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Abstract: The need of accounting for resilience in global supply chains has 
been growing from practical and academic points of view. However, there is 
still the need for developing quantitative decision support models on this issue. 
In the present work, we propose a novel multi-objective mixed possibilistic, 
two-stage scenario-based stochastic programming model to handle supplier 
selection and order allocation problem in a global supply chain under 
operational and disruption risks. The model minimises cost and political risk, 
while, maximising resilience of the supply portfolio. Various risk mitigation 
approaches including: contracting with backup suppliers, fortification of 
suppliers and procurement of emergency inventory, are considered in the 
model. In addition, the proposed model determines recovery plans. Reservation 
level driven Tchebycheff procedure is incorporated in the solution procedure to 
find Pareto-optimal solutions. The validation of the model via computational 
experiments demonstrates the applicability of the proposed model and solution 
method in building a resilient supply portfolio under consideration of 
operational and disruption risks. 
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1 Introduction 

Supplier selection and order allocation (SS&OA) problem is a complex optimisation 
problem within supply chain management which involves multiple tangible and 
intangible criteria (Ho et al., 2010). In today’s challenging global market, traditional 
criteria in SS&OA problems like cost, quality and delivery time (i.e., QCD measures) are 
not sufficient any more. Several events over the past decades have demonstrated it, and 
emphasised the existing risk is increasing in the modern fragile supply chains. Generally 
speaking, risks can be divided to two main groups: operational risks and disruption risks, 
operational risks address the inherent uncertainties of critical data such as demand-side 
and supply side uncertainties (Rezapour et al., 2016), and disruption risks refer to major 
disruptions that have significant lasting negative impacts (Tang, 2006). For instance, in 
early 2000 a fire at the main Philips radio-frequency chip plant disrupted the supply to 
Ericsson for their cellular phones. Surprisingly, this event led to exiting of Ericsson from 
the market of cellular phones along with an estimated $400 million revenue loss (Rice 
and Caniato, 2003). Other similar disruptive events in supply chains could be found in the 
literature (e.g., Sheffi, 2005a; Fuller, 2012), however, most of them have common 
properties. Disruptive events are difficult to predict, have a small probability of occurring 
with significant impacts on the ability of supply chains. In order to address supply risks, 
especially disruptive type, managers are now adopting business continuity planning 
(BCP) approach. BCP is an approach to optimise the ability of firms to react to 
unanticipated events, and keep its functionality in an acceptable range during occurrence 
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of potential disruptions (Zsidisin et al., 2005). In other words, business continuity 
involves management process of identifying potential internal and external risks and their 
respective effects on critical business processes, in addition to developing a framework to 
ensure organisational resilience (Drewitt, 2013). Resilience is closely related to the 
capability of a system/organisation to return to a stable and predefined state after a 
disruption (Bhamra et al., 2011). It is important to focus on the concept of supply chain 
resilience in order to design and plan a system that is able to respond to changes rapidly 
and cost effectively (Carvalho et al., 2012; Colicchia et al., 2010). Implementation of 
BCPs is becoming more vital with the advent of global supply chains, since supply 
networks are spanned across international borders, and inevitably risk is increasing and 
new types of risks are emerging that should be handled by managers (Sahebjamnia et al., 
2015; Faertes, 2015; Harland et al., 2003). It is essential to remind that the organisations 
may not have the capability to eliminate or ameliorate many of external risks in global 
supply chains such as political risk in key export markets (Ritchie and Brindley, 2000). 

In spite of the growing number of papers in mentioned issues (Gong et al., 2014; Kim 
et al., 2015), there is still a lack of quantitative decision models that could be able to 
address resilience and political risk of global supply chains simultaneously, especially in 
SS&OA problems. Given its importance, this paper addresses the SS&OA problem of a 
manufacturer that is purchasing some critical items from global market. The 
manufacturer aims to prepare a supply portfolio which is resilient against plausible 
disruption and operational risks. Operational risk originates from inherent impreciseness 
in critical data, and this uncertainty is handled by introducing imprecise parameters 
which are formulated as possibility distributions in the form of fuzzy sets. However, 
disruption risks are divided to two main categories in this paper and are tackled 
individually. The first group of disruption risks relate to those events that has direct 
impact on production capacity of suppliers (e.g., natural or man-made disasters), and is 
considered via stochastic scenarios. Political risk is the second group of disruption risks 
which originate from the nature of global supply chains that requires international 
relations. We encounter this kind of risk by developing diversity in the supply portfolio 
with consideration of mutual political conflicts between countries of suppliers. As each 
risk is identified with two dimensions including probability and impact (Mitchell, 1995), 
diversity is proposed by Jansen et al. (2004) as an approach to face with this type of risk 
when there is no basis for predicting its probability and impact. In fact, we believe 
stochastic disruption scenarios can be predicted with specific probability for individual 
suppliers due to their specifications, but somehow it seems unrealistic or impossible for a 
manufacturer to provide disruption scenarios for political disruption scenarios of its 
supply portfolio. In this regard, a three objective mixed-possibilistic two-stage stochastic 
scenario-based model is developed which minimises cost, maximises resilience, and 
minimises political risk, simultaneously. The first stage of the model determines design 
related decisions which are made before realisation of scenarios, while, the second stage 
of the model includes recourse decisions that are specified after realisation of scenarios. 
To the best of our knowledge, this is the first paper in the literature which accounts for 
operational, disruption and political risks of supply planning problem of global supply 
chains simultaneously. Other contributions of the proposed model in the global supply 
planning problem can be listed as follows: 
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• addressing business continuity related concepts/measures 

• considering various proactive risk mitigation actions (e.g., fortification of suppliers, 
providing backup suppliers, and preposition emergency inventory at suppliers), along 
with reactive recovery plans, simultaneously, via a two-stage modelling approach 

• developing a new quantitative indicator for measuring and maximising the resilience 
of the supply portfolio 

• using conditional value-at-risk (VaR) as the risk control method to tackle expected 
worst-case scenarios. 

The remainder of this paper is structured as follows: the literature review is provided in 
the next section. Problem definition and the proposed mathematical model are elaborated 
in Sections 3 and 4, respectively. Solution method is developed in Section 5. Numerical 
experiments and managerial insights are presented in Section 6. Finally, the last section 
comprises conclusion highlights and future research directions. 

2 Literature review 

The present work aims to incorporate operational and disruption risks in a SS&OA 
problem in a global supply chain in order to build a resilient supply portfolio. In this 
regard, the relevant literature is reviewed in two separate but complementary streams: 
supplier selection under operational and disruption risks and resilient supply chains. At 
the end of this section, research gaps are discussed. 

2.1 Supplier selection under operational and disruption risks 

A rich body of supply chain risk management literature addresses different aspects of 
procurement problem under various kinds of uncertainty (e.g., Abbasi et al., 2014). 
Recent literature surveys such as Ho et al. (2010, 2015), Snyder et al. (2012) and Ivanov 
et al. (2015) have analysed new agendas in supply chain risk management filed, and all of 
them have emphasised the importance of supply related risks. Snyder et al. (2012) believe 
that these days firms are much less vertically grown, and their supply chains are 
increasingly global, accordingly, their suppliers are spread out throughout the world, 
some regions that are politically or economically unstable. Several forms of uncertainty 
have been discussed in the literature including: yield uncertainty, capacity uncertainty, 
lead time uncertainty or input cost uncertainty (Snyder et al., 2012). Bansal (2016) 
formulated a multi-level supply chain network with a single producer, multi distributors 
and multi retailers during a finite planning horizon in which the demand rate is assumed 
to be exponential function of time and stock is assumed to undergo deterioration. 
Aggarwal and Singh (2015) modelled a stochastic multi-objective supplier selection 
problem considering operational risks involving uncertainties-related supplier’s capacity, 
product demand, transportation and variable costs and lead time probability distributions. 
Cardoso et al. (2015) modelled disruptions in a probabilistic manner, resulting in the 
incorporation of two sources of uncertainty. They have considered 11 indicators to assess 
the supply chains’ resilience, which comprise network design, centralisation and 
operational indicators. Su and Liu (2015) developed a stochastic dynamic programming 
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formulation to characterise how dual sourcing balances the risks and opportunities, when 
a company bears disruption risks and correlated operational risks. Rabbani et al. (2014) 
proposed a multi-objective model for the SS&OA problem under disruption risks with 
discount constraints. Sawik (2010, 2011b) developed supplier selection models with 
various assumptions, and controlled disruption risks via VaR and conditional value-at-
risk (CVaR). Similarly, Meena and Sarmah (2013) studied order allocation problem 
under the threat of supply disruption. Berger et al. (2004) and Berger and Zeng (2006) 
investigated the problem of choosing from multiple identical suppliers subject to 
disruptions. They have concluded that typically the optimal number of suppliers is small, 
except in extreme cases where suppliers are very unreliable and the cost of failure is very 
high. Merzifonluoglu (2015) established how risk modelling can be applied to supply 
portfolio procurement decisions by developing mathematical models considering the risk 
neutral and risk averse objectives independently or simultaneously. Hosseininasab and 
Ahmadi (2015) introduced a two-phase supplier selection procedure which includes a 
primary evolution of suppliers and then feeding the results into a multi-objective portfolio 
optimisation problem to maximise the expected value of suppliers, and minimise their 
correlated risk. Fera et al. (2017) implemented a Taguchi analysis to create a decision 
map for identifying possible strategic decisions under different scenarios and with 
alternatives for order planning in the supply chains. 

2.2 Resilient supply chains 

Given the importance of accounting risk in supply chain management, resilience has 
emerged as a new topic in the literature, and several authors have prescribed practices to 
increase supply chain resilience. Resilience is defined as the ability of a system to reduce 
effectively both magnitude and duration of deviation from the targeted performance level 
(Vugrin et al., 2011). Various proactive and reactive resilience strategies (e.g., 
incorporating redundancy resources, implanting business continuity management systems 
to assure recovery of lost capacities, and improving reliability of existing facilities) have 
proposed in the literature to enhance supply chain resilience (Li and Savachkin, 2013; 
Sahebjamnia et al., 2015). Iakovou et al. (2007) referred flexible sourcing, demand-based 
management, strategic safety stock, supply chain visibility, and process or knowledge 
back-up as resilience initiatives. The most challenging issue in this issue is the trade-off 
between resilience and cost (Sheffi and Rice, 2005). Esmaeilikia et al. (2014) has 
reviewed the existing literature of supply chain planning models that involve multiple 
flexibility options to improve resilience, and responding to inherent operational or 
disruption risks. Carvalho et al. (2012) studied a supply chain redesign problem to 
understand how mitigation strategies affect each supply chain entity performance, and 
evaluating alternative scenarios to improve supply chain resilience to a disturbance. 
Sawik (2013) proposed a mixed integer programming approach for obtaining a resilient 
supply portfolio capable of supplying parts in disruption situations with prepositioning 
emergency inventory at protected suppliers. Sadghiani et al. (2015) developed a 
possibilistic scenario-based robust model by scenario generation and disruption profiling 
to design a robust and resilient retail network. Torabi et al. (2015) presented a  
bi-objective two-stage programming model that accounts for epistemic uncertainty of 
critical data to address SS&OA problem. Ishfaq (2012) proposed incorporating flexibility 
in transportation operations through the use of multiple transportation modes to improve 
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supply chain resilience. Tang and Tomlin (2008) highlighted the power of flexibility in 
providing resilience in supply chains and mitigating risks. Das and Lashkari (2015) 
prepared risk readiness and resilience measures as well as formulating a mixed integer 
programming model to create risk resiliency and averting potential risks. Christopher and 
Peck (2004) focused on the development of a managerial agenda in management of 
supply chain risk, via recommendations that are drawn empirically from a number of real 
case industries to improve the resilience of supply chains. Khalili et al. (2016) presents a 
two-stage scenario-based mixed stochastic-possibilistic programming model for 
integrated production and distribution planning problem in a two-echelon supply chain 
over a midterm horizon under risk though which the resilience level of the chain is 
optimised based on restoration of lost capacities. 

2.3 Gap analysis 

The provided literature review demonstrates that although operational and disruption 
risks are recognised as important factors in SS&OA problem, these factors are rarely 
considered simultaneously in order to prepare a resilient supply portfolio, especially, very 
limited quantitative methods are seen in this area. Accordingly, it would be worthwhile to 
develop quantitative models to integrate pre-disruption risk mitigation actions and  
post-disruption recovery plans in SS&OA problem. On the other hand, as mentioned 
above, supply chain risk management in global supply chains regarding their special 
characteristics requires new approaches. For example, correlation of economic and 
geopolitical interests between involved countries in supply networks must be considered 
as an important factor in global supply chains. This article seeks to fill the mentioned 
gaps through proposing a mixed possibilistic, two-stage scenario-based stochastic 
programming model for a SS&OA problem in a global supply chain where operational 
and disruption risks are accounted concurrently. In this regard, operational risks are 
handled by introducing imprecise values in the form of fuzzy sets for critical data, and 
disruption risks are presented through stochastic scenarios. To the best of our knowledge, 
this the first article in the literature in which a multi-objective programming approach is 
used to analyse the trade-off between the following goals: 

• minimising cost in the worst-case 

• maximising resilience of the supply portfolio 

• minimising political risk in the supply portfolio. 

Furthermore, the proposed model considers various proactive risk mitigation approaches 
(including fortification of suppliers, prepositioning of emergency inventory at fortified 
suppliers, and contracting with backup suppliers), in addition to post-disruption recovery 
option for suppliers with BCPs to enhance resilience level of the selected supply 
portfolio. 

3 Problem description 

This paper addresses a supply planning problem where an international manufacturer 
assembles various types of items over a planning horizon to meet customer demands. 
Items are purchased from multiple global suppliers which are dispersed all over the 



   

 

   

   
 

   

   

 

   

    A resilient supply portfolio considering political and disruption risks 215    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

world. The suppliers have different limited capacity and they offer different price and 
quality for items. Production capacities of suppliers are vulnerable to various types of 
disruption risks that can threaten the supply portfolio of the manufacturer. Disruptions 
range from natural disasters like earthquake or flood, to man-made ones such as 
supplier’s bankruptcy or system failure. In addition, as the manufacturer deals with global 
suppliers, various international regulation and limitations can threaten its supply 
portfolio. Although international regulation and limitations seem to be as a kind of  
man-made disturb, but they have different aspects that should be regarded specifically. 
Consider the case of a qualified supplier which has enough capacity to contribute in the 
supply portfolio, but international limitations which happen outside the manufacturer’s 
control confine it. This kind of risk is obviously different from other disruption risks 
which can decrease the production capacity of suppliers, and could be managed via 
various business continuity plans (Zsidisin et al., 2005). 

Through a preliminary investigation on qualified suppliers, the decision maker (DM) 
has recognised two groups of suppliers. The first group consists of reliable suppliers 
which have implemented specific business continuity plans and are able to recover their 
capacity in the event of facing disruption risks. The second group includes unreliable 
suppliers which have not developed business continuity systems; however, they offer 
lower prices than the first group. Reliable suppliers have prepared disruption profiles 
consisting of disruptive events, their likelihood, impacts and estimated recovery time. 
Disruption profile is obtained according to the result of the ‘business impact analysis’ and 
‘risk assessment’ steps of the business continuity management system (Torabi  
et al., 2014, 2015). 

As mentioned above, qualified suppliers belong to different nationalities and political 
relations between their countries can influence the supply portfolio of the manufacturer. 
On the other hand, this kind of disruption risk is mostly unknown due to lack of 
information. Chuang and Ma (2013) suggested diversification as the best policy to 
encounter disruptive events when we have no knowledge about them. In this regard, they 
studied various indices to evaluate supply diversification strategy. In this paper, we 
propose a modification of their index to overcome mutual political conflicts between 
countries of suppliers and to provide a diversified supply portfolio. Details of the 
proposed index are elaborated in the next section. 

Consequently, the manufacturer is faced with a SS&OA problem in a supply chain 
with disruption risks. The manufacturer has already identified a set of random disruption 
scenarios through a scenario-based stochastic analysis which can threaten each supplier. 
Each scenario is associated with an estimation of occurrence likelihood and impact. In 
this regard, DM has decided to focus on the following strategies to encounter disruption 
risks and preparing a resilient supply portfolio: 

• Investing in absorptive resources to fortify suppliers against disruptions (Chen and 
Miller-Hooks, 2012). The manufacturer will be able to preposition emergency 
inventory at fortified suppliers to mitigate disruption risks (Sawik, 2013). Reliable 
suppliers are fortified in different levels with respective cost and reduction  
impact of disruption on the remained emergency inventory after disruptions (Torabi 
et al., 2015). 
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• Developing the capability of using back-up suppliers, in the event that one or some 
of primary suppliers are inoperable or run out of capacity (Blackhurst et al., 2005). 
This strategy involves making contracts with backup suppliers as a precaution action. 

• Adopting a supply diversification strategy with consideration of mutual political 
conflicts between countries of suppliers in order to tackle the inherent political risk 
of the supply planning problem in the global market. 

To wrap it up, DM applies all aforementioned strategies to decide which suppliers should 
be selected and how orders should be distributed among them to optimise cost and 
resilience of the selected supply portfolio in the situation of facing disruption risks. 

4 Model formulation 

In order to deal with the presented problem in the previous section, we apply a two-stage 
fuzzy-stochastic scenario-based modelling approach. Owing to inherent properties of the 
considered problem it is necessary to develop a modelling approach consisting of 
determining the design characteristics of pre-disruption precautions (i.e., in first stage of 
the model) and planning decisions of post-disruption actions (i.e., in second stage of the 
model), simultaneously. Additionally, as Klibi et al. (2010) have mentioned inherent 
uncertainty in demand, supply and other related data is one of the main challenges in 
supply chain planning problems. Therefore, it is vital to develop decision models capable 
of considering such uncertainty. In our model, critical parameters such as demand, defect 
rate, production capacity of suppliers, fortification cost, holding cost of emergency 
inventory at fortified suppliers and mutual political conflicts of suppliers are considered 
imprecise (possibilistic) due to unavailability or incompleteness of data. In this regard, 
we have to estimate them based on the subjective opinions of experts. Accordingly, it is 
assumed that suitable possibility distributions in the form of fuzzy sets based upon both 
available subjective and objective data of experts have been estimated for each imprecise 
parameter in the form of a triangular fuzzy number. For example, consider an imprecise 
parameter which is characterised by three prominent values np, nm and no denoting the 
most pessimistic, the most likely and the most optimistic values of estimated by experts 
(Torabi and Hassini, 2008). 

To put it briefly, the addressed problem of this paper includes considering disruption 
risks via stochastic scenarios, and at the same time encountering operational risks through 
possibility distributions for imprecise parameters. Each scenario represents a disruption 
risk including disrupted suppliers who are faced with a specific disruptive event. Also, 
possibilistic parameters are used in response to operational risks according to 
aforementioned description about ambiguous data of the problem. It is worth noticing 
that two-stage stochastic programming is one of the most acceptable approaches to deal 
with two-stage decision problems (Torabi et al., 2015). In order to develop a stochastic 
optimisation model, first a set of disruption scenarios are identified. Then, an initial 
decision is made in the first stage (i.e., before any scenario realisation). In the second  
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stage of the model, recourse actions (i.e., second stage variables) are taken in order to 
compensate for the decision made in the first stage (Falasca and Zobel, 2011). Generally, 
since some parameters and variables of the model are defined scenario-based, a solution 
is sought which is immunised against all possible scenarios, however, the solution may 
not be optimal in general for the individual scenarios (Birge and Louveaux, 1997). A 
general discussion of stochastic programming models can be found in Kall and Wallace 
(1994). Accordingly, this paper presents a flexible multi-objective mixed possibilistic, 
two-stage stochastic program with recourse to handle the considered SS&OA problem 
under operational and disruption risks, simultaneously. Design decisions of the first stage 
of model include determining primary suppliers, backup suppliers, order quantity from 
each supplier as well as fortification decision of suppliers and allocation of emergency 
inventory among fortified suppliers. Furthermore, recourse decisions of the second stage 
of the model encompasses determining the required extra items which must be ordered 
from main or backup suppliers, as well as determining how to use prepositioned 
emergency inventories of selective fortified suppliers, and providing recovery plan of lost 
capacities at post-event phase. The model aims to achieve the minimum worst-case cost 
of ordering, purchasing, transportation, shortage, suppliers’ fortification and emergency 
inventory prepositioning. At the same time, the model optimises the resilience of the 
provided supply portfolio quantitatively with consideration of mutual political conflicts 
between countries of suppliers in order to face the inherent political risk of supply 
planning in the global market. In other words, the presented model not only mitigates 
catastrophic risks by taking plausible supply disruption scenarios into account, but also 
reduces supply disruption probability by considering political dimension of procurement 
problem. In addition to implicit assumptions mentioned former, the following explicit 
assumptions are considered in the mathematical modelling. 

• It is assumed that backup suppliers provide items with higher cost in disruption 
situations. Each random scenario might be occurred independently with a given 
likelihood. 

• Suppliers have limited capacities that might be lost partially or completely due to 
disruption scenario realisation, and reliable suppliers are able to restore their lost 
capacities. 

• Incurred shortage due to realisation of each disruption scenario is considered as lost 
sales 

• Pre-positioning of emergency inventory in reliable suppliers is done in pre-disruption 
situation. If this inventory is used in a scenario realisation, then it must be 
replenished in that scenario to bounce back the system to its initial state for the next 
period. 

Notations (i.e., sets, indices, parameters and variables) used for modelling are listed in 
Table 1. Please note that each parameter with the tilde sign (~) shows an imprecise 
parameter associated with a triangular fuzzy number. 
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Table 1 List of notations 

Sets Description 

I Set of suppliers 

J ⊂ I Set of reliable suppliers 

K Set of items 
Ei Set of possible fortification levels of reliable supplier i (i ∈ J) 
Lis Set of possible recovery levels of reliable supplier i (i ∈ J) after the 

realisation of disruption scenario s (s ∈ S) 
S Set of disruption scenarios through which lost production capacity of 

suppliers are decreased 

Indices Description 
i Index of suppliers (i ∈ I) 
k Index of items (k ∈ K) 
e Index of possible fortification levels of reliable suppliers (e∈ Ei; i ∈ J) 
l Index of possible recovery levels of reliable suppliers (l ∈ Lis; i ∈ J;  

s ∈ S) 
s Index of disruption scenarios (s ∈ S) 

Parameters Description 
Ai fixed cost of ordering from supplier i ($) 
Pik Unit cost of purchasing and shipping item k from supplier i ($/unit of 

item) 

P′ik Unit cost of purchasing and shipping item k from backup supplier i 
($/unit of item) 

� kSC  Unit cost of shortage of item k 

�
kD  Demand of item k 

ikθ
%  Defect rate of supplier i for item k 

COi Fixed cost of contracting with backup supplier i ($) 
�

ikFC  Fixed cost of fortifying reliable supplier i (i ∈ J) at level l ($) 

�
ikHC  Unit cost of holding item k at reliable supplier i (i ∈ J) ($/unit of item) 

�
ikRC  Unit cost of replenishing item k at reliable supplier i (i ∈ J) ($/unit of 

item) 
Ps Disruption likelihood of scenario s 

γ Confidence level in calculating CVaR (i.e., first objective function) 

�
lCa  Production capacity of supplier i (unit of item) 

�
lCaP  Storage capacity of reliable supplier i (i ∈ J) for prepositioning 

emergency inventory (unit of item) 

δis Amount of production capacity of supplier i that remains available after 
the realisation of disruption scenario s (as a percentile of its respective 

original value) 



   

 

   

   
 

   

   

 

   

    A resilient supply portfolio considering political and disruption risks 219    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 List of notations (continued) 

Parameters Description 

εils Amount of production capacity of reliable supplier i (i ∈ J) that is 
retrieved due to recovery at level l after the realisation of disruption 

scenario s (as a percentile of its respective original value) 

ηies Amount of increase in remaining production capacity of reliable 
supplier i (i ∈ J) due to fortification at level e if disruption scenario s is 

realised (as a percentile of its respective original value) 
�

llψ  Mutual political conflicts between countries of supplier i and supplier i′ 

α Feasibility degree 

M A very big number 

Decision variables Description 
zi Binary variable that takes 1 if supplier i is chosen as a primary supplier 

in the supply portfolio; 0, otherwise 
yi Binary variable that takes 1 if contract is arranged with supplier i as a 

backup supplier in the supply portfolio; 0, otherwise 
xik amount of item k that is purchased from supplier i 
vi Fraction of total demand for all items that is purchased from supplier i 
Reils Binary variable that takes 1 if reliable supplier i (iєJ) is fortified at level 

e; 0, otherwise 
fie Binary variable that takes 1 if disrupted and reliable supplier i (iєJ) 

recovers its production capacity to level l after the realisation of 
disruption scenario s; 0, otherwise 

EIik Amount of emergency inventory of item k that is preposition at reliable 
supplier i (iєJ) 

x′iks Amount of item k that is purchased from supplier i after the realisation 
of disruption scenario s 

xb’iks Amount of item k that is purchased from backup supplier i after the 
realisation of disruption scenario s 

xs’ks Amount of shortage of item k after the realisation of disruption scenario 
s 

EI’iks Amount of emergency inventory of item k that is used from 
prepositioned inventory at reliable supplier i (iєJ) after the realisation 

of disruption scenario s 

δ‘is Amount of production capacity of reliable supplier i (iєJ) that remains 
available after the realisation of disruption scenario s due to providing 
any fortification level (as a percentile of its respective original value) 

VaR Value-at-risk variable for the first objective function 
TCs Auxiliary variable for calculating the amount by which total cost (i.e., 

the first objective value) exceeds VaR after the realisation of disruption 
scenario s 
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4.1 First objective function: expected worst-case cost 

The first objective function of the proposed model includes two main parts. The first part 
is associated with the design related costs (DC), and includes ordering, purchasing and 
transportation cost of sending items from primary suppliers, plus contracting cost with 
backup suppliers, fortification cost of reliable suppliers and holding cost of 
prepositioning emergency inventory at fortified suppliers. It should be clarified that the 
fortification cost relates to the investment of improving infrastructure, e.g., buying 
enough spare power generators or renovation of supplier’s building (Torabi et al., 2015), 
and preparing capacity storage at reliable suppliers. Fortification of suppliers increases 
the remained production capacity of disrupted suppliers (as a percentile of its respective 
original value). 

� �
i i ik ik i i ie ie ik ik

i I i I k K i I i J e E i J k

DC A z P x Co y FC f HC EI
∈ ∈ ∈ ∈ ∈ ∈ ∈

= + + + +∑ ∑∑ ∑ ∑∑ ∑∑  (1) 

The second part is associated with the plan related costs (PC) for each scenario, and 
encompasses shortage cost, purchasing and transportation cost of sending items from 
backup suppliers, plus purchasing and transportation cost of sending prepositioned items 
at fortified suppliers, in addition to cost of replenishing used prepositioned inventory. 
Notably, consider that the manufacturer will not pay for the ordered but not delivered 
items due to realisation of disruption risks, so this part is subtracted form the first 
objective function. 

� �( ) �

( )

s k ks ik iks ik ik iks ie ie
k K i I k K i J k K i J e E

ik ik iks
i J k K

PC SC xs P xb RC P EI FC f

P x x
∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈

′ ′ ′ ′= + + + −

′+ −

∑ ∑∑ ∑∑ ∑∑
∑∑

 (2) 

Using expected value is the common approach to account for incurred costs over all 
scenarios. Pettit (2008) has criticised traditional risk management approaches due to their 
deficiency in characterising low-probability-high-consequence events, and has 
emphasised that considering worst-case is essential in modern risk management. Supply 
chain disruptions are mostly underestimated by managers due to their small probability of 
occurrence (Lim et al., 2010). In modern risk management approaches, it is vital to 
prepare yourself for extreme events, because we have learnt from the past that maximum 
loss of catastrophic events are significantly greater than mean or median of their loss 
(Grossi and Kunreuther, 2005; Kelle et al., 2014; Olson and Wu, 2013). However, 
Haimes (2004) has declared catastrophic risks can be mitigated significantly by a small 
raise in cost to improve structure. In this regard, we can invest in some precaution options 
(i.e., first stage variables) to alleviate catastrophic risks of the considered supply planning 
problem. To consider worst-case (i.e., catastrophic events) in our model quantitatively, 
we apply VaR and CVaR. These methods have been used extensively in financial 
engineering (Uryasev, 2000; Rockafellar and Uryasev, 2002). However, there are some 
other issues in which VaR and CVaR could be used in, for instance, Manavizadeh et al. 
(2017) utilised the concept of VaR to evaluate the amount of risk in multi project 
selection. VaR is the acceptable loss level above which DM wants to minimise the 
number of realisation of scenarios and CVaR is a weighted average of losses that exceed 
VaR (Sawik, 2011a). A detailed description about CVaR is introduced in Appendix A. 
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Accordingly, the first objective function of the proposed model minimises expected 
worst-case cost of the supply plan. The expected worst-case cost is minimised using 
CVaR as follows: 

1
1 s s

s S

MinCVaR Var p TC
γ ∈

⎛ ⎞
= + ×⎜ ⎟⎜ ⎟−⎝ ⎠

∑  (3) 

4.2 Second objective function: resilience of the supply portfolio 

Increasing confidence and conferring the resilience ability to the supply chain is one of 
the ways to deal with supply chain disruption risks. Resilience capabilities of a resilient 
supply chain enable it to react to the negative consequences of unexpected events, and to 
return quickly to its initial state or even to a new better state after being affected by the 
disruptions (Nyoman Pujawan and Geraldin, 2009). In order to assess the supply chain 
resilience quantitatively, we should design indexes to be optimised during the planning 
horizon. An initial attempt to assess supply chain resilience originates from the concept 
‘resilience triangle’, Figure 1, which represents the loss of functionality from disruption 
and performance evolution along the time (Sheffi, 2005b; Bruneau et al., 2003). The 
depth of the triangle shows the magnitude of disruption, and the length of the triangle 
represents the recovery time. Accordingly, the smaller the triangle is, the more resilient 
the supply chain is. 

Figure 1 ‘Resilience triangle’ 

 

Source: Adapted from Carvalho et al. (2014) 

In this approach, it is vital to use a reasonable criterion which should be optimised 
according to the considered supply planning problem. As mentioned above, the 
manufacturer mitigates disruption risks by prepositioning of emergency inventory at 
fortified suppliers as well as contracting with some back-up suppliers as counter 
measures against disruption risks. Also, the manufacturer can select reliable suppliers that 
have developed recovery plans to react to disruption risks. From a resilience perspective, 
it is important to analyse the supply portfolio in a specific time period, for example 
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between T and T* in which the supply plan is affected due to realisation of a disruption 
scenario. Suppose that the available supply is measured between T and T*, a curve is 
generated with the available supply along time (St) (see Figure 2). The total available 
supply portfolio in the case of no disruption is given by S*. When suppliers are affected 
by the disruption risk, a triangle pattern emerged showing the loss of total available 
supply. Nevertheless, some time after occurrences of the disruption risk the total 
available supply is bounced back to the initial state (S*). 

Figure 2 ‘Resilience triangle’ pattern of the supply portfolio along time 

 

As shown in Figure 2, risk mitigation actions reduce the potential risk of lack of available 
supply, while recovery efforts of reliable suppliers bounce back available supply to its 
initial value. An estimation of the triangle area can be computed based on straight line 
approximations between the available supply values for consecutive time periods 
(Suwanruji and Enns, 2004). Accordingly, the resilience index of the supply portfolio (R) 
is computed in equation (4): 

( ) ( )
*

* **
1 1

* ( * ) * ( * )

T
T

t
t

T T

S SS S t
R

S T T S T T

−− ∂
= − ≅ −

× − × −

∑∫  (4) 

The range of resilience index of the supply portfolio (R) is from 0 to 1. The value of 0 for 
the resilience index means that the supply portfolio has no resilience capability (i.e., the 
available supply is null during the period time between T and T*), while the value of 1 for 
the resilience index implies that the supply portfolio has enough resilience capability and 
is able to sustain in the event of facing the disruption risk (i.e., the available supply is 
equal to S* during the period time between T and T*). 

As we can infer from equation (4) maximisation of resilience implies that the 
available supply (St) should be as equal as possible to its initial value (S*). From another 
point of view S* in equation (4) can be considered as the total loss of supply (TLS) due to 
occurrence of disruptions, and (St) can be regarded as the provided supply by risk 
mitigation and recovery actions (RMRA). Note that some of the lost supply is retrieved 
through recovery efforts of reliable suppliers that have faced disruption risks. 
Consequently, maximisation of resilience in this regard as the second objective function 
of the model is presented in equation (5). Respective notations are presented in Table 1. 
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1 TLS RMRAMaxR
TLS
−

= −  (5) 

Or: 

1 RMRAMaxR
TLS

= −  (6) 

where: 

� ( ) �( )1
is

i i ik s is ils i ils
i I i J k K s S i J l L

RMRA Ca y EI P δ ε Ca Re
∈ ∈ ∈ ∈ ∈ ∈

⎡ ⎤′= + + −⎣ ⎦∑ ∑∑ ∑∑∑  (7) 

( ) �( )1s is i
s S i I

TLS P δ Ca
∈ ∈

= −∑∑  (8) 

Note that the last term in equation (7) is nonlinear. Linearisation of this equation is 
presented in Appendix B. 

4.3 Third objective function: political risk of the supply portfolio 

The third objective function of the presented model minimises the potential political risk 
of supply disruption. The political-related supply risk has been studied in various studies 
(Chuang and Ma, 2013; Erdmann and Graedel, 2011). In this regard, most of researchers 
have focused on political instability of countries and mutual political conflicts between 
them in supply planning problem. On the other hand, recent studies have investigated that 
diversity strategies are being employed into this field. Diversified systems are able to 
return to the steady state faster after disturbances because there are multiple species to 
substitute one other (Smith, 1996). The diversity of interacting components (i.e., 
countries of suppliers and their political relations) is helpful to mitigate political aspect of 
risks in supply planning problem. Diversity indices have been developed widely in 
various fields and most of them are similar in calculation method (Rosenzweig, 1995). 
Chuang and Ma (2013) developed a modification of Herfindahl-Hirschman index 
(Hirschman, 1980; Herfindahl, 1950), and applied this index, equation (9), to an energy 
supply planning problem. 

2 2

1 1 1

n n n

i j iji i
i i j i

Min v σ v v σ
= = = +

⎧ ⎫⎪ ⎪+⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑∑  (9) 

where vi is the share of asset i, σi is the variance of asset i, and σij is the covariance of 
asset i and j. This index is developed based on mean-variance-portfolio (MVP) theory 
(Markowitz, 1952) which minimises the risk of a portfolio composed of n assets. 
Inspiring by this index we propose the following index, i.e., equation (10), to overcome 
mutual political conflicts between countries of suppliers and to provide a diversified 
supply portfolio. Respective notations are presented in Table 1. 

� �Ψ Ψi i ii i i
i I i I i I
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 (10) 
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As we can see in equation (10), the first term considers the political conflicts between the 
country of manufacturer and countries of suppliers. In this way, the share of the supplier 
in the supply portfolio increases with lower political conflicts between the country of 
manufacturer and the country of supplier (i.e.). The second term in  
equation (10) corresponds to the political conflicts between countries of suppliers (i.e.). 
Our model tries to equalise the shares of suppliers in the supply portfolio which belongs 
to countries that have higher political conflicts between each other. Conversely, the 
model attempts to make a significant difference between shares of the suppliers in the 
supply portfolio which belongs to countries that have lower political conflicts between 
each other. This approach relates to the phenomena in political relations that if a country 
decides to stop its trade relations with the country of manufacturer, its allies may follow 
the same way, while countries with high political conflicts mostly select different ways in 
this situation. In this regard the presented model diversifies the supply portfolio with the 
aim of equalising the share of suppliers which have higher political conflicts and making 
significant disparity between the shares of suppliers with lower political conflicts. Mutual 
political conflicts are considered imprecise (fuzzy) in the model due to lack of historical 
data, and subjective nature of this parameter. The value of this parameter can be derived 
from worldwide governance indicators (WGI) of the dataset of World Bank (Bank, 
2015), or another dataset provided by Gartzke and Jo (2006) which is created based on 
the relation of votes of all countries that are members of the United Nations (UN). This 
parameter takes positive values, and the higher values indicate higher political conflicts 
between countries. Note that the second term in equation (10) is nonlinear. This equation 
can be easily converted to linear form which is reported in Appendix C. 

4.4 Functional and operational constraints 

; ,ikx Mz i I k K≤ ∀ ∈ ∈  (11) 

; , ,iks ixb My i I k K s S′ ≤ ∀ ∈ ∈ ∈  (12) 

1;i iy z i I+ ≤ ∀ ∈  (13) 

� �( ) ( )1 ; ,ks k ik iks iks iks
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∈

⎧ ⎫⎪ ⎪′ ′ ′ ′= − − + + ∀ ∈ ∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑ θ  (14) 
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, {0, 1}; , ,i iz y i I l L s S∈ ∀ ∈ ∈ ∈  (27) 

{0, 1}; , ,ilsRe i I l L s S∈ ∀ ∈ ∈ ∈  (28) 

0;i i Iν ≥ ∀ ∈  (29) 

0; ,ief i I e E≥ ∀ ∈ ∈  (30) 

, 0; ,ik ikx EI i I k K≥ ∀ ∈ ∈  (31) 

, , 0; , ,iks iks iksx xb EI i I k K s S′ ′ ′ ≥ ∀ ∈ ∈ ∈  (32) 

0; ,ksxs k K s S′ ≥ ∀ ∈ ∈  (33) 

0; ,isδ i I s S′ ≥ ∀ ∈ ∈  (34) 

0;TCs s S≥ ∀ ∈  (35) 

Constraints (11) and (12) guarantee that items could be purchased from suppliers which 
are chosen as primary or backup suppliers. Constraint (13) controls the role of each 
supplier in the supply portfolio (primary or backup supplier).Constraint (14) determines 
shortage of item k under each disruption scenario. Constraint (15) and (16) ensures that 
the total amount of purchased items from each supplier to be smaller or equal to 
supplier’s production capacity. As we can see in constant (16), some of production 
capacity of reliable suppliers can be used to provide emergency inventory. Constraint 
(17) limits prepositioning emergency inventory only in reliable suppliers that are chosen 
as primary supplier. Constraint (18) controls storage capacity of reliable supplies for 
prepositioning emergency inventory. Constraint (19) represents that the amount of 
products that are used after realisation of each disruption scenario is smaller or equal to 
the amount of prepositioned inventory in pre-disruption situation. Constraints (20) and 
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(21) limit purchasing quantity of items after realisation of disruption scenarios, however, 
consider that constraint (21) accounts for fortification and recovery of reliable suppliers. 
Note that the last term in the right side of constraint (21) is nonlinear; hence, linearisation 
procedure of this term is presented in Appendix B. Constraint (22) shows that the 
remained production capacity of reliable suppliers after realisation of disruptions can be 
improved by fortifying them. Constraint (23) says fortification of reliable suppliers is 
mostly allowed with one level. Constraint (24) represents that disrupted and reliable 
suppliers can be recovered at most in a specific recovery level after realisation of 
disruption scenarios. Constraint (25) ensures the amount of items purchased from each 
supplier after realisation of disruption scenarios must be smaller than or equal to its value 
in pre-disruption situation. Constraint (26) approximately estimates the supply portfolio 
of the supply plan. It should be noted that this constraint is ambiguous because the exact 
amount of items that are purchased from each supplier is determined after realisation of 
disruption scenarios. Constraints (27)-(35) define the type of decision variables. 

5 Solution procedure 

In order to develop the solution procedure of the proposed multi-objective mixed 
possibilistic scenario-based two-stage stochastic model, we have to consider the 
following issues: 

• disruption scenarios may result in reduction of production capacity of suppliers, 
hence, there might be many scenarios in the model that should be reduced to a 
reasonable range 

• the original possibilistic model must be converted to an equivalent parametric crisp 
model through an efficient method to reduce the number of crisp models that should 
be solved 

• the resulting crisp model is still multi-objective; therefore, an efficient method 
should be used to find their compromise solutions. 

Regarding the aforementioned points we propose the following solution algorithm that is 
summarised in Figure 3. Details of the main steps are clarified hereafter. 

5.1 Reducing the number of disruption scenarios 

The literature of supply chain risk management has emphasised that disruption scenarios 
should be reduced to a reasonable range (Pettit, 2008; Grossi and Kunreuther, 2005; 
Olson and Wu, 2013). In this regard, many approaches have been developed by 
researchers. Shapiro (2007) has suggested sampling as a technique to tackle the problem 
of scenario reduction in risk management. Novak and Kravanja (1999) have proposed a 
heuristic approach to reduce the dimension of stochastic scenario-based optimisation 
problems by determining a subset of the feasible space of random parameters. Sadghiani 
et al. (2015) have used a method developed by Karuppiah et al. (2010), which is built 
based on an idea similar to the approach of Novak and Kravanja (1999). In this approach,  
 
 
 



   

 

   

   
 

   

   

 

   

    A resilient supply portfolio considering political and disruption risks 227    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

a subset of scenarios is selected with the optimal objective value of the reduced problem, 
then the optimal objective of the full scenario problem is decreased. Torabi et al. (2015) 
have used a fuzzy clustering approach to handle the problem of reducing the number of 
scenarios. 

As we know, each disruption scenario is addressed based on two dimensions, the 
likelihood and the impact of disaster. Risk classification models based on likelihood and 
impact are introduced by Haimes (2011) and DoD (2000). Various combinations of 
likelihood and impact build up the ‘risk matrix’ which addresses different regions for 
prioritising scenarios from high priority to low priority (DoD, 2000). A sample of ‘risk 
matrix’ is depicted in Figure 4. This matrix shows each disruption scenario that is located 
in high priority region (i.e., based on its likelihood and impact) should be considered as a 
critical scenario. 

Figure 3 The proposed solution algorithm 

 Start

Reducing the number of random disruption scenarios

Converting the possibilistic scenario based model to an equivalent auxiliary crisp multi 
objective model     

Converting the resulting parametric crisp multi objective model to their equivalent a 
single objective model    

Solve the achieved single objective crisp models to obtain Pareto-optimal solutions of the 
original multi-objective model

Is decision maker stratified with 
provided solutions? 

Consider a new vector for objectives due to 
opinions of the decision maker (i.e. interactive 

approach) to obtain a new efficient solution

Yes

NO

Finish

Choose the final most preferred efficient (i.e. Pareto-optimal) solution
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Figure 4 A sample of ‘risk matrix’ (see online version for colours) 

 

Source: Adapted from DoD (2000) 

In the addressed problem of this paper, the manufacturer has prepared a set of disruption 
risk scenarios, and has implemented a risk-filtering approach based on ‘risk matrix’ to 
exploit critical scenarios. 

5.2 Finding the equivalent single objective model via reservation level driven 
Tchebycheff procedure 

There are various scalarising methods for solving multiple objective programs. Among 
available multiple objective program approaches, epsilon-constraint method and 
Tchebycheff-based approaches are frequently applied. Tchebycheff metric-based 
approaches have become popular in multiple objective decision making situations. These 
approaches systematically reduce the set of non-dominated solutions which remain 
available for identification and selection. Reservation level driven Tchebycheff procedure 
(RLTP) is known as a common and strong algorithm in the literature of Tchebycheff 
metric based approaches for generating non-dominated solutions (Reeves and MacLeod, 
1999). We can see RLTP matches the case of this paper; because, through an interactive 
procedure DM is able make decisions about tradeoffs between cost, political risk, and 
resilience. In fact, reservation levels (RLs) for objective space reduction are determined 
based upon DM opinions. RLTP produces only Pareto-optimal solutions and can solve 
mixed integer multi-objective models with non-convex solution space. This method is 
introduced in what follows. 

As RLTP method is an interactive approach, first, we should specify the number of 
solutions for presenting to the DM in each iteration. Consider this parameter is shown by 
P. Now suppose we have K objective functions (fi(x)) where (P ≥ K). Next we have to 
compute a reference vector called z** as: 

**  max[ ( ; 1,)] ,i i iz f x i Kε =+ …=  (36) 

x S∈  (37) 
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where S is the solution space, and єi is a small positive scalar for each objective function 
i. For the first iteration, we set RLi = –∞, i = 1, …, K, where RLi is the RL for the ith 
objective function. Next, a group of 2P dispersed weight vectors is generated as: 

[ / (0,1)]; ( 1, , 2 )k
j i iA λ R λ j P= ∈ ∈ = …  (38) 

1

1
K

i
i

λ
=

=∑  (39) 

where Rk is the objective function k space. Then, the associated Tchebycheff program for 
each weight vector is solved, and the P most different resulting objective vector is 
selected for presenting to the DM. This procedure is shown in Figure 5. It should be 
mentioned that ρ, in this procedure is a small positive scalar which is recommended to 
take from 0.0001 to 0.01. Also, α is a free of sign variable. 

Figure 5 Pseudo code of RLTP 

 

If DM is not satisfied with the results, the current solutions are partitioned into more 
preferred and less preferred solutions, and RLs are adjusted. RLs should be revised by 
DM to reduce the objective space for which they must be set less than or equal to the 
worst value for that objective among the current more preferred solutions. Yet, at least 
one RL must be set greater than an objective value of current less preferred solutions in 
order to reduce the objective space. Next another group of 2P dispersed weight vectors is 
generated, and the algorithm is iterated. The algorithm stops whenever DM is satisfied 
with the provided solution. Interested readers for more details about RLTP are referred to 
Reeves and MacLeod (1999). 
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5.3 Handing the ambiguousness of the model 

Several methods are proposed to find the equivalent crisp counterpart of a possibilistic 
mathematical model relying on the possibility theory (Zadeh, 1978; Dubois and Prade, 
1988). For instance, LH method is developed by Lai and Hwang (1992), however, this 
approach has difficulties in implementation, and implies some restrictive assumptions. In 
this paper, a possibilistic programming method adopted by Jiménez et al. (2007) and 
Parra et al. (2005) is applied to deal with the existing ambiguousness in the proposed 
model, and defuzzifying the possibilistic model into its crisp counterpart. It should be 
mentioned that this method has lots of advantages, like computational efficiency and ease 
of use in real cases, e.g., Pishvaee and Torabi (2010) and Torabi and Amiri (2012). A 
brief description of this method based on Jiménez et al. (2007) and Parra et al. (2005) is 
presented in Appendix E. 

6 Experiments 

In this section properties of the considered problem are derived, and applicability of the 
proposed model in real cases is evaluated. In addition, different managerial insights are 
discussed at the end of this section. Consider that each imprecise parameter of the model 
is produced by an appropriate possibility distribution in the form of a symmetric fuzzy 
triangular number based on LH method (Lai and Hwang, 1992). In this regard, the most 
likely value for each fuzzy triangular parameter (e.g., nm) is generated randomly based on 
uniform distributions. The most pessimistic (np) and the most optimistic (no) values of 
this parameter are calculated by a symmetrical spreads as (np = 0.8 nm) and (no = 1.2 nm), 
respectively. Feasibility degree for possibilistic constraints is set (0.8). The resulting crisp 
model of the solution method is coded in GAMS 23.5/CPLEX 12.2 optimisation software 
package, and experiments are done on a PC with Intel Core i7 processor running at  
2 GHz with 4 GB RAM. Table 2 represents RLTP parameters that are used in numerical 
experiments. 
Table 2 RLTP parameters 

Weight of objective functions (λi) 
ρ First objective 

function (λ1) 
Second objective 

function (λ2) 
Third objective 
function (λ3) 

The number of presented 
non-dominated solution 

0.01 0.4 0.3 0.3 10 

6.1 Numerical example 

The considered example in this section is inspired by a real case in Iran; however, due to 
difficulties of gathering data in developing countries, some of parameters are set 
randomly. To this end, suppose the manufacturer wants to supply four critical items from 
global market. The manufacturer has recognised six prequalified suppliers belonging to 
six different countries (including South Korea, Russian Federation, China, Sweden, 
Australia and India), which are able to deliver all of needed items. The manufacturer has  
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implemented the first step of solution procedure, and reduced plausible disruptive events 
of the supply plan. In this regard, three states of loss in production capacity of suppliers 
(including minor, moderate and major disruption) are considered. Major disruptions in 
each supplier individually, and moderate disruptions in two suppliers concurrently are 
considered as reasonable causes of disruptions in supply portfolio. Indeed, other 
combinations of losses are supposed negligible. Characteristics of disruptive events in 
each supplier, and the resulting 21 disruptive events with their likelihood are shown in 
Table 3 and Table 4, respectively. It should be noted as disruptive events occur 
independently, likelihood of disruption scenarios is calculated as: 

Disruped suppliers Undisrupted suppliers
s is is

i i

p π π
′∈ ∈

⎡ ⎤ ⎡ ⎤′=
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∏ ∏  (40) 

where πis is the occurrence likelihood of disruption scenario s in supplier i. As mentioned 
above, major disruption in suppliers individually, and moderate disruptions in two 
suppliers concurrently are set as disruption scenarios. Therefore, likelihood of each 
scenario can be calculated from equation (40). For instance consider disruption scenario 
20 in Table 4, the likelihood of these scenarios is computed as: 

20 [0.14 0.14][0.42 0.35 0.71 0.49] 0.0010P = × × × × =  (41) 

It assumed two of four suppliers have deployed business continunity management 
systems with fortification and recovery plans. Details of other scenario-based parameters 
and uniform distributions to generate imprecise and crisp parameters for the considered 
case are reported in Appendix D. Also, another important parameter of the model which 
is the mutual political conflicts between countries of suppliers (i.e.) is adapted by Gartzke 
and Jo (2006). As mentioned above, considered case is a manufacturer in Iran, hence, 
mutual political conflicts between Iran and six countries of suppliers, and mutual political 
conflicts among these six countries are gathered. It should be mentioned that this 
parameter is originally based on affinity of countries’ votes in United Nations General 
Assembly (UNGA), and ranges from –1 (least similar interests) to 1 (most similar 
interests). However, in order to avoid negative coefficients in the third objective function 
of our model, original correlations are subtracted from 1, and the results are reported in 
Table 5. Hence, ranges from 0–2 as lowest to highest mutual political conflicts. 

Figure 6 Resulted supply plan for the considered case (see online version for colours) 
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Table 3 Characteristics of disruptive events in each supplier 
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Table 4 Plausible disruptive events of the supply portfolio 

Disruption 
scenarios Disrupted supplier (s) Undisrupted supplier (s) Likelihood of disruption 

scenarios 

1 1 2, 3, 4, 5, 6 0.0026 
2 2 1, 3, 4, 5, 6 0.0051 
3 3 1, 2, 4, 5, 6 0.0010 
4 4 1, 2, 3, 5, 6 0.0026 
5 5 1, 2, 3, 4, 6 0.0010 
6 6 1, 2, 3, 4, 5 0.0023 
7 1, 2 3, 4, 5, 6 0.0023 
8 1, 3 2, 4, 5, 6 0.0005 
9 1, 4 2, 3, 5, 6 0.0012 
10 1, 5 2, 3, 4, 6 0.0013 
11 1, 6 2, 3, 4, 5 0.0013 
12 2, 3 1, 4, 5, 6 0.0008 
13 2, 4 1, 3, 5, 6 0.0018 
14 2, 5 1, 3, 4, 6 0.0020 
15 2, 6 1, 3, 4, 5 0.0020 
16 3, 4 1, 2, 5, 6 0.0004 
17 3, 5 1, 2, 4, 6 0.0005 
18 3, 6 1, 2, 4, 5 0.0005 
19 4, 5 1, 2, 3, 6 0.0010 
20 4, 6 1, 2, 3, 5 0.0010 
21 5, 6 1, 2, 3, 4 0.0011 

Table 5 Mutual political conflicts between countries of suppliers in 2011 

Suppliers Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 Supplier 6 

Countries South Korea Russian 
Federation China Sweden Australia India 

Iran 0.7000 0.0909 0 0.7907 1.0667 0.1702 
South Korea - 0.5000 0.5116 0 0.1364 0.5000 
Russian 
Federation 

- - 0.0400 0.5909 0.7143 0.1304 

China - - - 0.5778 0.8333 0.1132 
Sweden - - - - 0.1304 0.6190 
Australia - - - - - 0.8085 

Table 6 Results of the computational experiment for the considered case 

First OFV* Second 
OFV* 

Third 
OFV* 

RLTP 
method 
OFV* 

No** 
constraints 

No** 
continuous 
variables 

No** 
binary 

variables 

CPU time 
(seconds) 

1,638,331.694 0.567 0.433 0.118058 3,550 2,593 390 0.503 

Notes: *Objective function value, **number of. 
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Table 7 Resulted Pareto-optimal solutions for the considered case 

Weight of objective 
functions (λi) Solution 

λ1 λ2 λ 3 
First OFV* Second 

OFV* 
Third 
OFV* 

RLTP method 
OFV* 

1 0.4 0.3 0.3 1,638,331.694 0.567 0.433 0.118058 
2 0.43 0.47 0.10 1,364,701.611 0.905 0.444 0.038876 
3 0.45 0.35 0.20 1,474,777.175 0.753 0.433 0.082491 
4 0.94 0.03 0.03 1,260,481.053 0.402 0.598 0.006927 
5 0.36 0.24 0.40 1,831,623.398 0.279 0.433 0.156754 
6 0.51 0.31 0.18 1,427,426.036 0.747 0.436 0.070094 
7 0.24 0.55 0.21 1,705,240.361 0.835 0.433 0.081113 
8 0.78 0.20 0.02 1,257,497.676 0.935 0.650 0.008817 
9 0.76 0.09 0.16 1,354,038.507 0.200 0.450 0.057859 
10 0.65 0.18 0.17 1,383,709.440 0.571 0.454 0.065241 
11 0.10 0.48 0.42 3,485,010.898 0.621 0.433 0.155468 
12 0.43 0.56 0.01 1,384,664.058 0.888 0.467 0.044395 
13 0.50 0.44 0.06 1,729,327.481 0.548 0.433 0.186235 
14 0.18 0.37 0.45 2,575,053.029 0.474 0.433 0.174331 

Note: *Objective function value. 

Results of the computational experiments for the considered case are presented in  
Table 6. Also, portfolio variable of the resulted supply plan is presented in Figure 6. In 
addition, Pareto-optimal front of the presented model for the considered case is reported 
in Table 7, and illustrated Figure 7. 

Figure 7 Resulted Pareto-optimal front for the considered case (see online version for colours) 
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6.2 Managerial insights 

This section verifies managerial insights of the proposed model. In this regard, consider 
the proposed case in the previous subsection. We highlight three points about the 
presented model in what follows. 

6.2.1 Inspecting impacts of the fuzziness and the confidence level of the DM on 
the first objective function 

As mentioned former, CVaR as the first objective function of the proposed model, i.e., 
equation (3), controls the worst-case disruption scenarios, and γ as the confidence level 
parameter is decided by the DM. In the other hand, the presented model encompasses 
ambiguity of the input data through possibility theory, and α is another parameter that is 
set by the DM to control the fuzziness of the case. Sensitive analysis on these two 
parameters is done for the original case of the pervious subsection, and the results are 
shown in Table 8. As we can see in this table, more confidence level costs more. This fact 
is obviously inferred by comparison of columns of Table 8. In other words, the more risk 
averse the DM is, the higher costs is incurred. For example, consider the second and the 
third columns of the first row, improving 1% of confidence level (0.93 – 0.92 = 0.01), 
costs (2,018,398.827 – 1,795,683.606 = 222,715.221). On the other hand, comparison of 
rows of Table 8 shows that relaxation of constraints (i.e., expanding solution space), and 
acceptance of more ambiguity, positively impacts on the results, however, note that this 
trend negatively affects certainty of solutions. 
Table 8 Comparison of results due to different confidence levels versus different feasibility 

degrees 

 γ = 0.85 γ = 0.92 γ = 0.93 

 First OFV* 

α = 0.95 1,649,861.768 1,795,683.606 2,018,398.827 

α = 0.9 1,646,057.231 1,744,886.998 1,935,756.242 

α = 0.7 1,630,446.867 1,656,356.123 1,711,850.458 

Note: *Objective function value. 

6.2.2 Inspecting risk reduction of the second objective function 

In order to verify risk reduction impact of the second objective function on plausible 
worst-cases in the considered supply planning problem, the following two cases are 
considered: 

1 The original model with the objective of optimising only CVaR, i.e., equation (3). 

2 The original model with the objective of optimising CVaR, i.e., equation (3), and R, 
i.e., equation (6), simultaneously. 

We solved these two versions of the original model and details of results including: first 
objective function value, i.e., CVaR, second objective function value, i.e., R, DC, i.e., 
equation (1), TLS, i.e., equation (8), and RMRA, i.e., equation (7) are reported in  
Table 9. Based on the results, we can infer that a little improvement in DC by 3.4% (i.e., 
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from 2,456,679.105 to 2,540,292.758) can improve the resilience of the supply plan by 
29.215% (i.e., from 0 to 0.29215). Also, this result has mentioned by Haimes (2004) 
which emphasised that catastrophic risks can be mitigated significantly via a small raise 
in cost of improving structure. 
Table 9 Summary of computation results for the considered cases 

 CVaR DC R TLS RMRA 

Case I 809,731.492 2,456,679.105 0 1,746.005 0 
Case II 1,239,607.48 2,540,292.758 0.29215 1,746.005 510.096 

Table 10 Summary of computation results for TCs for the considered cases 

TCs Case I Case II Likelihood of disruption scenarios 

TC1 4,009,787.9 2,504,796.2 0.0026 
TC2 2,640,182.2 2,375,388.3 0.0051 
TC3 4,818,528.3 2,491,760.0 0.0010 
TC4 5,229,545.8 2,516,341.2 0.0026 
TC5 4,639,225.9 2,482,694.3 0.0010 
TC6 4,458,786.6 2,490,087.8 0.0023 
TC7 2,651,718.9 2,435,698.6 0.0023 
TC8 2,995,084.9 2,441,121.0 0.0005 
TC9 4,671,116.0 2,651,082.2 0.0012 
TC10 4,438,861.6 2,520,383.7 0.0013 
TC11 3,190,155.1 2,469,048.2 0.0013 
TC12 3,800,685.6 2,447,553.4 0.0008 
TC13 2,765,920.1 2,404,250.3 0.0018 
TC14 4,198,417.5 3,118,843.4 0.0020 
TC15 2,703,520.1 2,410,235.5 0.0020 
TC16 4,895,995.4 2,486,615.3 0.0004 
TC17 4,767,377.3 2,485,561.3 0.0005 
TC18 5,200,308.8 2,617,321.9 0.0005 
TC19 4,952,030.8 2,492,022.3 0.0010 
TC20 4,372,063.6 2,477,419.7 0.0010 
TC21 5,046,923.2 2,502,224.4 0.0011 
Average 4,116,487.41 2,515,259.48 – 
Max 5,229,545.80 3,118,843.40 – 

It is worth investigating how the resilience indicator of the second objective function 
reduces massive disruption risks of the planned supply portfolio. In this regard, we 
should remind some properties of CVaR method which minimises the average incurred 
cost of those massive disruption scenarios exceeding VaR. In the presented model, we 
account this value for each scenario by TCs. The results of this variable for the mentioned 
cases are reported in Table 10 and depicted in Figure 8. As we can see, improving 
resilience of  
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the supply plan through investigating in RMRA significantly reduces TC values, and 
implies that the resilient supply plan is able to react to massive disruption risks 
effectively. The most massive disruption in case I relates to disruption scenario 4 with 
likelihood of 0.0026, where reliable supplier 4 loses its production capacity completely. 
However, in case II, we can see the average of massive disruptions (i.e., TC) is declined, 
and also the maximum of them is decreased (from 5,229,545.8 in case I to 3,118,843.4 in 
case II at scenario 14 with likelihood of 0.0020 which is lower than its respective value in 
case I, i.e., 0.0026). 

Figure 8 Comparison of resulted TCs values for the considered cases (see online version  
for colours) 

 

6.2.3 Inspecting diversity impact of the third objective function 

In order to verify diversity impact of the third objective function on the planned supply 
base, the following two cases are considered: 

1 The original model with the objective of optimising only CVaR, i.e., equation (3). 

2 The original model with the objective of optimising CVaR, i.e., equation (3), and PR, 
i.e., equation (10), simultaneously. 

We solved these two versions of the original model and the resulted supply portfolio, in 
addition to their objective function values, is shown in Table 11. It is shown that the  
case II has got lower value for political risk of supply which verifies the significant 
impact of third objective function on mitigation of political risk. Also, the resulted supply 
portfolios for these two cases are depicted in Figure 9 and Figure 10. 
Table 11 Summary of computation results for the considered cases 

vi  

Supplier 
1 

Supplier 
2 

Supplier 
3 

Supplier 
4 

Supplier 
5 

Supplier 
6 

CVaR PR 

Case I 0.199 0.004 0.193 0.211 0.207 0.186 809,731.492 0.816 
Case II 0.005 0.2 0.197 0.202 0.202 0.193 1,082,815.57 0.450 

Developing a precise index clarifies diversity impact of the third objective function on 
the supply base. To this end, we propose the following diversity index (DI): 
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( )2
i j

i i j

DI v v= −∑∑
p

 (42) 

where (vi – vj) is the difference of shares of supplier i and supplier j in the supply base. 
The resulted DI for case I is 0.192551, and for case II is 0.188064. As we can see,  
case II has lower value for DI which implies the disparities between shares of suppliers 
are reduced, and the supply plan is more diversified. As discussed in Subsection 4.3, the 
provided diversification relates to mutual political conflicts of countries of suppliers, and 
a more diversified supply portfolio reduces political risk in the considered supply 
planning problem. 

Figure 9 Resulted supply plan for the case I (see online version for colours) 

 

Figure 10 Resulted supply plan for the case II (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

    A resilient supply portfolio considering political and disruption risks 239    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

7 Concluding remarks and future research 

Organisations all over the word have well recognised that supply chains are operating in 
an increasingly global, complex and risky environment. Economic or political crises, 
natural disasters, terrorist attacks, strikes, unreliable logistics and so on can severely 
impact the core business of supply chains. In this situation, this article addressed a novel 
multi-objective mixed possibilistic, two-stage scenario-based stochastic programming 
model to handle the SS&OA problem in a global supply chain under operational and 
disruption risks. Disruption risks are considered via stochastic scenarios, and operational 
risks are encountered through possibility distributions for imprecise parameters. The 
proposed model optimises cost, resilience and political risk of the selected supply 
portfolio quantitatively. Risk mitigation decisions (e.g., fortification of suppliers, 
prepositioning emergency inventory among fortified suppliers and selection of backup 
suppliers) are determined in the first stage of model, while, recovery plans are established 
in the second stage of the model. Pareto-optimal (compromise) solutions of the presented 
model are achieved through a comprehensive solution algorithm. Computational 
experiments validated the applicability of the presented approach of this article, and 
emphasised that the proposed indicators for optimisation of resilience and political risk 
have significant impacts on the selection of supply portfolio in a SS&OA problem. 
Possible future research avenues are listed below: 

• Development of multi-dimension resilience indicators which account for political 
risks as well as other types of risks. 

• Owing to the prevalence of environmental issues, consideration of sustainable risk-
averse approaches that account for both the environmental factors and disruption 
risks involved in a SS&OA could be a promising future research, e.g., see Seddighi 
and Ahmadi-Javid (2015). 

• Applying clustering approaches for the sake of reducing the number of scenarios to a 
reasonable range. 

• Adjustment of the presented SS&OA model for multi period situations. 

• Development of multi-objective meta-heuristic algorithms would be another 
promising future research direction to solve the proposed model more efficiently in 
large-scale cases. 
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Appendix A 

VaR and CVaR are introduced elaborately here based on works of Uryasev (2000) and 
Rockafellar and Uryasev (2002). Let γ ∈ (0, 1) be the confidence level for the loss 
distribution across all scenarios, and is assumed to be fixed by DM to control the risk of 
very high losses due to catastrophic events. The DM only accepts decisions for which the 
total probability of scenarios with losses greater than VaR is not greater than  
(1 – γ). Let g(x, βs) be the representative of positive values of losses which βs has a finite 
discrete distribution with S realisations and corresponding likelihood given as πs for βs  

( )1
.1

S
s

s
π

=
=∑  The γ – CVaR is presented as the following minimisation program. 

( )( )1 ,
1 sCVaR Min VaR E g x VaR
γ

+⎧ ⎫⎡ ⎤− = + −⎨ ⎬⎣ ⎦−⎩ ⎭
α β  (A1) 

Where (g(x, βs) – VaR)+ is Max{g(x, βs) – VaR,0}, and E[(g(x, βs) – VaR)+] is the 
expected value of (g(x, βs) – VaR)+ over all scenarios. It is obvious that the above 
program is non-linear. Let us define TCs as: 

( )( ),s sTC g x VaR
+

= −β  (A2) 

In other words, TCs is the amount of excess of loss, i.e., g(x, βs), from VaR in scenario s. 
There for, we have a linear programming model as: 
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CVaR VaR π TC
=

⎧ ⎫⎪ ⎪− = +⎨ ⎬
− γ⎪ ⎪⎩ ⎭
∑α  (A3) 

Subject to: 

( ),  ;s
sTC g x β VaR s S≥ − ∀ ∈  (A4) 

0;s sTC S≥ ∀ ∈  (A5) 

Consider that in this paper we have: 

( ), s sg x DC PC= +β  (A6) 

Appendix B 

Linearisation process of the equation (7) and constraint (21) are reported here. In this 
regard, we define Qils as an auxiliary variable, where we have: 

; , ,ils ils isQ Re δ i J l L s S′= ∀ ∈ ∈ ∈  (A7) 

In addition, the following constraints are added to the original model. 

( )( )1 ; , ,ils ils isQ M Re δ i J l L s S′− × − ≤ ∀ ∈ ∈ ∈  (A8) 

( )( )1 ; , ,ils ils isQ M Re δ i J l L s S′+ × − ≥ ∀ ∈ ∈ ∈  (A9) 

; , ,ils ilsQ Re i J l L s S≤ ∀ ∈ ∈ ∈  (A10) 

0; , ,ilsQ i J l L s S≥ ∀ ∈ ∈ ∈  (A11) 

Therefore, the linear for of equation (7) and constraint (21) are obtained as reported in 
equation (A12) and constraint (A13), respectively: 

� �( )( ))
is

i i ik s ils ils ils i
i I i J k K s S i J l L

RMRA Ca y EI p Re Q ε Ca
∈ ∈ ∈ ∈ ∈ ∈

⎡ ⎤= + + −⎢ ⎥⎣ ⎦∑ ∑∑ ∑∑∑  (A12) 

� ( ) �( )
is

iks iks is i ils is ils i
k K l L

x xb δ Ca Re δ ε Ca
∈ ∈

⎡ ⎤′ ′ ′ ′+ ≤ + −⎣ ⎦∑ ∑  (A13) 

Appendix C 

Linearisation process of the second phrase in equation (10) is presented here. We can 
introduce new variables tii′ and the following constraints: 

 ; ,ii i it v v i i I′ ′ ′≥ − ∀ ∈  (A14) 

( ); ,ii i it v v i i I′ ′ ′≥ − − ∀ ∈  (A15) 
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Therefore, constraints (A14) and (A15) are added to the original model and the 
linearisation form of the third objective function (PR), i.e., equation (10), is accordingly 
presented as follows: 

� �Ψ Ψi i ii ii
i I i I i i I

MinPR t′ ′
′∈ ∈ ∈

= υ +∑ ∑∑
p

 (A16) 

Appendix D 

This Appendix E explains details of required parameters of the presented experiments in 
Section 6. Table A1 shows uniform distributions that are used to generate the required 
crisp and centre of symmetric fuzzy parameters. 
Table A1 Uniform distributions for random generation of the required parameters 

Parameter Random distribution Parameter Random distribution 

Ai Uniform (5,000, 8,000) � 0iFC  Uniform (400, 700) 

Pik Uniform (45, 57) �
iθFC  1.2 � ( 1)i θFC −  

P′ik Uniform (58, 67) �
ikHC  Uniform (54, 90) 

� kSC  Uniform (350, 500) �
ikRC  0.8 Pik 

�
kD  Uniform (12,000, 14,000) �

iCa  Uniform (10,000, 12,500) 

ikθ%  Uniform (0.02, 0.08) �
iCaP  0.25* � iCa  

Coi Uniform (4,200, 6,200) γ 0.90 

Table A2 Fraction of production capacity of suppliers that is remained after realisation of 
disruption scenarios 

Disruption 
scenarios Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 Supplier 6 

1 0.15 1 1 1 1 1 
2 1 0.12 1 1 1 1 
3 1 1 0.08 1 1 1 
4 1 1 1 0 1 1 
5 1 1 1 1 0.15 1 
6 1 1 1 1 1 0 
7 0.55 0.35 1 1 1 1 
8 0.79 1 0.62 1 1 1 
9 0.46 1 1 0.41 1 1 
10 0.39 1 1 1 0.58 1 
11 0.56 1 1 1 1 0.66 
12 1 0.50 0.35 1 1 1 
13 1 0.63 1 0.69 1 1 
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Table A2 Fraction of production capacity of suppliers that is remained after realisation of 
disruption scenarios (continued) 

Disruption 
scenarios Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5 Supplier 6 

14 1 0.31 1 1 0.35 1 
15 1 0.44 1 1 1 0.60 
16 1 1 0.52 0.48 1 1 
17 1 1 0.67 1 0.41 1 
18 1 1 0.32 1 1 0.45 
19 1 1 1 0.68 0.34 1 
20 1 1 1 0.39 1 0.68 
21 1 1 1 1 0.55 0.30 

Amount of production capacity of suppliers that is remained available after realisation of 
disruption scenarios are announced in Table A2. Also, as mentioned in section 6.1., two 
suppliers, i.e., supplier 4, supplier 5, have implemented business continuity systems, and 
are able to recover their production capacity after disruptions. In this regard, it is assumed 
that both of them have developed three levels for recovery efforts (including 25%, 50% 
and 100% recovery of lost production capacity). In addition, these two suppliers are able 
to be fortified at two levels, including 15% and 35% increase in remaining production 
capacity of suppliers after disruption scenarios. Accordingly, εils and ηies are set zero for 
all suppliers except supplier 4 and supplier 5. Finally, consider that confidence level in 
calculating CVaR, i.e., equation (3), is 0.95. 

Appendix E 

This appendix provides a brief description the method which is used to handle the 
ambiguity of data in the model based on works of Jiménez et al. (2007) and Parra et al. 
(2005). 

Consider, ñ = (np, nm, no), with a triangular possibility distribution in the form of a 
triangular fuzzy number. The membership functions of ñ is: 

0

0

( )

( )

( )

if        

1 if                

if        

0 if or

p
p m

n m p

m

p m
n o m

p

n

x

x
x

x nf n x n
n n

x n
μ

n xg n x n
n n

x n x n

=

=

−⎧
≤ ≤⎪ −⎪
=⎪= ⎨

−⎪ ≤ ≤⎪ −
⎪ ≤ ≥⎩

%  (A17) 

The expected interval (EI) and expected value (EV) of ñ are: 

( ) ( )
1 1

1 1
1 2

0 0
( ) ( )d ( )d

1 1, , ,
2 2

n n p m m o
c cn x x x xEI E E f g n n n n− −=

⎡ ⎤⎡ ⎤= = + +⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫%  (A18) 
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1 2( )
2

2 4

n n p m o
n

E E n n nEV =
+ + +

=%  (A19) 

In this regard, without loss of generality consider fuzzy numbers a%  and ,b%  the degree in 
which a%  is bigger than b%  can be computed as: 

( )
( )

2 1

2 1
1 2 2 1

2 1 1 2

1 2

0 if 0,                  

, if 0 , ,

1 if 0                  

a b

a b
a b a b

M a b a b

a b

E E
E Eμ a b E E E E

E E E E

E E

⎧ − <
⎪

−⎪= ∈ − −⎡ ⎤⎨ ⎣ ⎦− − −⎪
⎪ − >⎩

%%  (A20) 

It is called a%  is bigger than, or equal, to b%  (i.e., )a b≥ %%  at least in a degree a, when 

( , ) .Mμ a b ≥%% α  In the same way we can say that a%  is indifferent to b%  in a degree a, 
denoted by ,

α

a b≈ %%  if the following constraints are hold simultaneously: / 2a b≤ %% α  and 
/ 2 .a b≥ %% α  

In this regard, consider given a decision vector x ∈ Rn. This vector is called α-feasible 
(i.e., x is feasible in a degree of a, when we have: 

( ){ }min ,Mμ ax b =%% α  (A21) 

Now, consider the following possibilistic linear programming model: 

min tz c x= %  (A22) 

s.t. 

; 1, ...,i ia x b i l≥ =%% α  (A23) 

1, ...,;i ia x b i l m≈ = +%% α  (A24) 

0x ≥  (A25) 

The equivalent crisp form of constraints (46) are: 

2 1

2 1 2 1
1, .; . .,

i i

i i i i

a x b

a x a x b b
E E i l

E E E E
−

≥ =
− + −

α  (A26) 

Or: 

[ ]
2 1 2 1

(1 ) (1 ) 1,; ...,i i i ia a b bE E x E E i l− + ≥ + − =α α α α  (A27) 

As we know, each equality constraint (i.e., )i ia x b= %% α  can be replaced by two inequality 
constraints (i.e., / 2i ia x b≥ %% α  and / 2 ).i ia x b≤ %% α  Therefore, the equivalent crisp form of 
equality constraints (47) are: 
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 (A28) 

Accordingly, the equivalent crisp α-parametric counterpart of the original model, i.e., 
(45)–(48), can be represented as follows (consider the fuzzy parameter in the objective 
function is replaced by its respective expected value, i.e., EV): 

( )min z EV c x= %  (A29) 

s.t. 

2 1 2 1(1 ) (1 ) 1, ...,;i i i ia a b bE E x E E i l⎡ ⎤− + ≥ + − =⎣ ⎦α α α α  (A30) 

2 1 2 11 1 1, ...,
2

;
2 2 2

i i i ia a b bE E x E E i l m⎡ ⎤⎛ ⎞ ⎛ ⎞− + ≥ + − = +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

α α α α  (A31) 

2 1 2 11 1 1, ...,
2 2 2

;
2

i i i ia a b bE E x E E i l m⎡ ⎤⎛ ⎞ ⎛ ⎞+ − ≤ − + = +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

α α α α  (A32) 

0x ≥  (A32) 


