T Available online at www.sciencedirect.com
opee ScienceDirect nucLearl =)
E— PHYSICS

ELSEVIER Nuclear Physics B 939 (2019) 485-506
www.elsevier.com/locate/nuclphysb

a’-Corrections to DBI action via T-duality constraint

Saman Karimi, Mohammad R. Garousi *

Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 1436, Mashhad, Iran

Received 10 September 2018; received in revised form 5 January 2019; accepted 8 January 2019
Available online 11 January 2019
Editor: Stephan Stieberger

Abstract

It is known that D, -brane effective action at the leading order of ' in flat space—time which is given
by DBI action, transforms to Dj,_1-brane effective action under standard T-duality transformations of the
open string gauge bosons and transverse scalar fields. Extending this duality to order a’, one may find
corrections to the DBI action which include the second fundamental form 2 and the covariant derivative
of gauge field strength D F, as well as the corrections to the T-duality transformations. Using this idea, up
to two parameters, we have found all 81 covariant couplings of DF DF and Q£ with zero, two, four and
six F’s. The four gauge field couplings that the T-duality constraint fixes are consistent with the known
couplings in the literature.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the most exciting discoveries in string theory is T-duality [1,2]. This duality may
be used to construct the effective field theory at low energy which may provide a manifestly
background independent formulation of string theory [3,4]. One approach for constructing this
effective action is the Double Field Theory [5-9] in which the T-duality is manifest, as the ef-
fective action is O (D, D)-invariant by constructions. However, coordinate transformations in
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this approach receive a’ corrections [10,11]. Another T-duality based approach for construct-
ing the effective action, is to use the constraint that the dimensional reduction of an effective
action on a circle must be invariant under the T-duality transformations [12]. In this approach,
the couplings are invariant under the standard coordinate transformations, however, the T-duality
transformations receive o’-corrections [13,14]. Using the T-duality constraint, the standard grav-
ity and dilaton couplings in the effective actions at orders o', &’2, o’3 have been reproduced in
[15,16]. It has been observed in [15] that the form of ' corrections to the Buscher rules depends
on the scheme that one uses for the effective action.

The effective field theory of a D)-brane in bosonic string theory includes various world-
volume couplings of open string tachyon, transverse scalar fields, closed string tachyon, graviton,
dilaton and B-field. Because of tachyons, the bosonic string theory and its D ,-branes are all un-
stable. Assuming the tachyons are frozen at the top of their corresponding tachyon potentials, the
effective action at the leading order of o’ in flat spacetime is then given by DBI action [17,18]:

SpD —Tp/dp+lo\/— det(Gap + Fap) (1)

where T), is tension of D-brane, Fy;, is gauge field strength of A, and éab is metric which is
pull-back of the bulk flat metric onto the world-volume' i.e.,

oxX*oxv

9o gab M

= Nab + dax O x 7 i )

Gab = Pnlap =

where X* is coordinate of space—time and 7, is flat space—time metric. In the second line
the pull-back is written in the static gauge, i.e., X% = 0% and X' = x'. The DBI action (1)
is invariant under the general coordinate transformations and is covariant under the standard
T-duality transformation [19]. With our normalization for the gauge field, the DBI action is at
the leading order of «’. It involves infinite number of F and 9 x/dx/n; - The first correction to
this action is at order o’ which includes DF D F or Q£ and infinite number of F’s. The higher
derivative corrections to the Born—Infeld action in the bosonic and superstring theories, for only
gauge field, have been studied in [20-25].

The world-volume couplings in the DBI action in the string frame are independent of p, the
dimension of the D ,-brane. This has been used in [19] to observe that the DBI action is covariant
under T-duality transformation. Assuming the higher derivative couplings on the world-volume
of D-brane are also independent of the dimension of the brane, one expects the effective action
of Dp-brane at any order of &’ to be covariant under the T-duality transformation. Using this
constraint, we are going to study the o’ corrections to the DBI action in this paper. Since there
are infinite number of F’s involved in the couplings at order o', we consider couplings which
have zero, two, four and six F’s. The couplings which have zero F are

S, > —d'T, / dPtlo,/— det(éab)[Clwé“bGCd Q1 Q. - szacﬂszbd”)] 3)

' Our index convention is that the Greek letters (@, v, ...) are the indices of the space—time coordinates, the Latin letters,
(a, b, c,...) are the world-volume indices and the letters (i, j, k, ...) are the normal bundle indices. The killing coordinate
Y is along the world-volume. The world-volume indices after the reduction of D -brane to D, -brane are (a,b,c,...).
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where C is a constant, G is inverse of the pull-back metric and the second fundamental form
2 in the bosonic theory is defined to be [26]*

. 32X L axn X" o )
a = yoadeb T do dob M
The tensor l,w in (3) is a projection operator, i.e., n”"‘lwlaﬁ =1 > Which projects space—
time tensors to the transverse space. It is defined as 1, = 1,y — NuaNvs G*# where the first
fundamental form G*" is defined as
_0XxtoxY Grab

G
o9 dob

(6)

which is another projection operator, i.e., 7, G*” G = G*P_ It projects space—time tensors to
the world-volume.

In flat spacetime and in static gauge, the second fundamental form (5) is zero when the space-
time index « is a world volume and it is the second derivative of the transverse scalar fields when
« is a transverse index, i.e.,

QY = a0 x"8:° @)

The covariant action (3) includes infinite number of transverse scalar fields through the expansion
of pull-back metric. We have chosen the relative coefficients of the two terms in (3) to have
no corrections to the propagators of the transverse scalar fields. This action, however, is not
total derivative term for terms with more than two transverse scalars. The coefficient C is a
parameter which should be fixed by some calculations in string theory, e.g., by studying the
S-matrix element of two gravitons off the D,-brane this parameter has been found in [26] to
be C = 1. There are similar actions with some extra F’s, which we will find some of them in
section 2. The parameters in these couplings and in (3) may be found by S-matrix calculations,
however, we are interested in this paper to find them by imposing the T-duality constraint.

There are also couplings at order o’ which include D F D F and some extra F’s. The covariant
derivative of F is

Dy Fpe = 84 Fpe — I:abdch - I~jachbd
= da Foe = 1ij G0 X" 829 x” Fac + 1ij G*“De x' dadex” Fap ®)
where the Christoffel symbol f‘a ,» is made of the pull-back metric Gap. As we will see in the
next section, at the level of zero extra F, the couplings are total derivative terms, and at the level

2 The second fundamental form in the superstring theory is defined in [27] to be

L0 G D CIEY) () ¢
ab " jaapsb o, ab dga pgb MY

o

where I';;¢ is the connection made of the pull-back metric. In flat spacetime and in the static gauge it becomes

Q=11 0a0px7 87 “

If one uses this expression for the couplings in (3), one would find that the resulting couplings for four transverse scalar
fields are not consistent with the S-matrix element of four transverse scalar vertex operators. Moreover, we have found
that this expression for the second fundamental form is not consistent with the T-duality constraint in the bosonic theory
at the level of six F’s.
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of two and more extra F’s, there are nontrivial couplings that their coefficients may be found by
the T-duality constraint. As we will see, all parameters in the actions with zero, two, four and six
extra F’s for which we have done the calculations explicitly, can be fixed up to two parameters.
We choose one of them to be the coefficient C which is fixed by the S-matrix calculations to be
c=1.

The outline of the paper is as follows: In section 2, we find all independent couplings of
DFDF and Q€ with two, four and six extra F’s. To this end, we first write all contractions of
DFDF and Q£ with two, four and six F’s. The terms involving Q22 are all independent, how-
ever, the terms involving D F DF are not all independent as they are related by total derivative
terms and the Bianchi identity. We introduce a method for imposing the Bianchi identity to find
all independent couplings. In section 3, we impose the T-duality constraint on the independent
couplings found in section 2 to fix their corresponding unknown coefficients in terms of two
parameters. We show that the coefficients of the four gauge field couplings that the T-duality
constraint fixes are consistent with the coefficients that one finds by the S-matrix method. We
find also covariant couplings of six and eight gauge fields which have not been found by the
S-matrix method.

2. Independent couplings

In this section we are going to find DFDF and Q€2 couplings with two, four and six ex-
tra F’s. We begin with the couplings with two extra F’s. There are 18 contractions with structure
FFDFDF . However, not all of them are independent.” Some of them are related by total deriva-
tive terms and some other terms are related by the Bianchi identity Dy, Fpe] = 0. Note that
using integration by part one can easily observe that the couplings with structure FFFDDF
can be written in terms of FFDF DF . To find the independent couplings we first construct the
current /¢ from 9 contractions of terms with structure F'F FDF. The 9 total derivative terms
D[F FFDF], however, produce terms with structures FFFDDF and FFDFDF. The two
covariant derivatives in D, Dy, F,4 can be written as symmetric and antisymmetric parts, i.e.,

1 1
Danchzz{Daa Db}ch"l‘E[Dav DplFeq (9)

The antisymmetric part is identical to RF. On the other hand, using the Gauss—Codazzi equation
Rabea = Lij(Quc' Qa’ — Qaa’ e’ (10)

the antisymmetric part in (9) produces couplings with structure F'F F FQS2. They will change
the unknown coefficients in the couplings with structure F'F F F'Q2€2. Hence, if one uses all con-
tractions of F'F FFQS, with arbitrary coefficients, as independent couplings, one is allowed
to ignore the antisymmetric part in D, Dy F,4, i.e., the two covariant derivatives is symmetric.
Using this symmetry, one finds there are 6 terms in total derivative terms which have struc-
ture FFFDDF. Constraining them to be zero, one finds 3 total derivative terms with structure
FFDFDF. Adding these terms to the 18 contractions with structure ¥ FDF DF, one can re-
duce them to 15 terms by choosing the coefficients of the total derivative terms to eliminate 3
terms. We choose to eliminate the 3 terms which do not include D, F?, because as we will
discuss in a moment they can be eliminated by field redefinitions.

3 We use the mathematica package ‘xAct’ [28] for performing the calculations in this paper.
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Now one has to impose the Bianchi identity on D F-terms as well. Writing the first term on
the right hand side of (8) in terms of potential F,p = 9,Ap — dp A, One can write the covariant
derivative of F as D, Fy. = F,, — F, , where the function F,, = which is not gauge invariant, is
symmetric with respect to its first two indices. Writing D F in terms of F’, one can easily observe
that the left hand side of the Bianchi identity, i.e., Dj, Fy] =0, is zero.

When one rewrites the 15 couplings in terms of F’, one would find 7 independent couplings.
Therefore, the Bianchi identity reduces the 15 couplings to 7 independent couplings when they
are written in terms F/, . There are different ways to write the 7 independent couplings in terms
of field strength F,;. One particular choice for the couplings is

FyeF* Dy Fpe D F*,  F¢Fy,DF*D,F{
F¢FyeDF*DUFy., FSFyeD*FEDPFY
FeqFpeD°FEDPF | Fy, F®DYFEDYF,
F{F4eD*FEDPF? (11)

where the indices are raised by the inverse metric G?. Our notation for F? is that the earlier
alphabet index appears first. All other choices for the couplings are identical to the above cou-
plings after using the Bianchi identity, i.e., they all are identical when they are written in terms
of potential F), . Similar calculations for DF DF with zero extra F produces no independent
coupling.

The last four terms in (11) include D, F ab_Under field redefinition A, — A, + §Ag, Xi —
x' + 8y’ the DBI action produces the couplings

-~ rl - . ,
\/—det(G)[EDaF“bSAb+G“anbf8)('nij+--~] (12)

where dots represent terms which have some powers of F. Hence, the coefficients of the cou-
plings which include D, F® or Q%' can be changed under field redefinitions. On the other hand,
it has been observed in [15] that the corrections to the T-duality transformations depend on the
scheme that one uses for the field variables. For simplicity we use the scheme in which there are
minimum number of couplings, i.e., we use the field redefinitions to eliminate all terms which
include D, F?®. So up to field redefinitions, there are 3 independent couplings in (11).

There are 5 independent couplings with structure F FQS, i.e.,

Fab ch Qaci de[ , Fac Fbc Qadi de,‘ , Fbc Fh(,‘ Qaa’i Qadi ,
FbC Fbc Qaa i Qddi , FCd de Qaa iQCbi (13)
where the world-volume indices are raised by G“" and the transverse indices are lowered by 1L i
Using the variation (12), one can use a scheme in which the last two terms are eliminated by

appropriate field redefinitions.* All together, up to field redefinitions there are 6 independent
terms at two extra F level, i.e.,

S, > —d'T, / d!’“o,/—det(éab)[cha,,chszm QY. CLF S Fpe 0l .

4 One could also use field redefinition to remove the first term in (3), however, the absence of this term changes the
propagator of the scalar fields. In that case, the o’ corrections to the T-duality transformations would have linear term as
well as nonlinear terms. We work in this paper with the couplings (3).
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+C3 Fpe F? Q2,4 2°% 4 Ny Fye F4€ Dy Fype D F*
+N2FE Fye DY F* D, Ff + N3 F¢ F4, DY FP DY F;,C] (14)

The coefficients C1, C, C3, N1, N2, N3 and C in (3) are 7 parameters that can be found by the
S-matrix elements of four open string vertex operators [22,29]. They are

1 1 1 1
C=1;Ci=C=1,C3=—=;Nj=—— , Npy=——, N3=-— 15
1 2 3 M 7 2 3 3=5 (15)

However, we are going to find them in the next section by imposing the T-duality constraint.

At the level of four extra F’s, there are 56 contractions with structure FFFFDFDF. To
find the total derivative terms, we note that there are 21 total derivative terms with structure
D[F FFFFDF]. Using their coefficients to eliminate the terms with structure FFFFFDDF,
one finds 7 total derivative terms with structure F F F F D F D F. Using them one can eliminate 7
terms in the contractions F F'F FDF DF. Using the Bianchi identity as we have done in the pre-
vious case, one finds 23 independent terms. 10 of them have D, F ab which can be eliminated by
appropriate field redefinitions. So up to field redefinitions there are the following 13 independent
structures:

S, D> —a'T, f dp“m/—det(éab)[ T Fue Fop FE Fag D FP° DY FeS

ATy F oy FE FagFoy D°F* DY F 4 T3F F8 Fyy Foy D* F DU FY
+TyF] F8Fyf Foy D FP Dy F% + TsF] Fof FS Foy D F* D Ff
+T6Fae Fpa FEF g D F* D FS/ 4+ T1F) F8 Fyo F 1o D F" Dy F4°
ATy Fup Foo FS Fry DFP DY FeS + TyF] Foo FS Fr DY FP DU FS
+T10Faa Fd FEF 1y D* FP Dy F4° 4 Ty\ Fyo Foq F 1 F /¢ D* FP DU Ff

+T12Fuq Fee Fro FT8 DY FP Dy FO¢ Ty FaCFdeE,«-gngD“FbcDdee] (16)
The coefficients T1, - - - , T13 are 13 parameters that we are going to find them by the T-duality
constraint.

There are 12 independent terms with structure FFF FQSQ. The terms that have trace of the
second fundamental form may be eliminated by appropriate field redefinitions. The remaining
terms are

S, > —a'T, / dp“o,/—det(f;ab)[ WIFFYFEFQ ) Qi

+AWoF) FYUFEFYQ, Qi + WaFap FYFPFYQy, Qe
+WaF) FYFEFQ ) Qaei + WsF) FY F{FIQ Qe
+WeFar F FFP°Q . Qaei + Wi F, FY F  Fye Qi Q%

+ Wi Fag FF Fye F* Q012 | (17)
The coefficients Wy, --- , Wg are 8 parameters that we are going to find them by the T-duality
constraint. The parameters 71, ---, 713 and Wy, ---, Wg may also be found from studying the

S-matrix element of six open string vertex operators. However, as far as we know, because of
the very lengthy calculations involved in the S-matrix elements, these coefficients have not been
found in the literature.
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At the level of six extra F’s, one finds the following 37 independent couplings for DFDF:

Sp D> —d'T, / dP o\ —det(Gup)[ Z1 Fue F* F o F/8 Fyy F"™ DY F*° D}, Fye
+Z2F§ Fyg F' FY Fop Fry D* F* D F¢ + Z3F o Ff FI FY F 1 Fou D F* DY F¢/
+Z4FE Fyo F' FUF ) Fou D F* DY Fe + Z5F] FEFI FYF ) Fpu D FP* DU Ff
+Z6F] FEFIF'F 1y Fou D F*D,F% + Z7Fyq FEFl Foy Flf Fyy D* FPepiFef
+Z3F] FS Fag F! F! Fy D F* Dy F% + 2o F] FS Fyy F!' F! Fy D F* D Ff
+Z10Fd Foy F F)F FyD* F* DY F{ + Z1\ Foe Fpa FE FI FY Fyy D F* D4 F<f

+Z12Faa Fpe FEF{FY Fpu D*F* DU F®) + 713 F oy FE Fyo F il Fy D FP* DY F<
+Z14Fap Foe FJ F}FY Fp D FDYF + Z)5F g F/F$ F}F{ Fyy D* F** Dy F%
+Z16Faa F! FE FIFY By D F* DUFf + Z17Fpa F! FE FIFY Fyy D FP D, FY
+Z1§FEFJ FEFIFY Fyy D F* Dy F + Z1o FEF] FE F!FY Fy D* F Dy FY
+ZxF] FF§ F}Fy FuuD* F" Dy Fac + Z31 Faa Fee Ff F/$ FYf Fy D F* D Ff
+Z2Fpg FceF’; FI8F{ Fpy D*F* D F% + Zp3F¢ FdeF’; FI8F{ Fy,D*F*D,F{
+224F§FdeF}lFf $FY Fy D* F** DyF{l + Zos FdeFdEF?Ff § FYf Fj D* F** Dy Fy,
+Zo6F FEFuf Fog Fiu F™ D FY* D Ff + Z57F} F8 Fyf Fog Fyu F" D* F* D, F¥
+Zog F Fof FS Fug Fy " DY FP DY F{ + Z29 Fyo Fpa FE F g Fyy F'" DO FP DY Fef
+Z30 Fad Fpe FE F g Fiy F" D FP DY F 731 Fupp FE Fyo F g Fpy F™ DO FP D4 FeT
+Z30F] F8 FyoF o Fu " DO FY Dy F4€  Z33 FEF FS Fry B F'™ DO FY D, Ff!
+Z34F¢ F[-,f FSFrg Fpu F" DY FP Dy FY + Z35Fuq Feo Fpo /8 Fpy F™ DY FP° DY Ff
+Z36FE Fao Fpo FT8 Fy F" D FP Dy F{ + Z37FS Fyo F 1 F/8 Fyy F™ D F*° Dy FY

(18)
And the following 16 couplings for Q€:

SpD —a’T,,/dl’“a,/—det(éub)[ YiFLFFIF FEFIQ, ' Quu

+Y2FfF“CFCdFlfF]§ththiQegi + Y3FabF“”F;’F“F§thszeh 'Quqi
Y FL FFFSF F8"Q, "Qpni + Ys Fap F FAFF Fe"Q, '
Y FFF Fpg FIF Q' Qppi + Y1 Fap FP Feg FOFT FE" Q' Q i
+Y8F5F“CFL‘.1F§F}§thQde Qi + YgFabF“bFfF“EﬁFf"Qed"Q,,gl-
+Y10FL P FEFSF FEQ M Qi + Y11 Fap F*O FEFF{ FSQ M Qg
YR FLFOFAFyg F FQM Qg + Y13 Fap FP Feq FF FESQM Qg
FY14FL FOFAFSF FopQuni QM + Yis Fap FP FEFF) FapQgni Q8"

+Y16Fap FO Feg FFpp FOT Qg Q811 (19)
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The coefficients Z1,---, Z37 and Y7, - - - , Y16 are 53 parameters that we are going to find them
by the T-duality constraint. This construction of independent terms can be used to find higher
order couplings in which we are not interested in this paper. We will show in the next section that
almost all parameters in the above couplings can be fixed by the T-duality constraint except two
of them.

3. T-duality constraint

The T-duality relates the bosonic string theory compactified on a circle with radius p to the
same theory compactified on another circle with radius ¢ 1t relates the tension of D p-brane to
the tension of D, 1-brane or D -brane, depending on whether the original D ,-brane is along
or orthogonal to the circle, respectively. Assuming the world-volume couplings of the D ,-brane
in the string frame are independent of p, we expect the T-duality also relates the world-volume
effective action of D -brane to the effective action of D, _1-brane or D, -brane, i.e.,

T
SDp_)SDpil (20)

This action can be expanded at low energy, i.e.,
o0
_ NI a(n)
Sp, = @)"Sp) (€20
n=0

At order o’ the action is given by the DBI action (1). At order ', there are infinite number of
couplings depending on the number of extra F’s in DF D F and Q€2 couplings. At zero extra F,
itis given by (3), at two extra F’s it is given by (14), at four extra F’s it is given by (16) and (17),
and so on. We are not interested in this paper in the couplings at order &’ with eight and higher
extra F’s, and on the couplings at higher orders of o’

When the T-duality transformations act along the killing coordinate y, and the y-direction is
a world-volume, then the transformations at the leading order of o’ are:

©
A Iy

al% & i 19
AY — A ' — g (22)

where a is the world-volume index which does not include the y-direction. These transformations
are expected to receive o’ corrections. That is, the T-duality operator has an «’ expansion:

T = Z '™ (23)
n=0

where 7 is the transformation (22).

The invariance of the effective actions at order (o’)°

then means that

0 T Lo
s;); LN Sjjgfl 4)

where Sg)i is the reduction of D, -brane action at order a’9 on the circle. At order o/, the action

has two terms, i.e., Sp , = Sg); +o Sgg. The invariance then means
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O )) )
Sp, — Sp,, +3S

© M

(Yo G (R AU I (25)
r p—1

where dots represent terms at higher orders of «’. The above relation indicates that the extra

term 85" which is produced by applying the T-duality transformation (22) on the reduction of

action SS) on the circle, should be canceled by applying the T-duality transformations at order
P
o on the reduction of the action Sg);. Since the transformations are on the actions, one may

add total derivative terms J(! to make the cancellation happens. That is why we call the o’
order term in the second line of (25) to be 85’ D, j.e., §8' M 4+ 55D 4+ J = 0. Note that § SV
contain only terms which involve x7”, so the corrections to the T-duality transformations and
the total derivative terms in J! should include only terms which contain x*. Similar T-duality
transformations exist for the effective actions at the higher orders of o’.

Since the T-duality transformations affect A, and x', it is convenient to expand the effective
action, the T-duality transformations and total derivative terms at order «’” in terms of powers
of F and dx as well,” ie.,

o0

- 3
m=0
o0
7MW — Z T (m.n)
m=0
oo
JO ="y (26)
m=0

where m is the power of F, 9F, dx, 0 in Sg;’") and J™" and it is the extra power of F

and 9 x on the right hand side of the T-duality transformation 7™ . For example, for m = 2 the
action at order o’ ¥ is

1 1 . .
2,0 -
Sp, = —Tp/dp“a[ZFachdn“‘nbd + 500 3px miyn” | 27)

and the T-duality transformation is 7>® = 0. In fact, 79 is given by (22) and T"? =0 for
m # 0. The transformation 7™ is

AV P o (8x))mD
~ 7(m,1) - . r(m,1) .

Aa T_) (X/((SAG)(”LI), Xl T_) C(/((SXZ)(m,]) (28)
where (8xY) D, SxH™ D (8A%) D are all contractions of one ddx”, ddx’ or dF and m
number of F, dx” or dx' with arbitrary parameters. Each term should have at least one x”.
We expect these parameters to be found by the T-duality constraint.

5 Using the transformations (22), one may find the T-duality transformations of the covariant objects F, DF, G and Q.
Then one may find the &’ corrections to these objects by using the T-duality constraint. In this paper, however, we use
perturbation to rewrite the covariant action in terms of F and dx and then use the T-duality transformations (22) and
their corresponding o’ -corrections.



494 S. Karimi, M.R. Garousi / Nuclear Physics B 939 (2019) 485-506

The invariance of the effective actions at order («’)? then means

m.0) 7Y (m.0)

SDp — SDp—l (29)
for any number of m. Using the T-duality transformation (22), one finds that the transformation
(29) is satisfied for any number of m. That means the DBI action is covariant under the T-duality
transformation (22), as expected.

The invariance at order o’ means

m1 100 (m,1) m,1)
Spy — Syl s
(n,0) TOO+T =D (.0 (m,1)
SDP ’ SDIF1 +SSnm + -

where 2 <n <m — 2, and dots represent terms at higher orders of «’. Adding total derivative
terms at order J ™D one finds the T-duality constraint

m—2

> asimD 4 astmb 4 g =0 (30)
n=2

There are similar constraints for the couplings at higher orders of o’.

The above constraint may be used at each level of m to fix the parameters of independent
couplings that we have found in the previous section. The simplest case is the action at the level
of m = 2. Since we have chosen the coefficient in (3) to make no correction to the propagator,
S gl’)l) is a total derivative term. Hence, the T-duality constraint does not fix the parameter C in
this action. However, one expects it should be related to all other parameters at orders m > 2,
because this coefficient appears in all couplings with m > 2.

3.1. Two extra F’s

At order o', and at the level of m = 4, there are two contributions to the action SS”U. One
contribution is coming from (3) and the other one from (14). The parameters C, C1, C3, C3, N1,
N3, N3 appear in Sgt’,l). Then one should reduce it on the circle along the y-direction and use the

T-duality transformation (22). Then one should compare the result with Sg‘;i)l. One finds

S0 oy SES‘;I_). L ss@D 31)
where §S*1 contains some non-zero terms at the level of m = 4 which includes all parame-
ters C, C1, Ca, C3, N1, N2, N3. They can not be canceled even by total derivative terms. This
indicates that the T-duality transformations (22) at order o’ O must receive &’ corrections if the
parameters C, C1, Ca, C3, N1, N2, N3 are non-zero.

Since we have chosen the couplings (3) to have no corrections to the propagators, we expect
the o’-corrections to the T-duality transformations (22) have no linear term. This steams from
the fact that the S-matrix elements in string theory which have standard propagators, satisfy the
Ward identity corresponding to the T-duality [12]. In other words, the field theory with standard
propagators, should have no o’-correction to the T-duality transformations at the linear order, i.e.,

TOM —0:n>0 (32)
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Hence, the corrections to the T-duality transformations (22) are at orders T@H 7@&D 76D
S T(212)’ T(4v2)’ T(sz), cee, and SO On.

Therefore, the extra terms in §S“ ! should be canceled by the T-duality transformation 71
on the reduction of the action SS;O) in (27), i.e.,

2,0) TOO47@D 0 g 4,1 6,2
Sp) > Sy 88y 485 (33)
where § S§6’2) contains some non-zero terms at order o’ and at the level of m = 6 in which we

are not interested. The reduction of (27) is

2,0 1 S | | | ~
Sl(f),, ) = —Tp(ZJT,O)/de'[Ea,;AyaaA} + 535}(,’8”)(1 -3 dAl;BbA“ + EagAaabA“]

(34
The T-duality transformation 7D for (8 x> )Sz*l), (BA‘})(Z’I), ) Xi)(z’l) are all contractions of
the following expressions by the flat metric 7%’ and with arbitrary coefficients:

@x)Y P ~ 050" 0ex” 03 %" + a0 x " dex g7 mij + dadpx’ dex’ D3 x" mij
+8,;85x>’F&;FEf + 3@XyF5533FEJ; ,
(BADY D ~ 9547 85 XV 8: F5 + 8295 %7 8:x” F35,
Ox)* D ~ 8205 0 x” Dx" + 005" dex”05x” (35)
Since the contractions involve derivatives of the field strength, one should impose the Bianchi
identity o F, e = 0 to find independent terms. We impose this identity at the end after finding
the parameters by the T-duality constraint. Applying the above T-duality transformations on (33),
one can find 851 which contains the arbitrary parameters in (35). To compare it with §S* 1
in (31), one should also take into account the total derivative terms.
The total derivative terms can be written as

J&D = _T,,,lfdl’anﬁ’;aal,;(‘“) (36)

where [} 4.1 is all contractions with arbitrary parameters of the following expression with 7:

005X 01 031" 0 x” + a5 0" Dex” 03 %7 0 X mij + dax' 0.1 0690 0 x” i

+8&3};X)785)()7Fj5Fg§ + 3;,)(}’8};)())}75&8517];5; 37
Note that all terms above and the terms in (35) involve x”.
The T-duality constraint
sS@D L sg@ 4 @ _ g (38)

Then gives some algebraic equations between the effective action parameters, the parameters
in (35) and the parameters in the total derivative terms. On general ground, we do not expect
the T-duality constraint fixes the overall coefficients of the T-dual multiplets. We choose C =1
which is fixed by the S-matrix calculation. Then if there is only one T-dual multiplet, its over-
all coefficient then should be fixed. The solution to the above equation produces the following
relations between the effective action parameters C1, C2, C3, N1, N2, N3:
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1
Cr—1, Ci—2+4+24N,, C3—>—Z,
N3 — —4N;, N —> —1-—16N; 39)

where the parameter N1 remain arbitrary. This indicates that there are two T-dual multiplets, one
multiplet with the overall coefficient C = 1 and the second one with the overall coefficient Ny. As
we will see, even though the parameter N; appears in the T-duality constraint at the levels m > 4,
the T-duality constraint at the levels of m = 6, 8 that we have done the calculations, can not fix
this parameter. The above parameters are consistent with the S-matrix calculation results (15),
i.e., if we choose the overall coefficient of the second multiplet to be N| = —1/24, then the above
parameters become exactly the S-matrix results in (15).

The algebraic equations at the level of m = 4, gives the following a’-corrections to the T-
duality transformations:

2,1) ~ ~ ~ ~
AY T LB PP, Fy %Y — (14 12N1)05x7 07 5, 9507 x
05 0% x 0507 xi — (1 + 24N1)0% % 050 x,0”
F2E 8% FP0: Fyy + Ed%x? FLO:FL
& ab , 1 g v ab
—(2+ 24N FEF™ 9z05 %7 + G+ 2N X Fap F
i T@D b ic iy ab :
A — « [—4N135)(}3 xyagF“C + (1 4+ 16N)3% x>0 Xyangf
+(3+ 40N1)3:0% 10" X7 FE + 2+ 32Ny — E)ded 5, 0" x* 2
+(1+ 24N x>0 1y 0 FL )
AT(Z,I) , .~ E ~ . E
X' = & [=E30;x' 0" x” 050" xy + 09 x” 0505 x' 3" xy
1 N -
=5 0ax" 9 1, 050" x'] (40)

where E1, E> and Ej3 are three other arbitrary parameters. However, the terms with coefficient
E; cancels by using the Bianchi identity oz Fiz = 0. So one can set E1 = 0. The other two

parameters may be fixed by studying the T-duality constraint at order S®2). Note that the above
transformations are non-zero for any values for the parameters E3, E3, N1. Hence, the T-duality
constraint forces the leading order T-duality transformations (22) to receive higher derivative
corrections.

If we have used the field redefinition freedom to remove the first term in (3), the constraint (39)
would not change, however, there would be a linear term 99 x” in the T-duality transformation
of AY and the coefficients of all terms in (40) would also change. The reason is that the T-duality
transformations (40) are in fact the field redefinitions in the reduced space. The field redefinitions
depends on whether or not we keep the first term in (3).

3.2. Four extra F’s
At the order o’ and at the level of m = 6, there are three contributions to the action Sg,ll)'

One contribution is coming from (3), another one is coming from (14) and the last one is coming
from the couplings in (16) and (17). The parameter N; which has not been fixed in (39) and the
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parameters 77, --- , T13 and Wy, - - -, Wy appear in S(D6[;1). One should reduce Sg/;l) on the circle
along the y-direction and use the T-duality transformation (22). Then one should compare the
result with Sgi)l . One finds

70,0
ng;l) r®? 35)6;131 1 556D (41)

where §S©1 contains some non-zero terms at the level of m = 6 which includes all above
parameters. Each term in 8 S has the scalar field .

The extra terms in S©1 should be canceled by the T-duality transformation 7™ on the
reduction of the action Sg,;()) in (34), and by the T-duality transformation 72D in (40) on the

reduction of the action Sgp’o), ie.,

2,0) TOOLTED - 5 oy 6,1 (10,2)
sy 0 4 astl 165

70.0) L 72.1)
s sp0 eSSl 1S 455y 4 os(2Y 42)

where SSSO’Z), N f’z), N 4(‘10’3) and §S £12’4) contains some non-zero terms at higher orders of o’
in which we are not interested. It is straightforward to extract the action Sgl’)o) from the DBI ac-

tion (1) and then reduce it on the circle along the y-direction. The T-duality transformation 71
is given in (40), and the T-duality transformation T@D for (6)({)(4’1), ((SA&)(“), (8Xi)(4’1) are
all contractions of the following expressions by the flat metric 7% and with arbitrary coefficients:
Gx) D ~ 9 x ) dx 0x ax” +0x dx dx dxdx +ddxdxdx’dx X’
+30x OO FF 4 00x”0xdx0xdx +00xdxdxdxdx” +9dx’ FFFF
+ox ' FFFOF +00xdxdx " FF +0x 0xdxFOF +03dx”0x*dx FF
+oxYax’ax FoF,
BADHHD ~ 9y Ydx Y FFOF +00x dx  FFF + 33 dx 0x0xdF +03x>0x dxdx F
+00x0x0x dx " F +0x 0x 0y 0 0F +03x dx dx dx” F,
SxH®D ~9ax0x 0xY0x dxY +09x 0x 0x dx 0x +09x9xdxdx dx”
+00x70x70x0x0x +30x0x 0 FF +00x 0x dxFF
+axYox oxFOF (43)
where 0 and F have (a, b,é, ...) indices and x has (i, j, k, ...) indices.
We have to also consider total derivative terms, i.e.,

JOU =1, 4 f dP oo, 1,V (44)

where ©6.1) js all contractions with arbitrary parameters of the following expression with 7]55 :
00xY0x x> axYdx 0y +00x 0x x> 0x 0x0x +09x0x0x x> dx 0¥’
+00x0x0x0x0x 0x” + 00 0x dx0x0xdx +00x 0x dxdxFF
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+00x0x0x O FF +0x"0x 00 FOF +00x”dx x>0  FF
10X 0y 0x 0  FOF + 00 0y  FFFF + 03 0  FFFOF (45)

Note that all terms above and the terms in (43) involve yx”.
Then the T-duality constraint

85O0 + 5530 4550V + OV =0 (46)

generates some algebraic equations between all parameters. The solution to these equations pro-
duce the following numbers for the effective action parameters in (17) and (16):

1
W, — 8Ny, Wr —> —2—16Nq, W3—>§+4N1, W4 — —1 — 8Ny,

1 1 1
W 16N, W __2N, W ) W T AR
5 —> 1 6= 7 1 nd 8> —3;
2 24 2 24
Th—>1, T, —0, T3—>—§+?N1, T4—>—§+?N1, @7
T 7+96N T 2 24N T 1+12N T 7 24N
— —+ —Nj, — — — —Nj, —- ——+ —Ny, — — — —Nj,
sostsN o> o—-—N T TN > —-<N
3 64 6 48 1
T9—>—§—?N1, T1o—>—§—?N1, T11 — 2Ny, T12—>Z+2N1, Ti3 — N

The parameters in the first two lines fix the action (17). The other parameters fix the action (16).
The parameter N; could not be fixed by the calculation at the level m = 6. So at this level
there are two T-dual multiplets. However, from the S-matrix calculations in m =4 we know
that N; = —1/24. It would be interesting to fix the parameters in (16), (17) by the S-matrix
calculations in m = 6 and compare the result with the above numbers.

The parameters E, E3 in the T-duality transformations 7?1 appear in above calculations,
however, the above T-duality constrain at the level m = 6 could not fix them. There are also many
parameters in the T-duality transformations 7! which are not fix by the above calculations.
The T-duality transformations 71 that our calculation fixes appear in the appendix.

3.3. Sixextra F’s

At the order o’ and at the level of m = 8, there are four contributions to the action S( D One
contribution is coming from expanding (3) and keeping m = 8 terms, the second contnbutlon
is coming from expanding (14) with the coefficients (39), the third contribution is coming from
expanding the couplings in (16) and (17) with the parameters (47), and the last one is coming

from the couplings in (18) and (19). The parameter N; and the parameters Zi,---, Z37 and
Y1, .-+, Y16 appear in Sg;l’jl). One should reduce Sgtl) on the circle along the y-direction and use

the T-duality transformation (22). Then one should compare the result with Sg;i)l. One finds

(©,
S(Spl) T S<8 D 4 ss®D (48)

where §S®1 contains some non-zero terms at the level of m = 8 which includes all above
parameters. Each term in §S® 1) has the scalar field x?.
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The extra terms in §S® D should be canceled by the T-duality transformation 7D on the
reduction of the action Sg;o), by the T-duality transformation 7*1) on the reduction of the action

Sg;O), and by the T-duality transformation T@D on the reduction of the action Sg’;o), ie.,

2,00 TOOLT6OD 5 gy 8,1 (16,2)
Sp) > SpO 48500 +88)

0,0 “,1)
SS,O) T i?; Sgl],)(i)l + 3S£8,1) +8S4(‘12,2) + 55;516’3) + 85&20,4) (49)

7O 72D
S Sy +8se ) 485002 a5V 45 45510V o510

where 8S§16’2), cee, 8Sé18’6) contains some non-zero terms at higher orders of &’ in which we are
not interested. The T-duality transformation 7> is given in (40), the T-duality transformation
T®D is given in the appendix and 71 can easily be constructed with some arbitrary parame-
ters similar to (43). Similar to (45), one can construct the total derivative terms J ®.1) Then the
T-duality constraint

8SED 1 a5 4 ssPY 455V + D =0 (50)

generates some algebraic equations between all unknown parameters in the T-duality transfor-
mation, the total derivative terms and the parameters in (18) and (19).

The solution to equation (50) produces the following numbers for the effective action param-
eters in (19):

Y 7+56N Y. 2 24N Y- 0, Y. 14-|-192N
- -+ — - - — — — - — 4+ —
1 5 5 1 2 5 5 1 3 ’ 4 5 5 1

3 56

3 1 1 3
Ys—> —>—10N;, Y¢— —- —3N;, Y75 —+>-N;, Yg— = ——Ni,
5 1 1 6 1 1 7 16+41 8 5 5 1

1 1
Yo — 2N1, Yio—1, Y11—>—Z, Y12—>—§,

| ] ]
_ L Yis— —. Yig— ——. 51
32’ 120 5T 3y 10T TRgg b

And the following numbers for the effective action in (18):

14+ 8N, —7— 56N, —4 — 12N, —14+72N;
s Lp—>—F—, L3> —F—, 24> —(—
1920 5 5 5
7 1 7 7 n 72N AR 23 — 96N, Ze o —8+ 96N
ﬁ —_—— —_— S — e —
5 b 6 10 5 1’ 7 35 b 8 5 9
4 — 48N, -9 —T2N; —7+ 144N, 36 — 552N,
Y 10—~ ——F 11— > 12— %5z
35 5 5 35

14+ 88N —8+ 56N, —2—176N; 174+ 976N,

- > 214%71 215%7, | R —
5 5 5 35

700 s 14 88N Zie > —3+96N; Zio— —1—48N; Zoo s 7 34

17 5 s 18 5 s 19 5 s 20 60 15

V4 3 11N Z 3 +9N V4 1 Z 3 +6N

- —— - — - — 4+ = - —— - — 4+ =

21 20 5 1, 22 30 5 1, 23 4’ 24 20 5 1,

V4 3—i-:J’N V4 1-I-15N Z 3—i—llN V4 ! 22N
- — 4+ — - — 4+ — - — 4+ — - —-— - —

25 30 10 1, 26 20 5 1, 27 20 5 1, 28 20 5 1,

Y13—> Y14—>—

9 —>

Z13—>

1
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z 18N L 4y, 2 L 8N Zm 3w
- — — —— — = — —— 4+ = —
29 5 s 30 10 5 1, 31 20 5 1, 32 1,
7 3 +32N 5 N 7 1 +N1 7 —1—-3N;
- — 4+ — — — —_ —— 4+ — _
33 10 5 1, 34 1, 35 160 5 s 36 20 s
1~
Z37 — — + 52
37 160+20 (52)

The solution to the equation (50) produces also the T-duality transformation 71 which is very
lengthy expression and has many unfixed parameters. It is not illuminating, so we do not write
it. It is interesting to note that the T-duality constraint could fix all parameters in the actions (18)
and (19). The parameter N could not be fixed by the T-duality constraint even at the level of
m = 8. So the two T-dual multiplets remain independent at the level of m = 8. It seems if one
extends the above calculation to m > 8, one would find only higher F-corrections to the two
T-dual multiplets.

4. Discussion

In this paper, we have found that the constraint that the covariant effective actions must be
invariant under the T-duality transformation (22) plus their appropriate higher derivative correc-
tions, fixes the independent couplings in the effective actions at order o’ up to two parameters,
i.e., (39), (47), (51) and (52). Hence, the T-duality constraint dictates that there are two T-dual
multiplets. One with overall factor C and the other one with the overall factor Ni. We have
chosen the overall factor of the first multiplet to be C = 1 which is dictated by the S-matrix
calculations. The S-matrix also fixes the overall coefficient of the other T-dual multiplet to be
Ny =-—1/24.

Another approach for imposing the T-duality constraint is that one considers non-covariant
action and constrain it to be invariant under the standard T-duality (22) without o’-corrections.
Then one should use non-covariant field redefinitions and total derivative terms to convert the
non-covariant action to the covariant form [31]. This method has been used in [31] to reproduce
the known bulk effective action of the bosonic string theory at order «’. We have used this method
and found exactly the relations (39) at four-field level and (47) at six-field level. That is, we
have written all contractions of F,dF,dy, 39 at order a’ and at the level of m = 4. Then we
constrain it to be invariant under the T-duality transformation (22). The resulting action converted
to (14) by appropriate non-covariant field redefinitions and total derivative terms provided that
the relations (39) are satisfied. Similar calculation at the level of m = 6 produces the coefficients
in (47).

A specific non-covariant D-brane action at order «’ in the bosonic string theory has been
written in [29] which is invariant under T-duality transformations (22) and includes all powers
of F. It includes 0 F, 00 x and some matrices that contains all powers of F and d . We have
expanded that action at the level of m =4 and use non-covariant field redefinitions and total
derivative terms to convert it to the covariant action (14). We have succeeded at the level of
m = 4, however, we could not found covariant action at the level of m = 6. That means the
action proposed in [29] does not produce the result of the S-matrix calculations at the level of
m > 4. In fact the F and 0 x in the matrices used in [29] must be constant. The same matrices
have been used in [30] to construct the effective action of two massless closed strings and infinite
number of constant F. It has been shown in [30] that the result is consistent with the S-matrix
element of two closed string vertex operators in the presence of constant F'.
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We have found the couplings at order «’ with zero, two, four and six extra F. In general
there are non-zero couplings with more than six extra F as well. One may try to find a closed
expression for all couplings at order o’. One suggestion may be to extend the pull-back metric
G in (3) to include F’s as well. An extension is the following symmetric matrix:

ab < 1 ~ 1 )ab
G == G— (53)
G+F G-F

In the absence of the transverse scalar fields x’, it is the open string metric which appears in the
effective action when it is written in terms of non-commutative variables [32]. In terms of the
commutative variables which we are working with, the above matrix may be used to rewrite the
couplings we have found by the T-duality constraint in a closed expression. For example, all the
couplings which have Qup Q29 can be written as

Sp 2Ty [ d"*lo /= detGan)| 2’ 24 (54)

where det(Gp) = det(Gap, + F,p). Expanding the DBI part, it produces all couplings we have
found in (39), (47), (51) and (52) which includes the structure $2,,'2%%;. To be able to rewrite all
other couplings in a closed expression, one may also need the following antisymmetric matrix as

well:

1 1 ab

@“”:(~ F— ) (55)
G+F G-F

It would be interesting to find a closed expression for the couplings that the T-duality constraint

fixes. That expression would produce correct couplings with arbitrary number of F'’s.

We have found the world-volume couplings at order @’. One may be interested in extending
these couplings to the order o’2. In this case, one should first find the independent couplings at
order o’? as we have done in section 2 for the couplings at order «’. Then one should transform
them under the T-duality transformation (22) at order o’ 0 to find 852 1t should be canceled
by total derivative terms J ™2 and by SS,(,’"’Z) terms which are resulted from transforming the
DBI action under the T-duality transformations at order o’ % and from transforming the couplings
at order o’ under the T-duality transformations at order o’ that we have found in this paper.
This later term makes the calculation in the bosonic theory to be very lengthy. However, in the
superstring theory there are no couplings at order «’. Hence, the calculation would be much
easier to perform. It would be interesting to find the o’ corrections to the DBI and WZ actions
in the superstring theory by the T-duality constraint and compare them with the couplings found
in [23,25] by the boundary state formalism in superstring theory.
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Appendix A

In this appendix, we write the T-duality transformation T that the T-duality constraint (46)
fixes. The transformation for AY is
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y &, & b pd v L ab pé péd y
AP — a'[-16N | F; F F5F53d~85x +(§+10N1)F55F FF 3585)(

19 19 T , - 1 o -
~(= + = NOFIFP0:05 5% 9axy0 x° + (= + 4N F3,FP0% 95 5% 92 x,0% x°

10 5 b 4
+(2+24N) — E3)FFP 0303 xi9ax" 0% x* + Ea FeF" 099,000 x 9%

1 e . 2 . o
+(Z+8N1)F&;Ffda,;a,;xyaﬂx>a”xy+g(—1+12N1)F5Fg’a,;ad~xyaaxyabxy

1 - B -
+§(22 + 256N, — 5E2)F5FgagaJXYa“Xya”x«V

1 ~ ) ~ s b
—(5 +HONDI Dex % xy 3 X" 0507 0" xy
+(1+ 12N, — Ea)agasxyaaxiaaxya;;)(i35Xy

- - — 1 s -

+Esacagx,-ag,xyaaxya,;x'abxy—(Z+2N1)F55chaéa,;xyaaxlabx,-

1 ; 7 0 inb ¢ i nd i b
-3 + AN FLF3:070;5 %7 9% % 8% xi + E6d0:xj9ax" 8% x” 85 x7 8% i
—EyF{ 000,007 X700 ¢ + B FE Fyed03:0% 000 x'
FEg0% 0 xi0a %' 0% x 0510 X7 — 3(1 + 8N x” daxyd x> 07 x, 0% 5
+(2+24N1 — E3)3;0:xi0ax" 0% x7 9 %, 0 x”
—(4+ 56N — E2)F99 %7 8% x,0: F570° 1"
+(1+ 12N1)50: " 8 x, 0 X 0" x "9 i + E2 0% 9" X' 0:F5 30 i
—Egal;agx,-aaxla“xm”xfacxj+§Ffdaax>aaxyabxyaJF~5
+EoFedix” 9% x,0" 7 938 + EvoFeogx 0% x7 0% xid; Y
FENFST XY 35 30" x 05 FS + E1nFop0% 7 0 x 0y 0; F¢

3 S 1 P gs s
+§(1+8N1)F§FbCF§8“Xy85F&J—Z o ) et PRk Y o

l ~ o~ ~ ~3 o~ ~
+=(174256N| —5E))FPFEF 9 Y3, F- 5 + E\3FPF-F39 Y95 F¢

5 a“c ad a“cd b
—FyF{F"0% X 0;F;5 + EraFy F{F{ 0" (" 0; F¢
Q2+ 8NGO 1 dax 07 xy 07 X0 ki + 2+ 24N FE F 0200 071197 i
—(4+ 48N FEFE 85055 9% ¢ 0" xi — g SFUFLF0%9:x°

1N -
—(§+7)F&5F“bFEJchaeaéXy

5 ~ ~ - -
—(5 432N - Ep) FLF3-0995x7 9% 4y 0" x*1 (56)

where E;, E3 are the parameters that appear also in (40) which could not be fixed by the con-
straint (46). The other parameters Ey, ---, E3o in above and the following transformations are
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also the free parameters that the constraint (46) could not fix. They may be fixed by considering
the higher order constraints. The transformation for A¢ is

ar«h o 1 Gp pdénia . yab 1 ¢ pd péain v ab
AT o=+ 10N FE g F0%050 0%, — <1+ 88N FLFE FE0% 0507y,

1 .- . - I . o
—ZFacF‘zéFdeagagxyabe + (44 64N, + Eq4 — Ez)F“chFaza"agxyabxy
3 aé d e yab 1 aé od e yab
—S (L4 8N)FOFFL0:0: 109" gy — (17 + 256N F Ff FE0;0: 109" xy

17 216 . -
Hg + N+ Ez)FgF;FCdajaéxyabxy — F“CFg’Fga,;aéXyabx>

3 . L =
—( H 14N+ E) F Fig 0% 000" x,

1 - _ - _
+507+ 176N1)Fg’agagxyaaxya”xyafxy

1 . ‘ - -
—5(29+352N1)Fg’a“aﬂ>’al;xya”xyafxy

1 ad , b 5
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The transformation for x' is
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3. . . ; 1. -
+§3685)(’85xy8“xy85xy8bxy+Eacagx’aaxfé)“xyé)ng&bxy
) - ~ . 1 . . S
—20506x" 92 x” 0% x”0" Xy xj + 50506 8ax” 0" xy3" x /9 x ] (58)

In above transformations we have removed the terms that are canceled by the Bianchi identity
g Fiey = 0. Note that the above transformations are non-zero for any specific values for the
parameters E, - - -, Eoo. Hence, it is impossible to find solution for the T-duality constraint (46)
without adding corrections to the standard T-duality transformations (22).
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