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In this paper, a novel conformable fractional order (FO) sliding mode control technique is studied for a class of FO 

chaotic systems in the presence of uncertainties and disturbances. First, a novel FO nonlinear surface based on 

conformable FO calculus is proposed to design the FO sliding mode controller. Then, asymptotic stability of the 

controller is derived by means of the Lyapunov direct method via conformable FO operators. The stability analysis is 

performed in the sliding and reaching phase. In addition, the realization of reaching phase is guaranteed in finite time 

and the reaching time is calculated analytically. The proposed control approach has some superiorities. Reduction of the 

chattering phenomenon, high robustness against the uncertainty and external disturbance, and fast convergence speed 

are the main advantages of the proposed control scheme. Moreover, it has simple calculations because of using 

conformable FO operators in the control design. The numerical simulations verify the efficiency of the proposed 

controller. 
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I. INTRODUCTION 

Chaos phenomenon occurs in different kinds of real 

systems with prominent attributes, including unpredictable 

behaviour and dependency on initial values. Therefore, chaos 

control has become an interesting topic in various fields of 

science. So far, several control techniques have been reported 

in the literature in order to control the chaotic systems [1-5].  

In recent decades, fractional order (FO) calculus is an 

interesting and powerful instrument for modelling and 

controlling of real phenomena. FO Sliding mode control 

(SMC) is a well-known robust control technique for 

controlling uncertain systems in the presence of disturbances 

[6-11]. In [6], a fractional terminal SMC was represented to 

control a class of nonlinear systems with uncertainty. In [7], a 

single link flexible manipulator was controlled via a FO SMC. 

In [8], a FO SMC based on a nonlinear disturbance observer 

was developed for a class of FO systems in the presence of 

mismatched disturbances [9]. In [10], an adaptive SMC was 

suggested to control FO chaotic systems considering 

uncertainties and disturbances. In [11], a FO SMC was 

examined for the output tracking of the desired signal.    

However, FO SMC has been successfully applied in a wide 

range of engineering applications, it suffers from an 

inevitable problem, namely chattering phenomenon, leading 

to increasing the control effort and triggering the 

high-frequency dynamics of the system. Several research 

works have been dedicated to lessen the effects of the 

chattering, such as [12,13]. Another important topic in 

designing the SMC is the convergence speed and reaching 

phase in the finite time [14,15]. In [14], an adaptive terminal 

SMC was developed to control a power system. In [15], an 

adaptive nonlinear SMC scheme was proposed for a class of 

fourth-order systems. 

Up to now, various definitions of FO derivative were 

presented. Among them, the Riemann–Liouville, Caputo and 

Grunwald-Letnikov are the most well-known definitions 

[16,17]. A significant defect of FO operators is the †Corresponding Author: htoosian@ferdowsi.um.ac.ir 
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complexity in calculations. In recent years, a new definition 

for the FO derivative was introduced, namely conformable 

FO derivative.  The main advantage of this FO definition is 

simplicity in calculations. In addition, it has some properties 

of classic operators which other fractional order derivatives 

do not satisfy them, such as chain rule, product, and quotient 

[18]. In [19], the superiority of conformable definition was 

shown via a comparison between the Grünwald-Letnikov and 

conformable derivatives. In [20-21], some properties based 

on conformable derivative were studied. In [22], the 

fractional Newtonian mechanics was addressed using the 

conformable fractional calculus. The conformable transform 

method and its applications for conformable fractional 

differential equations were presented in [23]. In [24], a 

conformable fractional differential equation was discussed 

having three-point initial and boundary conditions. In [25], 

the conformable FO equations were solved using numerical 

method. Furthermore, chaotic behavior of the conformable 

FO Lorenz system as an example was examined.  

Stability analysis of nonlinear systems is necessary to 

design a controller. Several works have investigated stability 

analysis of nonlinear systems by means of fractional calculus 

[26-30]. In [26], fractional generalization of concept of 

stability was considered. In [27], a definition for 

Mittag-Leffler stability and fractional Lyapunov direct 

method were presented. In [28], stability analysis of FO 

nonlinear systems was derived using the Lyapunov direct 

method with Mittag-Leffler stability. In [29], stability of 

fractional differential systems based on the conformable 

fractional derivatives was studied. However, there are very 

few papers considering modelling of the nonlinear systems 

with conformal FO definition [29,30]. Therefore, application 

of the conformable FO operators in the design of FO 

controller is an open area. Accordingly, for the first time, in 

this paper, a FO sliding mode control is designed for a class 

of conformable fractional order chaotic system using the 

conformable fractional derivative and the superiority of the 

proposed controller is shown. Having these facts in mind, the 

main contributions of this paper in comparison with previous 

researches are as follows. A novel FO manifold using 

conformable FO operators is proposed to control chaotic 

systems in the presence of uncertainties and disturbances. 

The conformable FO operator as an interesting definition is 

applied in designing of the FO sliding mode controller. Based 

on conformable FO operators, the stability of the controller is 

derived using the Lyapunov direct method. The main 

advantage of the proposed control method is fast convergence 

speed with together less chattering and complexity in 

calculations.  

The paper is structures as follows: Some mathematical 

preliminaries are presented in Section 2.  System description 

and conformable FO sliding mode controller design 

methodology are presented in section 3. Section 4 shows the 

simulation results. Finally, conclusions are given in section 5. 

 

II. MATHEMATICAL PRELIMINARIES  

In this section, some definitions and theorems adopted in this 

paper are given. 

Definition 1 [16]. The β th-order fractional integration of 

function f (t) is given by 

( )1
( )

1( ) ( )
0

t f
D f t d

t
t t

τβ τββ τ
− = ∫ −Γ −

 

(1) 

where Γ (.) is the Gamma function. 

Definition 2 [18].  Given a function f: [0, ∞) → R. Then, the 

‘‘conformable derivative’’ of  f(t) with order β is defined as 
1

0

( ) ( )
( ) lim

f t t f t
T f t

β
β

λ

λ
λ

−

→

+ −
=

 

(2) 

For all t>0, 
(0 ,1)β ∈

.  If  f  is differentiable, then 

1
( ) ( )

df
T f t t

dt

β β−=
. 

Definition 3 [18]. Conformable integral is as 

1

1 1

( )
( ) ( )

t

a

a

a

f x
T f t I t f dx

x

β β
β

− −
−= = ∫

 

(3) 

where 
(0 ,1)β ∈

. 

Lemma 1 [20]. Let 
: ( , )g a b R→

 be differentiable and 

(0,1]γ ∈
. Then for all  t a> , we have 

( )( ) ( ) (0)
a a

I T g t g t gγ γ = −
 

(4) 

Consider the conformable fractional dynamic system as 

0
( ) ( , ( ))t tT x t f t x t

α =
 

(5) 

where f(.) describes dynamics of system. The above system is 

conformable stable, if its equilibrium is stable. 

Theorem 1 [18]. Consider )(tf be a continuous function such 

that )(0 tfIt

α  exists. Then, 

  
0),())(( 0 ≥= tfortftfIT tt

α
α                       (6)                                                                                                                            

where ]1,0(∈α . 

Definition 4 [8]. The fractional Laplace transform of order α 

from 0t  of  f (t) is defined as 

  

∫
∞

−
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−
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0
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  (7)                                                                                             

where ]1,0(∈α  and  
Rtf →∞),[: 0 . 

Lemma 2 [20].  For RRf →+: , we have  

))}()(({))}(({

1

0
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t α
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                 (8)                                                                                                                 
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where ∫
∞

−=
0

)())}(({ dttgestgL st . 

Theorem 2 [20]. Consider Ra∈  and )(tf be differentiable 

real valued function. Then,  

)()())}(({ afssFstfTL
a −= ααα                    (9)                                                                                                        

In this paper, the notations T α
and T α−

denote the 

conformable FO derivative and integral, respectively. 

Theorem 3. Let 
( , ( ))V t x t

 be a Lyapunov function. If 

( , ( ))V t x t
satisfies the next condition, the equilibrium point 

x=0 is conformable stable. 
mnm

xtxtVx 21 ))(,( µµ ≤≤
,                    (10)                                                                                                       

mn

t xtxtVT 3))(,( µα −≤
,                        (11)                                                                                                        

where 
mt ,,,),1,0(,0 321 µµµα∈≥

 and n are the arbitrary 

positive constants.  

Proof.  According to [30], Eqs. (10) and (11) results 

))(,())(,(
1̀

23 txtVtxtVT
−−≤ µµα

.                     (12)                                                                                                       

Applying the fractional Laplace transform, the following 

equation is derived. 

)()0()(
1

23 sVVssV
−−≤− µµ

                        (13)                                                                                                                             

So , we have 

2
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where 0))0(,0()0( ≥= XVV .  

Applying inverse fractional Laplace transform to (14),     

is obtained. Based on (10), (11), ]
)0(

[
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0

)0(
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µ

V
k

, then we have
 

αα
µ
µ α

1
)(

][)(

0

2

3 tt

ketx

−−

≤ , which indicates that the system (5) is 

conformable stable. This complete the proof. 

 

III. MAIN RESULTS  

  In this paper, we consider a class of FO chaotic systems as  

1

2

3

( ) ( ) ( ) ( )

( )

( )

T x f t f t d t u t

T y f t

T z f t

α
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(15) 

where  f1(.),  f2(.) and f3(.) are the nonlinear functions which 

are show dynamics of  system . Also, ∆≤∆ )(tf  and
 

Dtd ≤)( denote the uncertainty and disturbances, and u(t) is 

the control signal. 

In the following, a novel conformable FO sliding manifold is 

proposed as 

)]tanh())(tanh(

)tanh([
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     (16) 

where 
1 2

, , , (0,1)α β β γ ∈ . 

Applying conformable FO derivative in both sides of (16) 

helps to reach the equal control law in sliding mode strategy in 

the following form. 
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The equal control law is expressed as 
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and the switching law is as 

tanh( . )
sw

u k n s= −    (19) 

So, the proposed controller is obtained as 
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Theorem 4. The state trajectories of the controlled system 

using the proposed FO SMC converges to the sliding surface 

s=0 in the finite time. 

Proof: Suppose the following Lyapunov candidate.  

21
( , , )

2
V x y z s=  

(21) 

Conformable derivative of the candidate function is as 

sszcb
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Substituting the control signal into (22) leads to 
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Based on the upper bound of uncertainties and disturbances, 

we have 
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Then, we conclude  

s
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Simplifying the above equation results in 

1
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a
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(26) 

From there, we have 

1
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a
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Therefore, based on Theorem 3, if 
1

D k
a

λ
+∆+ ≤ , then the 

sliding mode surface 0s =  will be reached in the finite 

time. To calculate the time, according to reaching condition, 

we have | |T V sT s sα α η= < − . Therefore,  
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Taking conformable fractional order integrator of both sides 

of the above inequality leads to the below inequality: 

0 1

0

0 1

0

, 0

, 0

r

r

r

r

t

t

t

t

T T s T d s

T T s T d s

α α α
α

α α α
α

η
η τ

τ

η
η τ

τ

− −
−

− −
−


< − = − >



− < − = − <


∫

∫
 

(31) 

Based on definition 3 and Lemma 1, we obtain 
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Therefore, the reaching time rt is calculated as 
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Finally, rt  is 
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Theorem 5.  The system (15) under the proposed controller 

(20) is asymptotically stable. 

Proof. Consider the candidate Lyapunov function as 

2 2 232
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The time derivative of the Lyapunov function considering 
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So, we have: 
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From [31], since the chaotic systems are dissipative, so all the 

states have limited values, that is, 

, , ,x X y Y z Z≤ ≤ ≤  where X, Y, Z are the positive 

constants. Thus, we have 

1 1 1 2 3 1( , , ) [( [ ] ]V x y z X a p Y b b b a k≤ ∆ − + + + +ɺ  (37) 

Finally, for 1 1 1 2 3

1

1
[( [ ]a pY b b b k

a
∆− + + + ≤ , the 

controlled system (15) is asymptotically stable.  

Remark 1. The main results can be adopted for the integer 

case. Indeed, the proofs of Theorems 3-5 can be derived again 

for the integer case considering 1α = .   
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IV. SIMULATION RESULTES 

Here, three numerical simulations are illustrated to show 

the effectiveness of the proposed control scheme, including 

the fractional and integer order systems adopted from the 

literature. 

   

Example 1. Consider the conformable FO Lorenz chaotic 

system as follows [25]: 

 

( )T x a x y f d u

T y rx y xz

T z bz xy

α

α

α

= − − + ∆ + +

= − −

= − +
 

(38) 

where a=10, r =28, 
3

8
=b  with 0.98α = , and 

2.0)sin(1.01.0 ≤−=∆ xf π
, 

1.0)cos(1.0 ≤= td
. The 

initial values are
(0) 1, (0) 1, (0) 1x y z= = =

. The 

control parameters are designed as follows:  

 

8.0,97.0,2.1

,50,50,307.0,84

,7.0,5.1,5.0,2.1,5.1

21

321321

21321

===

======

=====

ββk

cccbbb

ppaaa
 

 

Figs. 1 and 2 illustrate the results of applying the proposed 

controller in comparison with the designed controller adopted 

from [10]. Fig. 1 shows the state trajectories of the controlled 

system and the ability of the proposed controller in improving 

the convergence rate in comparing with [10].  Fig. 2 

demonstrates the control inputs for both controllers. From Fig. 

2, we can conclude that the proposed controller can reduce 

chattering phenomenon and control effort.  

 

 
Fig. 1(a).State trajectory of x 

 

 
Fig. 1(b).State trajectory of y 

 

 
Fig. 1 (c) .State trajectory of z 

Fig. 1. State trajectories for example 1 

 

 
Fig. 2. Control effort for example 1 

 

For comparison, the designed controller with the following 

sliding surface is adopted from [11].  

)(5.0)(2.1)(5.1)( tztytxts ++=
                (39)                                                                                        

The state trajectories of controlled system with both 

controllers are illustrated in Fig. 3. The control input is 

illustrated in Fig. 4. From the results, chattering suppression 

and fast convergence rate are the superiorities of the proposed 

controller.  
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Fig. 3(a).State trajectory of x 

 
Fig. 3(a).State trajectory of y 

 
Fig. 3(b).State trajectory of z 

      Fig. 3. State trajectories for example 1 

 
Fig. 4. Control effort for example 1 

 

Example 2. Consider the following modified conformable 

FO Lotka-Volterra systems [29]: 

1

1

( ) ( )( ( ) ( ))

( ) ( )( ( ))

T x t x t r ax t by t

T y t y t d cx t

α

α

= − −

= − +
              (40)                                                                                                          

where )1,0(, 21 ∈αα .  

According to [25], for the below parameters, the system is 

unstable. 

 
1, 0, 1, 4,r a b c= = = = 2d = .  

where 2.0)sin(1.01.0 ≤−=∆ xf π , 

1.0)cos(1.0 ≤= td .Considering initial conditions   

(0) 0.2, (0) 0.8x y= =
, numerical simulations reveal that 

the proposed controller with the following control parameters 

can stabilize the system as shown in Figs. 5 and 6. 

 

,40,935.0,8075.0,1,2.1,7 121121 ====== cbbpaa

2 1 2c 100, 1.2, .97, 0.8k β β= = = =
.  

Figs. 5 and 6 represent the results applying the proposed 

controller in comparison with the designed controller adopted 

from [11] with the sliding surface as 

)(5.3)(2.2)(7)( tytytxts ++=
                    (41)                                                                                                                    

Fig. 5 shows the state trajectories of the both controllers 

and their control inputs are provided in Fig. 6. From the 

results, it can be deduced that the proposed controller has 

outstanding performance in terms of convergence speed. 

 

 
Fig. 5(a).State trajectory of x 
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Fig. 5 (b). State trajectory of y 

Fig. 5. State trajectories for example 2 

 

 
Fig. 6. Control effort for example 2 

 

In the follow up, to show the feasibility of the proposed 

control strategy shown in Remark 1, the following exampled 

is considered. 

Example 3. Let us consider the following controlled 

Duffing forced-oscillation system [2]. 

)()()()()(3.0)(

)()(

3 tutdXftxtyty

tytx

++∆+−−=

=

ɺ

ɺ

 (42)                                                                                        

where 04.0)1.0sin(4.0 ≤=∆ tf , and the external 

disturbance is assumed as 12.0)sin(05.007.0)( ≤+= ttd . 

Parameters of the controller are as follows: 

75.0,32.1,5.5,2.1,5.5,01.0 21121 ====== bbpaam

, 
75.0,97.0,50,40 21 ==== qcc α

  . 

Fig. 7 shows the state trajectories of the system. Also, the 

time response of the controller is demonstrated in Fig. 8. 

High convergence speed and elimination of chattering are the 

main advantages of the proposed controller. Simulation 

results demonstrate a remarkable increasing convergence 

speed and the chattering reduction in comparison with the 

presented controller with the following traditional sliding 

surface [4]. 

 )(2.2)(4)( 21 txtxts +=                     (43)                                                                                                                         

 
Fig. 7(a).State trajectory of x 

 
Fig. 7(b).State trajectory of y 

Fig. 7. State trajectories (x,y) for example 3 

 

 
Fig. 8. Control effort for example 3 

 

Example 4. Let us consider the following Gero system 

[11,32]. 

 

)(),(),(

)sin()25sin(5.35)sin(05.0

5.0
)(sin

))cos(1(
100)(

)()(

11

3

2

2

1

3

2

1
2

21

tutxdtxf

xtxx

x
x

x
tx

txtx

++∆+

++−

−
−

−=

=

ɺ

ɺ

   (44)                                                           
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k=0.4 The initial condition of Gyro system is 

)1,1())0(),0(( 21 −=xx
.   

,936.0,38.55,9.35,2.0,7.0,01.0 21121 ====== bbpaam

 
75.0,97.0,5,11 21 ==== qcc α

. 

Fig. 9 shows the state trajectories of the system. Also, the 

time response of the controller is demonstrated in Fig. 10.  

 
Fig. 9(a).State trajectory of x 

 
Fig. 9(b). State trajectory of y 

Fig. 9. State trajectories (x,y) for example 4 

 
Fig. 10. Control effort for example 4 

 

Simulation results show a remarkable increasing 

convergence speed in comparison with [32]. Also, the 

suggested controller can reduce chattering phenomena. 

The performance criteria are employed to evaluate the 

performance of controllers as follows 

(a) Integral of the absolute value of the error (IAE) 

∫=
t

dtteIAE
0

)(

. 

(b) Integral of the square value (ISV) of the control input  

dttuISV

t

∫=
0

2 )(

 
 The results are shown in table 1.  

 

TABLE I 

PERFORMANCE CRITERIA 

 
 

By evaluating the performance criteria, the proposed 

control is superior to the other methods.  

 

V. CONCLUSIONS 
 

In this paper, a novel conformable FO nonlinear sliding 

surface was proposed for a class of FO chaotic systems. 

The proposed control approach has some superiorities, 

including low chattering and fast convergence speed.  

Moreover, it has simple calculations because of using 

conformable FO operators in the control design. Stability of 

conformable FO controlled system was guaranteed using 

the Lyapunov direct method based on conformable FO 

operators. Simulation results verified the feasibility of the 

proposed control method. 
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