constraining them to be zero, one finds 3 total derivative terms with structure 
FFDFDF . Adding these terms to the 18 contractions with structure FFDFDF , one can re-
duce them to 15 terms by choosing the coefficients of the total derivative terms to eliminate 3 
terms. We choose to eliminate the 3 terms which do not include DaF

ab , because as we will 
discuss in a moment they can be eliminated by field redefinitions.

3 We use the mathematica package ‘xAct’ [28] for performing the calculations in this paper.
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Now one has to impose the Bianchi identity on DF -terms as well. Writing the first term on 
the right hand side of (8) in terms of potential Fab = ∂aAb − ∂bAa one can write the covariant 
derivative of F as DaFbc = F ′

abc − F ′
acb where the function F ′

abc which is not gauge invariant, is 
symmetric with respect to its first two indices. Writing DF in terms of F ′, one can easily observe 
that the left hand side of the Bianchi identity, i.e., D[aFbc] = 0, is zero.

When one rewrites the 15 couplings in terms of F ′, one would find 7 independent couplings. 
Therefore, the Bianchi identity reduces the 15 couplings to 7 independent couplings when they 
are written in terms F ′

abc. There are different ways to write the 7 independent couplings in terms 
of field strength Fab. One particular choice for the couplings is

FdeF
deDaFbcD

aFbc , F e
c FdeD

aFbcDaF
d
b

F e
a FdeD

aFbcDdFbc , F e
c FdeD

aF c
a DbFd

b

FcdFbeD
aF c

a DbFde , FdeF
deDaF c

a DbFcb

F e
b FdeD

aF c
a DbFd

c (11)

where the indices are raised by the inverse metric G̃ab. Our notation for Fb
a is that the earlier 

alphabet index appears first. All other choices for the couplings are identical to the above cou-
plings after using the Bianchi identity, i.e., they all are identical when they are written in terms 
of potential F ′

abc. Similar calculations for DFDF with zero extra F produces no independent 
coupling.

The last four terms in (11) include DaF
ab . Under field redefinition Aa → Aa + δAa , χi →

χi + δχi the DBI action produces the couplings√
−det(G̃)

[1

2
DaF

abδAb + G̃ab�ab
j δχiηij + · · ·

]
(12)

where dots represent terms which have some powers of F . Hence, the coefficients of the cou-
plings which include DaF

ab or �a
a
i can be changed under field redefinitions. On the other hand, 

it has been observed in [15] that the corrections to the T-duality transformations depend on the 
scheme that one uses for the field variables. For simplicity we use the scheme in which there are 
minimum number of couplings, i.e., we use the field redefinitions to eliminate all terms which 
include DaF

ab . So up to field redefinitions, there are 3 independent couplings in (11).
There are 5 independent couplings with structure FF��, i.e.,

FabFcd�aci�bd
i, F c

a Fbc�
adi�b

di, FbcF
bc�adi�

adi,

FbcF
bc�a i

a �d
di, F d

c Fbd�a i
a �cb

i (13)

where the world-volume indices are raised by G̃ab and the transverse indices are lowered by ⊥̃ij . 
Using the variation (12), one can use a scheme in which the last two terms are eliminated by 
appropriate field redefinitions.4 All together, up to field redefinitions there are 6 independent 
terms at two extra F level, i.e.,

Sp ⊃ −α′Tp

∫
dp+1σ

√
−det(G̃ab)

[
C1FabFcd�aci�bd

i + C2F
c

a Fbc�
adi�b

di

4 One could also use field redefinition to remove the first term in (3), however, the absence of this term changes the 
propagator of the scalar fields. In that case, the α′ corrections to the T-duality transformations would have linear term as 
well as nonlinear terms. We work in this paper with the couplings (3).
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+C3FbcF
bc�adi�

adi + N1FdeF
deDaFbcD

aFbc

+N2F
e
c FdeD

aFbcDaF
d
b + N3F

e
a FdeD

aFbcDdFbc

]
(14)

The coefficients C1, C2, C3, N1, N2, N3 and C in (3) are 7 parameters that can be found by the 
S-matrix elements of four open string vertex operators [22,29]. They are

C = 1 ; C1 = C2 = 1 , C3 = −1

4
; N1 = − 1

24
, N2 = −1

3
, N3 = 1

6
(15)

However, we are going to find them in the next section by imposing the T-duality constraint.
At the level of four extra F ’s, there are 56 contractions with structure FFFFDFDF . To 

find the total derivative terms, we note that there are 21 total derivative terms with structure 
D[FFFFFDF ]. Using their coefficients to eliminate the terms with structure FFFFFDDF , 
one finds 7 total derivative terms with structure FFFFDFDF . Using them one can eliminate 7 
terms in the contractions FFFFDFDF . Using the Bianchi identity as we have done in the pre-
vious case, one finds 23 independent terms. 10 of them have DaF

ab which can be eliminated by 
appropriate field redefinitions. So up to field redefinitions there are the following 13 independent 
structures:

Sp ⊃ −α′Tp

∫
dp+1σ

√
−det(G̃ab)

[
T1FaeFbf F

g
c FdgD

aFbcDdF ef

+T2FabF
g
c FdgFef DaFbcDdF ef + T3F

f
a F

g
c FdgFef DaFbcDdF e

b

+T4F
f
a F

g
c Fdf FegD

aFbcDbF
de + T5F

f
a Fcf F

g
d FegD

aFbcDdF e
b

+T6FaeFbdF
g
c FfgD

aFbcDdF ef + T7F
f
a F

g
c FdeFfgD

aFbcDbF
de

+T8FabFceF
g
d FfgD

aFbcDdF ef + T9F
f
a FceF

g
d FfgD

aFbcDdF e
b

+T10FadF
f
c F

g
e FfgD

aFbcDbF
de + T11FaeFcdFfgF

fgDaFbcDdF e
b

+T12FadFceFfgF
fgDaFbcDbF

de + T13FacFdeFfgF
fgDaFbcDbF

de
]

(16)

The coefficients T1, · · · , T13 are 13 parameters that we are going to find them by the T-duality 
constraint.

There are 12 independent terms with structure FFFF��. The terms that have trace of the 
second fundamental form may be eliminated by appropriate field redefinitions. The remaining 
terms are

Sp ⊃ −α′Tp

∫
dp+1σ

√
−det(G̃ab)

[
W1F

b
a F af F e

c F cd� i
f d �bei

+W2F
b

a F af F c
f F de� i

bd �cei + W3Faf F af F bcF de� i
bd �cei

+W4F
b

a F af F e
c F cd� i

f b �dei + W5F
b

a F af F c
f F d

b � e i
c �dei

+W6Faf F af F d
b F bc� e i

c �dei + W7F
b

a F af F c
f Fbc�dei�

dei

+W8Faf F af FbcF
bc�dei�

dei
]

(17)

The coefficients W1, · · · , W8 are 8 parameters that we are going to find them by the T-duality 
constraint. The parameters T1, · · · , T13 and W1, · · · , W8 may also be found from studying the 
S-matrix element of six open string vertex operators. However, as far as we know, because of 
the very lengthy calculations involved in the S-matrix elements, these coefficients have not been 
found in the literature.
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At the level of six extra F ’s, one finds the following 37 independent couplings for DFDF :

Sp ⊃ −α′Tp

∫
dp+1σ

√
−det(G̃ab)[ Z1FdeF

deFfgF
fgFhuF

huDaFbcDbFac

+Z2F
g
a FbgF

h
c Fu

d FehFf uD
aFbcDdF ef + Z3FaeF

g
b Fh

c Fu
d Ff hFghD

aFbcDdF ef

+Z4F
g
a FbeF

h
c Fu

d Ff hFguD
aFbcDdF ef + Z5F

f
a F

g
c Fh

d Fu
e Ff hFguD

aFbcDdF e
b

+Z6F
f
b F

g
c Fh

d Fu
e Ff hFguD

aFbcDaF
de + Z7FadF

g
b Fh

c FegF
u
f FhuD

aFbcDdF ef

+Z8F
f
a F

g
c Fdf Fh

e Fu
g FhuD

aFbcDbF
de + Z9F

f
a F

g
c Fdf Fh

e Fu
g FhuD

aFbcDdF e
b

+Z10F
f
a Fcf F

g
d Fh

e Fu
g FhuD

aFbcDdF e
b + Z11FaeFbdF

g
c Fh

f Fu
g FhuD

aFbcDdF ef

+Z12FadFbeF
g
c Fh

f Fu
g FhuD

aFbcDdF ef + Z13FabF
g
c FdeF

h
f Fu

g FhuD
aFbcDdF ef

+Z14FabFceF
g
d Fh

f Fu
g FhuD

aFbcDdF ef + Z15FadF
f
c F

g
e Fh

f Fu
g FhuD

aFbcDbF
de

+Z16FadF
f
c F

g
e Fh

f Fu
g FhuD

aFbcDdF e
b + Z17FbdF

f
c F

g
e Fh

f Fu
g FhuD

aFbcDaF
de

+Z18F
e
c F

f
d F

g
e Fh

f Fu
g FhuD

aFbcDaF
d
b + Z19F

e
c F

f
d F

g
e Fh

f Fu
g FhuD

aFbcDbF
d
a

+Z20F
f
d F deF

g
e Fh

f Fu
g FhuD

aFbcDbFac + Z21FadFceF
h
f FfgFu

g FhuD
aFbcDdF e

b

+Z22FbdFceF
h
f FfgFu

g FhuD
aFbcDaF

de + Z23F
e
c FdeF

h
f FfgFu

g FhuD
aFbcDaF

d
b

+Z24F
e
c FdeF

h
f FfgFu

g FhuD
aFbcDbF

d
a + Z25FdeF

deFh
f FfgFu

g FhuD
aFbcDbFac

+Z26F
f
a F

g
c Fdf FegFhuF

huDaFbcDdF e
b + Z27F

f
b F

g
c Fdf FegFhuF

huDaFbcDaF
de

+Z28F
f
a Fcf F

g
d FegFhuF

huDaFbcDdF e
b + Z29FaeFbdF

g
c FfgFhuF

huDaFbcDdF ef

+Z30FadFbeF
g
c FfgFhuF

huDaFbcDdF ef + Z31FabF
g
c FdeFfgFhuF

huDaFbcDdF ef

+Z32F
f
a F

g
c FdeFfgFhuF

huDaFbcDbF
de + Z33F

e
c F

f
d F

g
e FfgFhuF

huDaFbcDaF
d
b

+Z34F
e
c F

f
d F

g
e FfgFhuF

huDaFbcDbF
d
a + Z35FadFceFfgF

fgFhuF
huDaFbcDdF e

b

+Z36F
e
c FdeFfgF

fgFhuF
huDaFbcDaF

d
b + Z37F

e
c FdeFfgF

fgFhuF
huDaFbcDbF

d
a ]

(18)

And the following 16 couplings for ��:

Sp ⊃ −α′Tp

∫
dp+1σ

√
−det(G̃ab)[ Y1F

b
a F acF d

c F
f
e F egFh

g � i
bf �dhi

+Y2F
b
a F acF d

c F e
b F

g
f Ff h� i

dh �egi + Y3FabF
abF d

c F ceF
g
f Ff h� i

eh �dgi

+Y4F
b
a F acF d

c F e
b F

f
d F gh� i

eg �f hi + Y5FabF
abF d

c F ceF
f
e F gh� i

dg �f hi

+Y6F
b
a F acF d

c FbdF ef F gh� i
eg �f hi + Y7FabF

abFcdF cdF ef F gh� i
eg �f hi

+Y8F
b
a F acF d

c F e
b F

g
f Ff h� i

de �hgi + Y9FabF
abF d

c F ceF
g
f Ff h� i

ed �hgi

+Y10F
b
a F acF d

c F e
b F

f
d F

g
e � hi

f �ghi + Y11FabF
abF d

c F ceF
f
e F

g
d � hi

f �ghi

+Y12F
b
a F acF d

c FbdF
f
e F eg� hi

g �f hi + Y13FabF
abFcdF cdF

f
e F eg� hi

g �f hi

+Y14F
b
a F acF d

c F e
b F

f
d Fef �ghi�

ghi + Y15FabF
abF d

c F ceF
f
e Fdf �ghi�

ghi

+Y16FabF
abFcdF cdFef F ef �ghi�

ghi] (19)
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The coefficients Z1, · · · , Z37 and Y1, · · · , Y16 are 53 parameters that we are going to find them 
by the T-duality constraint. This construction of independent terms can be used to find higher 
order couplings in which we are not interested in this paper. We will show in the next section that 
almost all parameters in the above couplings can be fixed by the T-duality constraint except two 
of them.

3. T-duality constraint

The T-duality relates the bosonic string theory compactified on a circle with radius ρ to the 
same theory compactified on another circle with radius α′

ρ
. It relates the tension of Dp-brane to 

the tension of Dp−1-brane or Dp+1-brane, depending on whether the original Dp-brane is along 
or orthogonal to the circle, respectively. Assuming the world-volume couplings of the Dp-brane 
in the string frame are independent of p, we expect the T-duality also relates the world-volume 
effective action of Dp-brane to the effective action of Dp−1-brane or Dp+1-brane, i.e.,

SDp

T→SDp±1 (20)

This action can be expanded at low energy, i.e.,

SDp =
∞∑

n=0

(α′)nS(n)
Dp

(21)

At order α′ 0 the action is given by the DBI action (1). At order α′, there are infinite number of 
couplings depending on the number of extra F ’s in DFDF and �� couplings. At zero extra F , 
it is given by (3), at two extra F ’s it is given by (14), at four extra F ’s it is given by (16) and (17), 
and so on. We are not interested in this paper in the couplings at order α′ with eight and higher 
extra F ’s, and on the couplings at higher orders of α′.

When the T-duality transformations act along the killing coordinate y, and the y-direction is 
a world-volume, then the transformations at the leading order of α′ are:

Ay T (0)−→ χy

Aã T (0)−→ Aã, χi T (0)−→ χi (22)

where ã is the world-volume index which does not include the y-direction. These transformations 
are expected to receive α′ corrections. That is, the T-duality operator has an α′ expansion:

T =
∞∑

n=0

(α′)nT (n) (23)

where T (0) is the transformation (22).
The invariance of the effective actions at order (α′)0 then means that

S
(0)
Dp

T (0)−→ S
(0)
Dp−1

(24)

where S(0)
Dp

is the reduction of Dp-brane action at order α′ 0 on the circle. At order α′, the action 

has two terms, i.e., SDp = S
(0) + α′S(1) . The invariance then means
Dp Dp
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S
(1)
Dp

T (0)−→ S
(1)
Dp−1

+ δS(1)

S
(0)
Dp

T (0)+T (1)−→ S
(0)
Dp−1

+ δS′ (1) + · · · (25)

where dots represent terms at higher orders of α′. The above relation indicates that the extra 
term δS(1) which is produced by applying the T-duality transformation (22) on the reduction of 
action S(1)

Dp
on the circle, should be canceled by applying the T-duality transformations at order 

α′ on the reduction of the action S(0)
Dp

. Since the transformations are on the actions, one may 

add total derivative terms J (1) to make the cancellation happens. That is why we call the α′
order term in the second line of (25) to be δS′ (1), i.e., δS′ (1) + δS(1) + J (1) = 0. Note that δS(1)

contain only terms which involve χy , so the corrections to the T-duality transformations and 
the total derivative terms in J (1) should include only terms which contain χy . Similar T-duality 
transformations exist for the effective actions at the higher orders of α′.

Since the T-duality transformations affect Aa and χi , it is convenient to expand the effective 
action, the T-duality transformations and total derivative terms at order α′ n in terms of powers 
of F and ∂χ as well,5 i.e.,

S
(n)
Dp

=
∞∑

m=0

S
(m,n)
Dp

T (n) =
∞∑

m=0

T (m,n)

J (n) =
∞∑

m=0

J (m,n) (26)

where m is the power of F, ∂F , ∂χ , ∂∂χ in S(m,n)
Dp

and J (m,n), and it is the extra power of F

and ∂χ on the right hand side of the T-duality transformation T (m,n). For example, for m = 2 the 
action at order α′ 0 is

S
(2,0)
Dp

= −Tp

∫
dp+1σ

[1

4
FabFcdηacηbd + 1

2
∂aχ

i∂bχ
jηij η

ab
]

(27)

and the T-duality transformation is T (2,0) = 0. In fact, T (0,0) is given by (22) and T (m,0) = 0 for 
m �= 0. The transformation T (m,1) is

Ay T (m,1)→ α′(δχy)(m,1)

Aã T (m,1)→ α′(δAã)(m,1), χi T (m,1)→ α′(δχi)(m,1) (28)

where (δχy)(m,1), (δχi)(m,1), (δAã)(m,1) are all contractions of one ∂∂χy , ∂∂χi or ∂F and m
number of F , ∂χy or ∂χi with arbitrary parameters. Each term should have at least one χy . 
We expect these parameters to be found by the T-duality constraint.

5 Using the transformations (22), one may find the T-duality transformations of the covariant objects F , DF , G̃ and �. 
Then one may find the α′ corrections to these objects by using the T-duality constraint. In this paper, however, we use 
perturbation to rewrite the covariant action in terms of F and ∂χ and then use the T-duality transformations (22) and 
their corresponding α′-corrections.
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The invariance of the effective actions at order (α′)0 then means

S
(m,0)
Dp

T (0,0)−→ S
(m,0)
Dp−1

(29)

for any number of m. Using the T-duality transformation (22), one finds that the transformation 
(29) is satisfied for any number of m. That means the DBI action is covariant under the T-duality 
transformation (22), as expected.

The invariance at order α′ means

S
(m,1)
Dp

T (0,0)−→ S
(m,1)
Dp−1

+ δS(m,1)

S
(n,0)
Dp

T (0,0)+T (m−n,1)−→ S
(n,0)
Dp−1

+ δS(m,1)
n + · · ·

where 2 ≤ n ≤ m − 2, and dots represent terms at higher orders of α′. Adding total derivative 
terms at order J (m,1), one finds the T-duality constraint

m−2∑
n=2

δS(m,1)
n + δS(m,1) + J (m,1) = 0 (30)

There are similar constraints for the couplings at higher orders of α′.
The above constraint may be used at each level of m to fix the parameters of independent 

couplings that we have found in the previous section. The simplest case is the action at the level 
of m = 2. Since we have chosen the coefficient in (3) to make no correction to the propagator, 
S

(2,1)
Dp

is a total derivative term. Hence, the T-duality constraint does not fix the parameter C in 
this action. However, one expects it should be related to all other parameters at orders m > 2, 
because this coefficient appears in all couplings with m ≥ 2.

3.1. Two extra F ’s

At order α′, and at the level of m = 4, there are two contributions to the action S(4,1)
Dp

. One 
contribution is coming from (3) and the other one from (14). The parameters C, C1, C2, C3,N1,

N2, N3 appear in S(4,1)
Dp

. Then one should reduce it on the circle along the y-direction and use the 

T-duality transformation (22). Then one should compare the result with S(4,1)
Dp−1

. One finds

S
(4,1)
Dp

T (0,0)−→ S
(4,1)
Dp−1

+ δS(4,1) (31)

where δS(4,1) contains some non-zero terms at the level of m = 4 which includes all parame-
ters C, C1, C2, C3, N1, N2, N3. They can not be canceled even by total derivative terms. This 
indicates that the T-duality transformations (22) at order α′ 0 must receive α′ corrections if the 
parameters C, C1, C2, C3, N1, N2, N3 are non-zero.

Since we have chosen the couplings (3) to have no corrections to the propagators, we expect 
the α′-corrections to the T-duality transformations (22) have no linear term. This steams from 
the fact that the S-matrix elements in string theory which have standard propagators, satisfy the 
Ward identity corresponding to the T-duality [12]. In other words, the field theory with standard 
propagators, should have no α′-correction to the T-duality transformations at the linear order, i.e.,

T (0,n) = 0 ; n > 0 (32)
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Hence, the corrections to the T-duality transformations (22) are at orders T (2,1), T (4,1), T (6,1),

· · · , T (2,2), T (4,2), T (6,2), · · · , and so on.
Therefore, the extra terms in δS(4,1) should be canceled by the T-duality transformation T (2,1)

on the reduction of the action S(2,0)
Dp

in (27), i.e.,

S
(2,0)
Dp

T (0,0)+T (2,1)−→ S
(2,0)
Dp−1

+ δS
(4,1)
2 + δS

(6,2)
2 (33)

where δS(6,2)
2 contains some non-zero terms at order α′ 2 and at the level of m = 6 in which we 

are not interested. The reduction of (27) is

S
(2,0)
Dp

= −Tp(2πρ)

∫
dpσ [1

2
∂ãAy∂

ãAy + 1

2
∂ãχi∂

ãχi − 1

2
∂ãAb̃

∂b̃Aã + 1

2
∂
b̃
Aã∂

b̃Aã]
(34)

The T-duality transformation T (2,1) for (δχy)(2,1), (δAã)(2,1), (δχi)(2,1) are all contractions of 
the following expressions by the flat metric ηãb̃ and with arbitrary coefficients:

(δχy)(2,1) ∼ ∂ã∂b̃
χy∂c̃χ

y∂
d̃
χy + ∂ã∂b̃

χy∂c̃χ
i∂

d̃
χj ηij + ∂ã∂b̃

χi∂c̃χ
j ∂

d̃
χyηij

+∂ã∂b̃
χyF

c̃d̃
F

ẽf̃
+ ∂ãχ

yF
b̃c̃

∂
d̃
F

ẽf̃
,

(δAã)(2,1) ∼ ∂ãχ
y∂

b̃
χy∂c̃Fd̃ẽ

+ ∂ã∂b̃
χy∂c̃χ

yF
d̃ẽ

,

(δχi)(2,1) ∼ ∂ã∂b̃
χy∂c̃χ

y∂
d̃
χi + ∂ã∂b̃

χi∂c̃χ
y∂

d̃
χy . (35)

Since the contractions involve derivatives of the field strength, one should impose the Bianchi 
identity ∂[ãFb̃c̃] = 0 to find independent terms. We impose this identity at the end after finding 
the parameters by the T-duality constraint. Applying the above T-duality transformations on (33), 
one can find δS(4,1) which contains the arbitrary parameters in (35). To compare it with δS(4,1)

in (31), one should also take into account the total derivative terms.
The total derivative terms can be written as

J (4,1) = −Tp−1

∫
dpσηãb̃∂ãIb̃

(4,1) (36)

where I
b̃
(4,1) is all contractions with arbitrary parameters of the following expression with ηãb̃:

∂ã∂b̃
χy∂c̃χ

y∂
d̃
χy∂ẽχ

y + ∂ã∂b̃
χi∂c̃χ

j ∂
d̃
χy∂ẽχ

yηij + ∂ãχ
i∂

b̃
χj ∂c̃∂d̃

χy∂ẽχ
yηij

+∂ã∂b̃
χy∂c̃χ

yF
d̃ẽ

Fẽg̃ + ∂ãχ
y∂

b̃
χyF

c̃d̃
∂ẽFf̃ g̃

(37)

Note that all terms above and the terms in (35) involve χy .
The T-duality constraint

δS(4,1) + δS(4,1) + J (4,1) = 0 (38)

Then gives some algebraic equations between the effective action parameters, the parameters 
in (35) and the parameters in the total derivative terms. On general ground, we do not expect 
the T-duality constraint fixes the overall coefficients of the T-dual multiplets. We choose C = 1
which is fixed by the S-matrix calculation. Then if there is only one T-dual multiplet, its over-
all coefficient then should be fixed. The solution to the above equation produces the following 
relations between the effective action parameters C1, C2, C3, N1, N2, N3:
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C2 → 1 , C1 → 2 + 24N1, C3 → −1

4
,

N3 → −4N1 , N2 → −1 − 16N1 (39)

where the parameter N1 remain arbitrary. This indicates that there are two T-dual multiplets, one 
multiplet with the overall coefficient C = 1 and the second one with the overall coefficient N1. As 
we will see, even though the parameter N1 appears in the T-duality constraint at the levels m > 4, 
the T-duality constraint at the levels of m = 6, 8 that we have done the calculations, can not fix 
this parameter. The above parameters are consistent with the S-matrix calculation results (15), 
i.e., if we choose the overall coefficient of the second multiplet to be N1 = −1/24, then the above 
parameters become exactly the S-matrix results in (15).

The algebraic equations at the level of m = 4, gives the following α′-corrections to the T-
duality transformations:

Ay T (2,1)−→ α′[E1F
b̃c̃∂ãFb̃c̃

∂ãχy − (1 + 12N1)∂ãχ
y∂ãχy∂b̃

∂b̃χy

+E3∂ãχ
i∂ãχy∂

b̃
∂b̃χi − (1 + 24N1)∂

ãχy∂
b̃
∂ãχy∂

b̃χy

+2E1∂
ãχyF b̃c̃∂c̃Fãb̃

+ E2∂
ãχyF b̃

ã ∂c̃F
c̃

b̃

−(2 + 24N1)F
c̃
ã F ãb̃∂c̃∂b̃

χy + (
1

4
+ 2N1)∂c̃∂

c̃χyF
ãb̃

F ãb̃]

Aã T (2,1)−→ α′[−4N1∂b̃
χy∂b̃χy∂c̃F

ãc̃ + (1 + 16N1)∂
ãχy∂b̃χy∂c̃F

c̃

b̃

+(3 + 40N1)∂c̃∂
ãχy∂

b̃χyF c̃

b̃
+ (2 + 32N1 − E2)∂c̃∂

c̃χy∂
b̃χyF ã

b̃

+(1 + 24N1)∂
b̃χy∂c̃χy∂c̃F

ã

b̃
]

χi T (2,1)−→ α′[−E3∂ãχ
i∂ãχy∂

b̃
∂b̃χy + ∂ãχy∂

b̃
∂ãχ

i∂b̃χy

−1

2
∂ãχ

y∂ãχy∂b̃
∂b̃χi] (40)

where E1, E2 and E3 are three other arbitrary parameters. However, the terms with coefficient 
E1 cancels by using the Bianchi identity ∂[ãFb̃c̃] = 0. So one can set E1 = 0. The other two 
parameters may be fixed by studying the T-duality constraint at order S(6,2). Note that the above 
transformations are non-zero for any values for the parameters E2, E3, N1. Hence, the T-duality 
constraint forces the leading order T-duality transformations (22) to receive higher derivative 
corrections.

If we have used the field redefinition freedom to remove the first term in (3), the constraint (39)
would not change, however, there would be a linear term ∂∂χy in the T-duality transformation 
of Ay and the coefficients of all terms in (40) would also change. The reason is that the T-duality 
transformations (40) are in fact the field redefinitions in the reduced space. The field redefinitions 
depends on whether or not we keep the first term in (3).

3.2. Four extra F ’s

At the order α′ and at the level of m = 6, there are three contributions to the action S(6,1)
Dp

. 
One contribution is coming from (3), another one is coming from (14) and the last one is coming 
from the couplings in (16) and (17). The parameter N1 which has not been fixed in (39) and the 
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parameters T1, · · · , T13 and W1, · · · , W8 appear in S(6,1)
Dp

. One should reduce S(6,1)
Dp

on the circle 
along the y-direction and use the T-duality transformation (22). Then one should compare the 
result with S(6,1)

Dp−1
. One finds

S
(6,1)
Dp

T (0,0)−→ S
(6,1)
Dp−1

+ δS(6,1) (41)

where δS(6,1) contains some non-zero terms at the level of m = 6 which includes all above 
parameters. Each term in δS(6,1) has the scalar field χy .

The extra terms in δS(6,1) should be canceled by the T-duality transformation T (4,1) on the 
reduction of the action S(2,0)

Dp
in (34), and by the T-duality transformation T (2,1) in (40) on the 

reduction of the action S(4,0)
Dp

, i.e.,

S
(2,0)
Dp

T (0,0)+T (4,1)−→ S
(2,0)
Dp−1

+ δS
(6,1)
2 + δS

(10,2)
2

S
(4,0)
Dp

T (0,0)+T (2,1)−→ S
(4,0)
Dp−1

+ δS
(6,1)
4 + δS

(8,2)
4 + δS

(10,3)
4 + δS

(12,4)
4 (42)

where δS(10,2)
2 , δS(8,2)

4 , δS(10,3)
4 and δS(12,4)

4 contains some non-zero terms at higher orders of α′

in which we are not interested. It is straightforward to extract the action S(4,0)
Dp

from the DBI ac-

tion (1) and then reduce it on the circle along the y-direction. The T-duality transformation T (2,1)

is given in (40), and the T-duality transformation T (4,1) for (δχy)(4,1), (δAã)(4,1), (δχi)(4,1) are 
all contractions of the following expressions by the flat metric ηãb̃ and with arbitrary coefficients:

(δχy)(4,1) ∼ ∂∂χy∂χy∂χy∂χy∂χy + ∂∂χy∂χy∂χy∂χ∂χ + ∂∂χ∂χ∂χy∂χy∂χy

+∂∂χy∂χ∂χFF + ∂∂χy∂χ∂χ∂χ∂χ + ∂∂χ∂χ∂χ∂χ∂χy + ∂∂χyFFFF

+∂χyFFF∂F + ∂∂χ∂χ∂χyFF + ∂χy∂χ∂χF∂F + ∂∂χy∂χy∂χyFF

+∂χy∂χy∂χyF∂F ,

(δAã)(4,1) ∼ ∂χy∂χyFF∂F + ∂∂χy∂χyFFF + ∂χy∂χy∂χ∂χ∂F + ∂∂χy∂χy∂χ∂χF

+∂∂χ∂χ∂χy∂χyF + ∂χy∂χy∂χy∂χy∂F + ∂∂χy∂χy∂χy∂χyF ,

(δχi)(4,1) ∼ ∂∂χ∂χy∂χy∂χy∂χy + ∂∂χy∂χy∂χy∂χy∂χ + ∂∂χ∂χ∂χ∂χy∂χy

+∂∂χy∂χy∂χ∂χ∂χ + ∂∂χ∂χy∂χyFF + ∂∂χy∂χy∂χFF

+∂χy∂χy∂χF∂F (43)

where ∂ and F have (ã, b̃, c̃, ...) indices and χ has (i, j, k, ...) indices.
We have to also consider total derivative terms, i.e.,

J (6,1) = −Tp−1

∫
dpσηãb̃∂ãIb̃

(6,1) (44)

where I
b̃
(6,1) is all contractions with arbitrary parameters of the following expression with ηãb̃:

∂∂χy∂χy∂χy∂χy∂χy∂χy + ∂∂χy∂χy∂χy∂χy∂χ∂χ + ∂∂χ∂χ∂χy∂χy∂χy∂χy

+∂∂χ∂χ∂χ∂χ∂χy∂χy + ∂∂χy∂χy∂χ∂χ∂χ∂χ + ∂∂χy∂χy∂χ∂χFF
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+∂∂χ∂χ∂χy∂χyFF + ∂χy∂χy∂χ∂χF∂F + ∂∂χy∂χy∂χy∂χyFF

+∂χy∂χy∂χy∂χyF∂F + ∂∂χy∂χyFFFF + ∂χy∂χyFFF∂F (45)

Note that all terms above and the terms in (43) involve χy .
Then the T-duality constraint

δS(6,1) + δS
(6,1)
2 + δS

(6,1)
4 + J (6,1) = 0 (46)

generates some algebraic equations between all parameters. The solution to these equations pro-
duce the following numbers for the effective action parameters in (17) and (16):

W1 → 8N1, W2 → −2 − 16N1, W3 → 1

2
+ 4N1, W4 → −1 − 8N1,

W5 → 16N1, W6 → 1

4
− 2N1, W7 → 1

8
, W8 → − 1

32
,

T1 → 1, T2 → 0, T3 → −2

5
+ 24

5
N1, T4 → −2

5
+ 24

5
N1, (47)

T5 → 7

5
+ 96

5
N1, T6 → 2

5
− 24

5
N1, T7 → −1

5
+ 12

5
N1, T8 → 7

5
− 24

5
N1,

T9 → −3

5
− 64

5
N1, T10 → −6

5
− 48

5
N1, T11 → 2N1, T12 → 1

4
+ 2N1, T13 → N1

The parameters in the first two lines fix the action (17). The other parameters fix the action (16). 
The parameter N1 could not be fixed by the calculation at the level m = 6. So at this level 
there are two T-dual multiplets. However, from the S-matrix calculations in m = 4 we know 
that N1 = −1/24. It would be interesting to fix the parameters in (16), (17) by the S-matrix 
calculations in m = 6 and compare the result with the above numbers.

The parameters E2, E3 in the T-duality transformations T (2,1) appear in above calculations, 
however, the above T-duality constrain at the level m = 6 could not fix them. There are also many 
parameters in the T-duality transformations T (4,1) which are not fix by the above calculations. 
The T-duality transformations T (4,1) that our calculation fixes appear in the appendix.

3.3. Six extra F ’s

At the order α′ and at the level of m = 8, there are four contributions to the action S(8,1)
Dp

. One 
contribution is coming from expanding (3) and keeping m = 8 terms, the second contribution 
is coming from expanding (14) with the coefficients (39), the third contribution is coming from 
expanding the couplings in (16) and (17) with the parameters (47), and the last one is coming 
from the couplings in (18) and (19). The parameter N1 and the parameters Z1, · · · , Z37 and 
Y1, · · · , Y16 appear in S(8,1)

Dp
. One should reduce S(8,1)

Dp
on the circle along the y-direction and use 

the T-duality transformation (22). Then one should compare the result with S(8,1)
Dp−1

. One finds

S
(8,1)
Dp

T (0,0)−→ S
(8,1)
Dp−1

+ δS(8,1) (48)

where δS(8,1) contains some non-zero terms at the level of m = 8 which includes all above 
parameters. Each term in δS(8,1) has the scalar field χy .
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The extra terms in δS(8,1) should be canceled by the T-duality transformation T (6,1) on the 
reduction of the action S(2,0)

Dp
, by the T-duality transformation T (4,1) on the reduction of the action 

S
(4,0)
Dp

, and by the T-duality transformation T (2,1) on the reduction of the action S(6,0)
Dp

, i.e.,

S
(2,0)
Dp

T (0,0)+T (6,1)−→ S
(2,0)
Dp−1

+ δS
(8,1)
2 + δS

(16,2)
2

S
(4,0)
Dp

T (0,0)+T (4,1)−→ S
(4,0)
Dp−1

+ δS
(8,1)
4 + δS

(12,2)
4 + δS

(16,3)
4 + δS

(20,4)
4 (49)

S
(6,0)
Dp

T (0,0)+T (2,1)−→ S
(6,0)
Dp−1

+ δS
(8,1)
6 + δS

(10,2)
6 + δS

(12,3)
6 + δS

(14,4)
6 + δS

(16,5)
6 + δS

(18,6)
6

where δS(16,2)
2 , · · · , δS(18,6)

6 contains some non-zero terms at higher orders of α′ in which we are 
not interested. The T-duality transformation T (2,1) is given in (40), the T-duality transformation 
T (4,1) is given in the appendix and T (6,1) can easily be constructed with some arbitrary parame-
ters similar to (43). Similar to (45), one can construct the total derivative terms J (8,1). Then the 
T-duality constraint

δS(8,1) + δS
(8,1)
2 + δS

(8,1)
4 + δS

(8,1)
6 + J (8,1) = 0 (50)

generates some algebraic equations between all unknown parameters in the T-duality transfor-
mation, the total derivative terms and the parameters in (18) and (19).

The solution to equation (50) produces the following numbers for the effective action param-
eters in (19):

Y1 → 7

5
+ 56

5
N1, Y2 → 2

5
− 24

5
N1, Y3 → 0, Y4 → 14

5
+ 192

5
N1,

Y5 → −3

4
− 10N1, Y6 → −1

4
− 3N1, Y7 → 1

16
+ 3

4
N1, Y8 → 3

5
− 56

5
N1,

Y9 → 2N1, Y10 → 1, Y11 → −1

4
, Y12 → −1

8
,

Y13 → 1

32
, Y14 → − 1

12
, Y15 → 1

32
, Y16 → − 1

384
. (51)

And the following numbers for the effective action in (18):

Z1 → 1 + 8N1

1920
, Z2 → −7 − 56N1

5
, Z3 → −4 − 12N1

5
, Z4 → −1 + 72N1

5
,

Z5 → 1, Z6 → − 7

10
+ 72

5
N1, Z7 → 23 − 96N1

35
, Z8 → −8 + 96N1

5
,

Z9 → 4 − 48N1

35
, Z10 → −9 − 72N1

5
, Z11 → −7 + 144N1

5
, Z12 → 36 − 552N1

35
,

Z13 → 1 + 88N1

5
, Z14 → −8 + 56N1

5
, Z15 → −2 − 176N1

5
, Z16 → 17 + 976N1

35
,

Z17 → 1 + 88N1

5
, Z18 → −3 + 96N1

5
, Z19 → −1 − 48N1

5
, Z20 → − 7

60
− 34

15
N1,

Z21 → − 3

20
− 11

5
N1, Z22 → 3

80
+ 9

5
N1, Z23 → −1

4
, Z24 → 3

20
+ 6

5
N1,

Z25 → 3 + 3
N1, Z26 → 1 + 15

N1, Z27 → 3 + 11
N1, Z28 → − 1 − 22

N1,

80 10 20 5 20 5 20 5
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Z29 → 1 + 8N1

5
, Z30 → − 1

10
− 4

5
N1, Z31 → − 1

20
+ 8

5
N1, Z32 → 3N1,

Z33 → 3

10
+ 32

5
N1, Z34 → −2N1, Z35 → − 1

160
+ N1

5
, Z36 → −1 − 3N1

20
,

Z37 → 1

160
+ N1

20
(52)

The solution to the equation (50) produces also the T-duality transformation T (6,1) which is very 
lengthy expression and has many unfixed parameters. It is not illuminating, so we do not write 
it. It is interesting to note that the T-duality constraint could fix all parameters in the actions (18)
and (19). The parameter N1 could not be fixed by the T-duality constraint even at the level of 
m = 8. So the two T-dual multiplets remain independent at the level of m = 8. It seems if one 
extends the above calculation to m > 8, one would find only higher F -corrections to the two 
T-dual multiplets.

4. Discussion

In this paper, we have found that the constraint that the covariant effective actions must be 
invariant under the T-duality transformation (22) plus their appropriate higher derivative correc-
tions, fixes the independent couplings in the effective actions at order α′ up to two parameters, 
i.e., (39), (47), (51) and (52). Hence, the T-duality constraint dictates that there are two T-dual 
multiplets. One with overall factor C and the other one with the overall factor N1. We have 
chosen the overall factor of the first multiplet to be C = 1 which is dictated by the S-matrix 
calculations. The S-matrix also fixes the overall coefficient of the other T-dual multiplet to be 
N1 = −1/24.

Another approach for imposing the T-duality constraint is that one considers non-covariant 
action and constrain it to be invariant under the standard T-duality (22) without α′-corrections. 
Then one should use non-covariant field redefinitions and total derivative terms to convert the 
non-covariant action to the covariant form [31]. This method has been used in [31] to reproduce 
the known bulk effective action of the bosonic string theory at order α′. We have used this method 
and found exactly the relations (39) at four-field level and (47) at six-field level. That is, we 
have written all contractions of F, ∂F, ∂χ, ∂∂χ at order α′ and at the level of m = 4. Then we 
constrain it to be invariant under the T-duality transformation (22). The resulting action converted 
to (14) by appropriate non-covariant field redefinitions and total derivative terms provided that 
the relations (39) are satisfied. Similar calculation at the level of m = 6 produces the coefficients 
in (47).

A specific non-covariant D-brane action at order α′ in the bosonic string theory has been 
written in [29] which is invariant under T-duality transformations (22) and includes all powers 
of F . It includes ∂F, ∂∂χ and some matrices that contains all powers of F and ∂χ . We have 
expanded that action at the level of m = 4 and use non-covariant field redefinitions and total 
derivative terms to convert it to the covariant action (14). We have succeeded at the level of 
m = 4, however, we could not found covariant action at the level of m = 6. That means the 
action proposed in [29] does not produce the result of the S-matrix calculations at the level of 
m > 4. In fact the F and ∂χ in the matrices used in [29] must be constant. The same matrices 
have been used in [30] to construct the effective action of two massless closed strings and infinite 
number of constant F . It has been shown in [30] that the result is consistent with the S-matrix 
element of two closed string vertex operators in the presence of constant F .
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We have found the couplings at order α′ with zero, two, four and six extra F . In general 
there are non-zero couplings with more than six extra F as well. One may try to find a closed 
expression for all couplings at order α′. One suggestion may be to extend the pull-back metric 
G̃ab in (3) to include F ’s as well. An extension is the following symmetric matrix:

Gab =
(

1

G̃ + F
G̃

1

G̃ − F

)ab

(53)

In the absence of the transverse scalar fields χi , it is the open string metric which appears in the 
effective action when it is written in terms of non-commutative variables [32]. In terms of the 
commutative variables which we are working with, the above matrix may be used to rewrite the 
couplings we have found by the T-duality constraint in a closed expression. For example, all the 
couplings which have �ab

i�ab
i can be written as

Sp ⊃ α′Tp

∫
dp+1σ

√−det(Gab)
[
�ab

i�ab
i

]
(54)

where det(Gab) = det(G̃ab + Fab). Expanding the DBI part, it produces all couplings we have 
found in (39), (47), (51) and (52) which includes the structure �ab

i�ab
i . To be able to rewrite all 

other couplings in a closed expression, one may also need the following antisymmetric matrix as 
well:

�ab =
(

1

G̃ + F
F

1

G̃ − F

)ab

(55)

It would be interesting to find a closed expression for the couplings that the T-duality constraint 
fixes. That expression would produce correct couplings with arbitrary number of F ’s.

We have found the world-volume couplings at order α′. One may be interested in extending 
these couplings to the order α′ 2. In this case, one should first find the independent couplings at 
order α′ 2 as we have done in section 2 for the couplings at order α′. Then one should transform 
them under the T-duality transformation (22) at order α′ 0 to find δS(m,2). It should be canceled 
by total derivative terms J (m,2) and by δS(m,2)

n terms which are resulted from transforming the 
DBI action under the T-duality transformations at order α′ 2 and from transforming the couplings 
at order α′ under the T-duality transformations at order α′ that we have found in this paper. 
This later term makes the calculation in the bosonic theory to be very lengthy. However, in the 
superstring theory there are no couplings at order α′. Hence, the calculation would be much 
easier to perform. It would be interesting to find the α′ 2 corrections to the DBI and WZ actions 
in the superstring theory by the T-duality constraint and compare them with the couplings found 
in [23,25] by the boundary state formalism in superstring theory.
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Appendix A

In this appendix, we write the T-duality transformation T (4,1) that the T-duality constraint (46)
fixes. The transformation for Ay is
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Ay T (4,1)−→ α′[−16N1F
c̃
ã F ãb̃F d̃

b̃
F ẽ

c̃ ∂
d̃
∂ẽχ

y + (
1

2
+ 10N1)Fãb̃

F ãb̃F ẽ
c̃ F c̃d̃ ∂

d̃
∂ẽχ

y

−(
19

10
+ 19

5
N1)F

d̃

b̃
F b̃c̃∂c̃∂d̃

χy∂ãχy∂
ãχy + (

1

4
+ 4N1)Fb̃c̃

F b̃c̃∂d̃ ∂
d̃
χy∂ãχy∂

ãχy

+(2 + 24N1 − E3)F
d̃

b̃
F b̃c̃∂c̃∂d̃

χi∂ãχ
i∂ãχy + E4Fb̃c̃

F b̃c̃∂d̃ ∂
d̃
χi∂ãχ

i∂ãχy

+(
1

4
+ 8N1)Fc̃d̃

F c̃d̃ ∂ã∂b̃
χy∂ãχy∂b̃χy + 2

5
(−1 + 12N1)F

c̃
ã F d̃

c̃ ∂
b̃
∂
d̃
χy∂ãχy∂

b̃χy

+1

5
(22 + 256N1 − 5E2)F

c̃
ã F d̃

b̃
∂c̃∂d̃

χy∂ãχy∂
b̃χy

−(
1

2
+ 6N1)∂

c̃∂c̃χ
y∂ãχy∂

ãχy∂
b̃
χy∂b̃χy

+(1 + 12N1 − E3)∂
c̃∂c̃χ

y∂ãχ
i∂ãχy∂b̃

χi∂
b̃χy

+E5∂
c̃∂c̃χi∂ãχ

y∂ãχy∂b̃
χi∂b̃χy − (

1

4
+ 2N1)Fc̃d̃

F c̃d̃ ∂ã∂b̃
χy∂ãχi∂b̃χi

−(
1

2
+ 4N1)F

c̃
ã F

b̃c̃
∂d̃ ∂

d̃
χy∂ãχi∂b̃χi + E6∂

c̃∂c̃χj ∂ãχ
i∂ãχy∂

b̃
χj ∂b̃χi

−E2F
c̃
ã F d̃

b̃
∂c̃∂d̃

χi∂
ãχy∂b̃χi + E7F

c̃
ã F

b̃c̃
∂d̃∂

d̃
χi∂

ãχy∂b̃χi

+E8∂
c̃∂c̃χi∂ãχ

i∂ãχy∂
b̃
χj ∂

b̃χj − 3(1 + 8N1)∂b̃
∂c̃χ

y∂ãχy∂
ãχy∂b̃χy∂

c̃χy

+(2 + 24N1 − E3)∂b̃
∂c̃χi∂ãχ

i∂ãχy∂b̃χy∂
c̃χy

−(4 + 56N1 − E2)F
d̃
ã ∂ãχy∂b̃χy∂c̃Fb̃d̃

∂c̃χy

+(1 + 12N1)∂b̃
∂c̃χ

y∂ãχy∂
ãχy∂b̃χi∂c̃χi + E2F

d̃
ã ∂ãχy∂b̃χi∂c̃Fb̃d̃

∂c̃χi

−E3∂b̃
∂c̃χi∂ãχ

i∂ãχy∂b̃χj ∂c̃χj + 1

2
F c̃d̃∂ãχ

y∂ãχy∂
b̃χy∂

d̃
F

b̃c̃

+E9F
c̃

b̃
∂ãχ

y∂ãχy∂
b̃χy∂

d̃
F d̃

c̃ + E10F
c̃

b̃
∂ãχ

i∂ãχy∂b̃χi∂d̃
F d̃

c̃

+E11F
c̃
ã ∂ãχy∂

b̃
χi∂

b̃χi∂
d̃
F d̃

c̃ + E12Fãb̃
∂ãχy∂b̃χi∂c̃χi∂d̃

F d̃
c̃

+3

5
(1 + 8N1)F

d̃

b̃
F b̃c̃F ẽ

c̃ ∂ãχy∂ẽFãd̃
− 1

4
F

b̃c̃
F b̃c̃F d̃ẽ∂ãχy∂ẽFãd̃

+1

5
(17 + 256N1 − 5E2)F

b̃
ã F ẽ

c̃ F c̃d̃ ∂ãχy∂ẽFãd̃
+ E13F

b̃
ã F

c̃d̃
F c̃d̃ ∂ãχy∂ẽF

ẽ

b̃

−F b̃
ã F c̃

b̃
F d̃ẽ∂ãχy∂ẽFc̃d̃

+ E14F
b̃
ã F c̃

b̃
F d̃

c̃ ∂ãχy∂ẽF
ẽ

d̃

+(2 + 48N1)∂b̃
∂c̃χ

y∂ãχ
i∂ãχy∂

b̃χy∂c̃χi + (2 + 24N1)F
c̃
ã F d̃

b̃
∂c̃∂d̃

χy∂ãχi∂b̃χi

−(4 + 48N1)F
c̃
ã F d̃

c̃ ∂
b̃
∂
d̃
χy∂ãχi∂b̃χi − 1

8
F c̃

ã F ãb̃F d̃

b̃
F

c̃d̃
∂ ẽ∂ẽχ

y

−(
1

32
+ N1

2
)F

ãb̃
F ãb̃F

c̃d̃
F c̃d̃ ∂ ẽ∂ẽχ

y

−(
5

2
+ 32N1 − E2)F

c̃
ã F

b̃c̃
∂d̃∂

d̃
χy∂ãχy∂

b̃χy] (56)

where E2, E3 are the parameters that appear also in (40) which could not be fixed by the con-
straint (46). The other parameters E4, · · · , E20 in above and the following transformations are 
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also the free parameters that the constraint (46) could not fix. They may be fixed by considering 
the higher order constraints. The transformation for Aã is

Aã T (4,1)−→ α′[−(
1

4
+ 10N1)F

c̃

b̃
F

d̃ẽ
F d̃ẽ∂ã∂c̃χ

y∂b̃χy − 1

5
(1 + 88N1)F

c̃

b̃
F d̃

c̃ F ẽ

d̃
∂ã∂ẽχ

y∂b̃χy

−1

4
F ãc̃F

d̃ẽ
F d̃ẽ∂

b̃
∂c̃χ

y∂b̃χy + (4 + 64N1 + E14 − E2)F
ãc̃F d̃

b̃
F

c̃d̃
∂ ẽ∂ẽχ

y∂b̃χy

−3

5
(1 + 8N1)F

ãc̃F d̃

b̃
F ẽ

d̃
∂c̃∂ẽχ

y∂b̃χy − 1

5
(17 + 256N1)F

ãc̃F d̃

b̃
F ẽ

c̃ ∂
d̃
∂ẽχ

y∂b̃χy

+(
17

5
+ 216

5
N1 + E2)F

ã

b̃
F ẽ

c̃ F c̃d̃ ∂
d̃
∂ẽχ

y∂b̃χy − F ãc̃F d̃
c̃ F ẽ

d̃
∂
b̃
∂ẽχ

y∂b̃χy

−(
3

4
+ 14N1 + E13)F

ã

b̃
F

c̃d̃
F c̃d̃ ∂ ẽ∂ẽχ

y∂b̃χy

+1

5
(17 + 176N1)F

d̃

b̃
∂c̃∂d̃

χy∂ãχy∂
b̃χy∂c̃χy

− 1

10
(29 + 352N1)F

d̃
c̃ ∂ã∂

d̃
χy∂

b̃
χy∂

b̃χy∂c̃χy

+ 1

10
(1 + 48N1)F

ãd̃∂c̃∂d̃
χy∂

b̃
χy∂

b̃χy∂c̃χy

−(8N1 + E9 − E2)F
ã
c̃ ∂d̃∂

d̃
χy∂

b̃
χy∂

b̃χy∂c̃χy

−(6 + 80N1 + E15)F
d̃
c̃ ∂ã∂

d̃
χi∂b̃

χi∂b̃χy∂c̃χy

−(2 + 32N1 + E16 − E2 + E3)F
ã
c̃ ∂d̃∂

d̃
χi∂b̃

χi∂b̃χy∂c̃χy

+E15F
d̃
c̃ ∂ã∂

d̃
χy∂

b̃
χi∂b̃χy∂

c̃χi

−1

5
(7 + 136N1)F

d̃

b̃
F ẽ

d̃
∂b̃χy∂c̃F

ã
ẽ ∂ c̃χy + 1

5
(17 + 256N1)F

ãd̃F ẽ

d̃
∂b̃χy∂c̃Fb̃ẽ

∂c̃χy

+(E12 + E2)Fb̃c̃
∂d̃∂

d̃
χy∂ãχi∂b̃χy∂

c̃χi − (
1

4
+ 10N1)Fd̃ẽ

F d̃ẽ∂b̃χy∂c̃F
ã

b̃
∂c̃χy

−(2 + 32N1 + E10 − E3)F
ã
c̃ ∂d̃∂

d̃
χy∂

b̃
χi∂b̃χy∂

c̃χi

−(1 + 16N1)F
d̃
c̃ ∂

b̃
∂
d̃
χi∂

ãχy∂b̃χy∂
c̃χi

−(1 + 16N1 − E17)Fb̃c̃
∂d̃∂

d̃
χi∂

ãχy∂b̃χy∂
c̃χi + 4N1F

d̃
c̃ ∂ã∂

d̃
χi∂b̃

χy∂b̃χy∂
c̃χi

+(
1

2
+ 4N1 − E18)F

ã
c̃ ∂d̃∂

d̃
χi∂b̃

χy∂b̃χy∂
c̃χi − E11F

ã

b̃
∂d̃∂

d̃
χy∂b̃χy∂c̃χi∂

c̃χi

+4N1∂b̃
χi∂b̃χy∂c̃χi∂

c̃χy∂d̃
F ãd̃ + (

1

2
+ 4N1)∂

ãχy∂
b̃
χy∂

b̃χy∂c̃χy∂d̃
F d̃

c̃

+E19∂
ãχi∂

b̃
χi∂

b̃χy∂c̃χy∂d̃
F d̃

c̃ − (1 + 16N1 − E19)∂
ãχy∂

b̃
χi∂b̃χy∂

c̃χi∂d̃
F d̃

c̃

+3

5
(1 + N1)F

ãd̃F ẽ

b̃
∂b̃χy∂c̃χy∂d̃

Fc̃ẽ

+(
12

5
+ 96

5
N1 + E2)F

ã

b̃
∂c̃∂d̃

χy∂b̃χy∂
c̃χy∂d̃χy

−(
1 + 16N1)∂b̃

χy∂b̃χy∂
c̃χy∂

d̃
F ã

c̃ ∂d̃χy

2
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−(4 + 64N1 + E15)∂b̃
χi∂b̃χy∂c̃F

ã

d̃
∂c̃χy∂d̃χi

−(6 + 80N1 + E15)Fb̃c̃
∂ã∂

d̃
χy∂b̃χy∂

c̃χi∂d̃χi

−(2 + 32N1 − E2)F
ã

b̃
∂c̃∂d̃

χy∂b̃χy∂
c̃χi∂d̃χi

+(2 + 16N1 + E15)∂b̃
χi∂b̃χy∂c̃χy∂d̃

F ã
c̃ ∂d̃χi + 4N1∂b̃

χy∂b̃χy∂
c̃χi∂

d̃
F ã

c̃ ∂d̃χi

−(1 + 16N1)∂
ãχy∂b̃χy∂

c̃χi∂
d̃
F

b̃c̃
∂d̃χi

−(2 + 16N1 + E15)Fb̃d̃
∂ã∂c̃χi∂

b̃χy∂c̃χy∂
d̃χi

−1

5
(3 + 104N1)F

d̃

b̃
F ẽ

d̃
∂b̃χy∂c̃χy∂ẽF

ã
c̃ − (

1

2
+ 16N1)F

ẽ
c̃ F c̃d̃ ∂

b̃
χy∂b̃χy∂ẽF

ã

d̃

−4N1F
d̃

b̃
F

c̃d̃
∂b̃χy∂c̃χy∂ẽF

ãẽ + 4

5
(3 + 44N1)F

ẽ
c̃ F c̃d̃ ∂ãχy∂b̃χy∂ẽFb̃d̃

−(
1

4
+ 6N1)Fc̃d̃

F c̃d̃∂ãχy∂b̃χy∂ẽF
ẽ

b̃
− F c̃

b̃
F d̃ẽ∂ãχy∂b̃χy∂ẽFc̃d̃

+1

2
F ãc̃F d̃ẽ∂

b̃
χy∂b̃χy∂ẽFc̃d̃

− F ã

b̃
F d̃ẽ∂b̃χy∂c̃χy∂ẽFc̃d̃

+E20F
ãd̃F

b̃d̃
∂b̃χy∂c̃χy∂ẽF

ẽ
c̃ − (3 + 48N1 − E20)F

c̃

b̃
F d̃

c̃ ∂ãχy∂b̃χy∂ẽF
ẽ

d̃

+(
1

2
+ 12N1)F

ãc̃F d̃
c̃ ∂

b̃
χy∂b̃χy∂ẽF

ẽ

d̃
− (1 + 16N1 + E2)F

ã

b̃
F d̃

c̃ ∂b̃χy∂c̃χy∂ẽF
ẽ

d̃

−(2 + 24N1)F
ã

d̃
∂
b̃
∂c̃χi∂

b̃χy∂c̃χy∂
d̃χi + 4

5
(3 + 44N1)F

d̃

b̃
F ẽ

c̃ ∂b̃χy∂c̃χy∂ẽF
ã

d̃

+2N1∂b̃
χy∂b̃χy∂c̃χ

y∂c̃χy∂d̃
F ãd̃ + 2N1Fc̃d̃

F c̃d̃ ∂
b̃
χy∂b̃χy∂ẽF

ãẽ] (57)

The transformation for χi is

χi T (4,1)−→ α′[−(
1

2
+ 4N1)F

d̃

b̃
F b̃c̃∂c̃∂d̃

χi∂ãχ
y∂ãχy + E3F

d̃

b̃
F b̃c̃∂c̃∂d̃

χy∂ãχ
i∂ãχy

−(
1

4
+ 2N1 + E4)Fb̃c̃

F b̃c̃∂d̃∂
d̃
χy∂ãχ

i∂ãχy

−(
1

2
+ 2N1)Fc̃d̃

F c̃d̃∂ã∂b̃
χi∂ãχy∂b̃χy

−(2 + 32N1)F
c̃
ã F d̃

c̃ ∂
b̃
∂
d̃
χi∂ãχy∂b̃χy + (1 + 16N1)F

c̃
ã F d̃

b̃
∂c̃∂d̃

χi∂ãχy∂b̃χy

+(
1

2
+ 12N1 − E5 + E3)∂

c̃∂c̃χ
y∂ãχy∂

ãχy∂
b̃
χi∂b̃χy

+E3∂
c̃∂c̃χj ∂ãχ

i∂ãχy∂
b̃
χj ∂b̃χy

−(E7 − E2)F
c̃
ã F

b̃c̃
∂d̃ ∂

d̃
χy∂ãχy∂

b̃χi − (E6 + E3)∂
c̃∂c̃χ

y∂ãχ
j ∂ãχy∂b̃

χj ∂
b̃χi

−E8∂
c̃∂c̃χ

y∂ãχ
i∂ãχy∂b̃

χj ∂
b̃χj + E3∂b̃

∂c̃χ
y∂ãχ

i∂ãχy∂
b̃χy∂c̃χy

+E3∂b̃
∂c̃χ

y∂ãχ
i∂ãχy∂

b̃χj ∂c̃χj + E17Fãc̃∂
ãχy∂b̃χy∂

c̃χi∂
d̃
F d̃

b̃

+E16F
c̃

b̃
∂ãχ

i∂ãχy∂b̃χy∂d̃
F d̃

c̃ − (
1

2
− 12N1)∂b̃

∂c̃χ
i∂ãχ

y∂ãχy∂
b̃χy∂c̃χy

+E18F
c̃
˜ ∂ãχ

y∂ãχy∂
b̃χi∂

d̃
F d̃

c̃ + 1
F

b̃c̃
F b̃c̃∂d̃∂

d̃
χi∂ãχ

y∂ãχy

b 8
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+3

8
∂c̃∂c̃χ

i∂ãχ
y∂ãχy∂b̃

χy∂b̃χy + 1

2
∂c̃∂c̃χ

i∂ãχ
j ∂ãχy∂

b̃
χj ∂

b̃χy

−2∂
b̃
∂c̃χ

i∂ãχ
j ∂ãχy∂b̃χy∂

c̃χj + 1

2
∂
b̃
∂c̃χ

i∂ãχ
y∂ãχy∂

b̃χj ∂c̃χj ] (58)

In above transformations we have removed the terms that are canceled by the Bianchi identity 
∂[ãFb̃c̃] = 0. Note that the above transformations are non-zero for any specific values for the 
parameters E2, · · · , E20. Hence, it is impossible to find solution for the T-duality constraint (46)
without adding corrections to the standard T-duality transformations (22).
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