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Abstract—The problems of simultaneous detection of fault 
and control (SFDC) for robots with linear fractional-order 
(FO) model or any system that can be modeled as a linear 
fractional-order are investigated in this study. The new rules in 
terms of LMI are displayed to build a SFDC unit. In essence, a 
Luenberger observer has been used as a fault explorer and the 
controller has been designed to form of an observer-based 
controller.  This design is converted to H- /H∞ problem. In 
order to show the correctness of the design method and the 
resulting formulas, a numerical model simulated with 
MATLAB is presented in this article. 
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I. INTRODUCTION  

 
Knowledge of fault diagnosis in practical systems can be 

considered as medical science for humans. With the rapid 
diagnosis of some diseases, medical science prevents the 
spread of disease and treats it. If not enough attention to 
medical science, what would happen to humans? Fault 
detection and isolation (FDI) Also, troubleshooting itself in 
robots is an emerging research field during the recent years 
Due to the increasing use of robots in various industries as 
well as in the galaxy. For an operating system that 
encounters an error, the following factors should be taken 
into consideration: detection and isolation; quantification, 
characterization, and identification; and the reaction to the 
fault [1]. Diagnosing a fault over a short period of time is a 
fundamental necessity to reduce the likelihood of hardware 
damage [2-6]. In recent decade, much attention in the field 
of reconnaissance of fault has been attracted to the model-
based fault detection [8]. Authors [7] successfully 
demonstrated a model-based FD approach experimentally. 
Today's, the majority of the systems are a closed feedback 
system. Sometimes in these systems, it may be hidden faults 
by operation control. This caused the SFDC problem to 
attract much attention from researchers in recent decades [9-
13]. The Simultaneous integrated design of control and 
reconnaissance units converts into a controller / detector 
unit. In [13-15], the SFDC problem is presented by 
technique multi-objective H∞/H- framework. The authors 
[16, 17] studied the problem of SCFD in mixed H2 /H∞ 
optimization technique. 

 Although the subject of the fractional calculus has been 
discussed since a few centuries ago, engineers have paid 
special attention to it in recent years. [18–20]. In addition to 
modeling dynamic systems using the means of the fractional 
calculus [20-29], the application of this science is seen in 
many engineering fields such as robotics [30, 31]. 

Moreover, in the control theory, It has been proven that for 
some systems, fractional controllers are more flexible and 
more flexibilities and robustness, e.g. To mention a few, 
designing FO PID controllers for a robotic tracking control 
can be found in [32]. Authors [33] present the fractional 
controllers in a hexapod robot. In [34], the trajectory control 
is investigated by the fractional calculus for planar 
manipulators. 

In this paper, the issue of SFDC for robots with linear FO 
model or any system that can be modeled as a linear 
fractional-order are considered and via employing the 
generalized Kalman-Yakubovich-Popov (KYP) lemma, new 
rules are developed in the LMI form and design a SFDC 
unit such that probable faults are detected as well as the FO 
system is stable.    

 

Notations: Throughout this paper, 
TA  refers the 

transpose, A is conjugate   and *A is conjugate transpose of 

matrix A    . ( )Her A  is short for *A A .  

 

II. THE PROBLEM STATEMENT AND DEFINITIONS 

 
Consider a robot modeled as the following FOS model   
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Where  is the fractional appropriate order and 
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Where 1, 2,3,...}k   and 1   .k k   The transfer 
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Controller that is state feedback and detector that is observer 
for system (1) Designed as a single unit, which is called 
controller/detector unit as: 
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Where ˆ ( )
n

x t  the observer (detection filter) state vector 

is ˆ( )
r

y t    is the output estimation vectors, the residual
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Now, the SFDC problem is the design of the control / 

detection unit for the FO system (1), must continue in a way 
1 - The close loop system (6) becomes stable. 
2. If fault occur in the system, alarms should be made 

immediately. 
3 - Disturbances are not considered fault in order to 

confuse the alarm detector system. 

The above rules can be expressed as a mixed  /H H
   

optimizations problem as follows:  
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 (i), (iii), and (iv) are H


  problems. The performance 

indices (ii) are H


 optimizations problem. The following 

definitions and lemmas are presented for later developed. 
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Then "2) 1)" always holds. But  "2) 1)"  holds if    

displays a curve in the complex plane. 

Lemma 4: (Projection lemma) [38]. If U  and V   are two 

matrices of column dimension m and mZ S  is a 

symmetric matrix; then  
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III. MAIN RESULTS 

As discussed in the previous section, the 
controller/detector unit should be designed such that all 
indexes (i)–(iii) are satisfied simultaneously and the close- 
loop system (6) is stable. 

 
    Theorem 1. The system (6) is stable and (i)–(iv) are 

guaranteed for given  positive scalars 1 2 3, , ,    and  , if 

there exist positive definite symmetric matrices 

1 2 3 4 1, , , , ,P P P P Q    2 3 4, ,Q Q Q and matrices ,
1

X  

ˆ, ,
2 1

X X N and M  such that the following optimization 

problem is solved: 
 

1 2 1 2 3 4 1 2 3 4
ˆ,X ,X , , , , , , , , , ,

max
iX P P P P P Q Q Q Q N M



 Subject to: 

2
1

2

2
2

( )
1 3

* ( ) 0

* *

( )
1 3

* ( ) 0

* *

( )
1 3

* ( ) 0

* *

( )
1 3

* ( )

* *

a)

)

)

)

d

f

d

f

Her F

T
X X

T
F F I
d d

Her D

T
X X

T
I D D

f f

Her D

T
X X

T
D D I

d d

Her F

T
X X

T
F F
f f

b

c

d

 

 



 

 



 

 



 

 

  

  



  

  



  

  



  

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

2
3

0

(14)

I





 
 
 
 
 
 

1 1
ˆT TB X X B  

 

Where  

 0 , 0 ,
1 30

ET T
E E   

  
      

0
1

2

T T T
A X M B

T T T T T
M B A X C N



 

 

 
 
 
  

 

1

2

T
X B

d

T T
X B N D

d d

 



 
 
 
  

, 
12

T
X rP rQ        

( , )
1 2

X diag X X  

Where  , (1 )
2

j
r e


     and 

2
T

L X N


    

ˆ .
1

T
K X M


   

Proof: based on definition 1        

: ( (s))su

 

p

( ) 0

( ( )sup

0

)

( )

T T

C s I A

zd zdH
Re s

Re

B

s

D









  



      (15) 

  also 

* 2
( ) ( ) ( ) 0 Re( ) 0

*
( ) ( )

0 ( , )

G s G s G s I sH

H H

I I
m m

 

 


     


      
   
   
   

 (16) 

 

Where
1

( ) ( )H I A B
n d

 


   and ( , )    is defined in 

Eq. (9), also: 

2
1

T T
d

T T
d d d

E E E F

F E F F I

 
   

 

  


       (17) 

By invoking Lemma 3, , , , 0
n

P Q H P    and   0Q   

such that: 

0 0
( ) 0

T
I I

P Q
A B A B

d cli

      
   
   
   
          (18) 

Similar to [37],  

0
,

0

r

r

 
 
 

 
0

,
0

r

r

 
   

 
      (19) 

Due to the (13-a) the inequality (18) can be written 

2
1

0 0 ,

0

0

,

0

T
d

T T
d d d

U d

E E rP rQ EF

Z rP rQ

F E I F F

I

N A B

I



  
 

  
 

   

 
 

  
 
 

  



 

  (20) 

 By specifying the matrices VN and V  as follows: 

 
0

0 0

0
V

I

N I V I I

I





 
     
  

   (21) 



Using lemma 4, it can be can be inferred that 0T
U UN ZN    

is equivalent to: 

 0 0

0

TT

T
d

T
d

XA

Z I X X X A I B

B

 

  
  
            
     



 



  (22) 

And if 1 2, ,) 2( , 1,n n
iX diag X X X R i      

( )
1 3

* ( ) 0

* *
1

Her Fd

T
X X

T
F F I

d d

 

 



    

  



 
 
 
 
 
 

  (23) 

Where  

TrP rQ X            (24) 

01 1

1 2

T T TA X K B X

T T T T TK B X A X C N


 
 
 

   

    (25) 

 first inequality in Eq. (14) is obtained by substitute 

2
T

L X N


   and ˆ
1

T
K X M


 into the inequality (19),  

By replacing    and  Z   as follows:  

2

2

0 0 ,

0

T T
f

T T
f f f

T T
f

T T
f f f

E E rP rQ E D

Z rP rQ

D E I D D

E E E D

D E I D D






   
 

  
 
    

  
 
   

  



  



      (26) 

 (b) in Eq. (14) is satisfied. 

The proof (c) and (d) in Eq. (14)  can also be shown is 
similar to the above technique.  

IV. NUMERICAL EXAMPLE 
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Figure 1. Residual signal r (t) 

 

 
Figure 2. Regulated output z (t) 

 

V. CONCLUSION 

In this study, a robust distributed SFDC problem for 
robots with linear fractional-order model or any system that 
can be modeled as a linear fractional-order using observer 
detector and state feedback controller is proposed and 
developed. The new rules in terms of LMI are displayed to 
build a SFDC unit to warrant stability and the four mixed 

/H H     performances. In order to prove the correctness 

of the design method and the resulting formulas, a numerical 
example simulated with MATLAB is presented in this 
article. 
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