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A B S T R A C T

We study a university course timetabling problem, where the registration is implemented in two steps: pre-
registration and drop/add phases. Since the ultimate timetable is finalized based on the students’ decisions made
on the drop/add phase, there may be some courses need to be canceled because of not reaching to the threshold
value in terms of total registered students. As a result of cancelations, some undesirable changes may be imposed
on the final timetable for the students and the professors as well. In this paper, we ideally arrange course
timetable, while considering the courses cancelations risk and the possible changes which may happen after the
drop/add period; ultimately the undesirability is minimized in the final timetable. In order to achieve that, we
optimize an objective function which consists of seven different objectives combined as a weighted sum function.
As regards the solution method, we develop a two-stage stochastic programming model, a heuristic approach
and a two-stage separated model where the latter one model the traditional method. The performance of all
developed algorithms is then analyzed using randomly generated test instances.

1. Introduction

The timetabling problem, which is recently of much interest to re-
searchers, is a type of resource-constrained scheduling problem involving
the allocation of a set of courses to a set of time slots, in such a way to
optimize a set of desirable objectives. The two well-known classic pro-
blems in this field are the class-teacher problem and the university course
timetabling problem (UCTP). The class–teacher model, was introduced
by Gotlieb (1963) in which a set of lecturers should be assigned to a
given set of classrooms and time slots. In the mentioned problem there
are several classes where a class consists of a set of students who follow
exactly the same program. Assuming that all lectures have the same
duration, Asratian and de Werra (2002) aimed at considering a time-
tabling problem corresponding to some situations which occur frequently
in the basic training programs of universities and schools.

The university timetabling encompasses the examination time-
tabling as well as the course timetabling. The examination timetabling,
firstly introduced by Carter, Laporte, and Lee (1996) and is defined as:
“The assigning of examinations to a limited number of available time
periods in such a way that there are no conflicts or clashes.” As a brief
description, this problem is to allocate a set of examinations to a given
set of time slots so that none of the students are timetabled for two
different exams at the same time.

The UCTP is described by Carter and Laporte (1997) as follows: “A
multi-dimensional assignment problem in which students, teachers (or
faculty members) are assigned to courses, course sections or classes;
“events” (individual meetings between students and teachers) are as-
signed to classrooms and time slots.” Almost similar to other time-
tabling issues, this problem, which is NP-hard, consists of both soft and
hard constraints. As regards the hard constraints, some of those applied
in literature are listed below.

I. For each time slot in each room, only one group of students and one
professor can attend.

II. No more than one course is allowed for each time slot in each room.
III. The number of students attending the course must be less than or

equal to the capacity of the room.
IV. The room should satisfy the features required by the course (see

Cacchiani, Caprara, Roberti, & Toth, 2013; Lewis, Paechter, &
McCollum, 2007).

V. Where specified, a course must be scheduled in the predefined time
slot (see Goh, Kendall, & Sabar, 2017; Lewis & Thompson, 2015).

VI. To satisfy the precedence requirements, courses must be scheduled
to occur in the correct order (see Babaei, Karimpour, & Hadidi,
2015).
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Additionally, there are a variety of soft constraints used in different
problems, where some of them are given in the following.

I. The courses should be scheduled in a way that the empty time slots
of both professors and students to be minimized (see Lewis &
Thompson, 2015; Van den Broek & Hurkens, 2012).

II. Students should not be scheduled to attend only one course on a day
(see Goh et al., 2017; Lewis & Thompson, 2015).

III. Courses should not be scheduled in the last time slot of a day (see
Henry Obit, 2010).

IV. It is preferable that a course is taught in the specific room requested
by its professor (see Lewis et al., 2007).

V. On each day, a period should be vacant for students’ lunch break
(see Lewis et al., 2007).

Cacchiani et al. (2013) tackled the UCTPs by two general ap-
proaches; the Curriculum-based and the Post Enrollment-based Uni-
versity Course Timetabling. Regarding the first approach, the students
are classified into “groups” based on their curriculum and courses
which required to meet their curriculum needs for their next semester;
in other words, each group accounts for the curriculum as well as the
courses which have to be followed and taken each semester (see
Cacchiani et al., 2013). The problem is then to create the schedules of
lectures where conflicts between the courses are set accordingly to the
specified curriculum. In the second approach, the Post Enrollment-
based Course Timetabling, the scheduling is determined based on the
enrollment data of each individual student, such that all students can
attend the courses on which they are enrolled. There are some recent
studies in this field like Abdullah and Turabieh (2012), Cambazard,
Hebrard, O’Sullivan, and Papadopoulos (2012), Ceschia, Di Gaspero,
and Schaerf (2012), Méndez-Díaz, Zabala, and Miranda-Bront (2016).
Lewis et al. (2007) gave a description of this type of problem used for
Track Two of the Second International Timetabling Competition.

Considering the solution methods, the techniques applied for sol-
ving the UCTP are presented by Babaei et al. (2015) as follows: (a)
Operational Researches (OR) based approaches, (b) Metaheuristic
methods, (c) multi criteria and multi objective techniques, (d) in-
telligent novel approaches and (e) distributed multi agent systems ap-
proach. The graph coloring method, one of the OR based techniques,
was firstly addressed by Welsh and Powell (1967), however, this
method failed to solve the instances with pre-assigned courses. Using an
almost similar approach, De Werra (1985) proposed a formulation for
problem in terms of edge coloring in bipartite multigraph where the
nodes are the classes and the teachers, constraints are defined by edges
and each period corresponds to a color. In order to develop a more
efficient approach in terms of running time and fitness performance,
Asham, Soliman, and Ramadan (2011) utilized graph coloring and
Genetic Algorithms (GA) as a hybrid solution.

According to the literature, the linear programming which is a
subset of operational research methods, is widely used in scheduling
problems. The model developed by Bakir and Aksop (2008) is based on
the mentioned approach, where an optimum course scheduling time-
table is achieved by using a 0–1 integer programming model, in which
both students’ and lecturers’ dissatisfaction is minimized and set of
constraints are implemented to apply the rules.

Looking closer at the literature, we should cite Lewis (2008) as some
who categorized the metaheuristic algorithms for timetabling into three
groups: (a) One-Stage Optimization Algorithms, (b) Two-Stage Opti-
mization Algorithms and (c) Algorithms that allow relaxation. Alvarez-
Valdes, Crespo, and Tamarit (2002) used Tabu Search (TS) to solve the
course timetabling problem in three phases and built a timetable which
is suitable for the characteristics of the Spanish university system. This
solution method was also applied by Goh et al. (2017), where it was
combined with Simulated Annealing (SA) to improve the solution
quality of feasible solutions. The combinatorial optimization is also
addressed by Tuga, Berretta, and Mendes (2007), in which the authors

provided the combination of Kempe neighboring chain in the SA al-
gorithm. In their approach, a feasible solution created based on a
heuristic-based graph and SA algorithm, is used to minimize the vio-
lations of soft constraints. A different metaheuristic method for solving
the university timetabling problem is investigated by Khonggamnerd
and Innet (2009), where a genetic algorithm model was applied for
improving the effectiveness of automatic arranging university time-
table. Song, Liu, Tang, Peng, and Chen (2018) focused on an iterated
local search algorithm to find a feasible solution for the UCTP. The
computational results in this paper shows their developed algorithm
achieves highly competitive results compared with the existing algo-
rithms.

The fuzzy methodology, considered in the group of intelligent novel
approaches, was firstly introduced by Zadeh (1965) and has been
widely utilized in a wide range of real-world applications. In the UCTP,
Chaudhuri and De (2010) developed a fuzzy genetic algorithm so that
fuzzy set models measure the violation of soft constraints in the fitness
function to control the inherent uncertainty and vagueness involved in
real life data.

However, in real world situations, there is an inherent uncertainty
about the total number of students who are going to enroll for each
course. Since the final status of each course, whether it is kept in the
timetable or is canceled, is determined based on the enrollment data of
all the students, it is definitely efficient to handle the ambiguity on this
issue. We know that the post-enrollment course timetabling models are
to tackle this problem by scheduling based on the selections made by
the students, not the curricula of the university. However, in some
universities, the period between student’s registration and the next
semester is short and the grades are still not announced in the enroll-
ment period. Thus, there may be a significant modification in the fi-
nalized student lists after the drop/add period. It is worth mentioning
that the importance of coping with this uncertainty is highlighted when
the overall satisfaction of students and professors are taken into ac-
count. Minimizing the time gap, also called the idle time between two
classes of a student or a professor, should be considered as a soft con-
straint in this problem, which has not appeared in the literature. In
other words, it is more desirable for students and professors to have a
compact timetable and not to experience a time gap between the two
courses scheduled in a given day.

In this paper, it is assumed that for each semester an initial course
timetable is constructed in which the preference of both groups of
professors and students is included. The drop/add period then begins
after the grades announcement. Due to the newly made modifications
and the policy of university on the minimum number of students par-
ticipated in a class, there may be some classes that have to get canceled
because of not reaching the minimum threshold. In this phase, we make
the following assumptions; at he classes in which the number of stu-
dents is remarkably less than a predefined threshold will be definitely
“canceled” and those with a great number of registrations are “fixed”.
The status of classes consisting of a number of students that is negligibly
less than the threshold will temporarily change to “not-fixed” in order
to be determined by the decision of the administration office; and
eventually, the status of not-fixed classes will be changed into either
fixed or canceled. The status of each course is probabilistic and is de-
scribed based on different scenarios. We develop models to construct
initial timetable and decide about not-fixed courses such that expected
value of the objective function is optimized.

This paper makes the following contributions; we consider UCTP
with the cancelation risk of courses for the first time. We develop a two-
stage stochastic programming model that considers all possible sce-
narios may happen to the courses status after the initial registration
phase, in order to provide a feasible timetable maximizing the expected
value of satisfaction level among all teachers and students. Although
the two-stage stochastic programming approach has not been used in
the literature for the UCTP, it has been applied for other scheduling
problems like the nurse scheduling problem in the research work of Kim
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and Mehrotra (2015). A noteworthy feature of this problem is to de-
velop a practical technique for the university course timetabling where
the registration is implemented in two steps (pre-registration and drop/
add phases), and the possible scenarios for the second step are regarded
in the decision-making process of the final timetabling. Since the de-
veloped model may be intractable for large size instances, we develop a
heuristic algorithm to solve the problem by considering all possible
scenarios. Also, the traditional scheduling approach is modeled using a
two-stage separated model. Finally, all developed approaches are
compared using extensive computational results.

The remainder of this paper is organized as follows. Section 2 deals
with modeling the problem as a linear integer programming and solu-
tion methods are sketched in Section 3. Section 4 is devoted to the
computational study and evaluation of the developed algorithms. Fi-
nally, Section 5 concludes the paper while providing some future re-
search directions.

2. Problem description and modelling

In this section, we first describe the problem and notations in
Section 2.1. Next, in Sections 2.2 and 2.3 we develop a two-stage sto-
chastic programming model as an integrated model in which the initial
timetable is created and also based each scenario, the final status of
each not-fixed course is determined. Also, in Section 2.4 we develop a
two-stage separated model describing the traditional approach of
timetabling. In this approach, the initial timetable is constructed using
a model and based on the realization of a scenario, a second model is
solved to decide about not-fixed courses.

2.1. Problem description

Being formulated in mathematical terms, the problem comprises a set
of n courses =C n{1, , }, a set of time slots =T nts{1, , } which in-
cludes =D wd{1, , } as the set of days in a week in which the courses
are offered, such that each day is divided into td time slots. We assume
there are two types of courses. Let C1 as the set of cu1-credit courses
requiring one session per week and C2 as the set of cu2-credit courses
requiring two sessions per week. =P m{1, , } denotes the set of pro-
fessors, in which the set of courses offered by professor j is defined by
PCj. Each professor and student has his/her own maximum limit for the
number of classes per day, determined by lpmax and lsmax , respectively. In
a semester, professor j and student f are required to have the minimum
of lbcj and lbsf course credits, respectively. The set of students F is par-
titioned into subsets based upon their entrance semester to the university
where each Ff is called a group. A binary parameter ptsjt is to express the
availability of professor j to offer a course in time slot t . NC denotes the
number of rooms which are available at each time slot; it is worth
mentioning that rooms are characterized in terms of features and size.

The pre-assignment constraints are also considered in this problem.
In order to do so, three binary parameters are defined as follows. Let

pait be a binary parameter that gets value 1 if course i C1 is pre-as-
signed to time slot t . We also introduce pait

1 equals to 1 where the first
session of course i C2 is assigned to time slot t during the week, and
pait

2 takes the value 1 when the second session of this course is sched-
uled in time slot t . It is to be noted that in order to evaluate the sa-
tisfaction level, parameter PFit is defined as the value brought by as-
signing course i to time slot t . This parameter is determined by some
questionnaires acquired from professors and students. For example, for
some difficult courses, the beginning time slots of each day are much
better than time slots after lunch. We also define

= + + +FTS td td wd td{1, 1, 2 1, , ( 1) 1} as the set of the first time
slots of the working days per week and = ×LTS td td wd td{ , 2 , , } as
the set of the last time slots of the working days per week.

The first step of the proposed integrated approach is to generate a
feasible course timetable in which all the n courses are initially
scheduled. Followed by this phase, the second stage is designed in order
to improve the constructed schedule. For this matter, the cancelation
risk of courses is going to be taken into account. It should be noticed
that a limited number of proposed courses have the risk of cancelation
and we indicate them by the set C Cst . Let = k{1, , } be the set of
scenarios and consider p ( ) as the probability of scenario , in which a
subset ofCst called E is defined as the “canceled” courses, and A Cst
includes those courses with “fixed” status. The remained courses, which
are denoted by the set =DT C E A( )st , are then introduced as
“not-fixed”.

2.2. The integrated model

In this section, we provide an integrated model for the addressed
problem, so that all the possible scenarios of the second step and their
realization probabilities can be investigated in one stage. Table 1
summarizes the decision variables required to formulate the problem,
separately specified for the two stages. Tables 1 and 2 describe the
decision variables of the first stage (here-and-now) as well as the second
stage (wait-and-see) respectively.

In the proposed formulation, the idle times denoted by Gapp and
Gaps in Tables 1 and 2, are defined for the time slots in the middle of a
day, which take the value of 1 where no course is assigned to the given
middle time slot, and at least two time slots before and after that period
are occupied by some courses. The courses with not-fixed status, in-
cluded in set DT , are also changed to either fixed or canceled subject to
the soft constraints considered in the following objective functions. Eqs.
(1)–(7) are, respectively, to minimize the overlapping conflicts, max-
imize the overall assignment value, minimize the working days of both
professors and students, minimize the professors’ as well as the stu-
dents’ idle time and minimize the number of course credits assigned to
the professors whose offered courses credits are below the minimum
number of credits (lbcj). It is to be mentioned that all the functions are
separately investigated for each scenario .

Table 1
The first stage variables.

Xit A binary variable that takes the value of 1 if course i C1 is
assigned to time slot t and takes 0, otherwise

Gappt
j1 An auxiliary binary variable defined for calculating the idle time, indicating if professor j

offers at least one course in any time slot before time slott
Xit

1 A binary variable that takes the value of 1 if the first session of
course i C2 is assigned to time slot t and takes 0, otherwise

Gappt
j2 An auxiliary binary variable defined for calculating the idle time, indicating if professor j

offers at least one course in any time slot after time slott
Xit

2 A binary variable that takes the value of 1 if the second session of
course i C2 is assigned to time slot t and takes 0, otherwise

Gapst
f An auxiliary binary variable defined for calculating the idle time, indicating if group f is

idle in time slot t and takes 0, otherwise
Zfd A binary variable that takes the value of 1 if at least one element of

Ff is scheduled in day d and takes 0, otherwise
Gapst

f 1 An auxiliary binary variable defined for calculating the idle time, indicating if at least one
course is offered for group f in any time slot before time slott

Wjd A binary variable that takes the value of 1 if at least one element of
PCj is scheduled in day d and takes 0, otherwise

Gapst
f 2 An auxiliary binary variable defined for calculating the idle time, indicating if at least one

course is offered for group f in any time slot after time slott
Gappt

j A binary variable that takes the value of 1 if professor j is idle in
time slot t and takes 0, otherwise

VPj The penalty cost which represents the difference between lbcj and the total course credits
offered by professor j, in case of violation of the minimum course credits constraint

Yii A binary variable that takes the value of 1 if course i overlaps with course i and takes 0, otherwise
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= ×f p Ymin ( )
i i i C i C

ii1
, , (1)

= × + +f max p X PF X X PF( ) ( )
i C t TS

it it
i C t TS

it it it2
1 2

1 2

(2)

= ×f min p W( )
j P d D

jd3
, (3)

= ×f min p Z( )
f F d D

fd4
,f (4)

= ×f min p Gapp( )
t TS FTS LTS j P

t
j

5
( ) (5)

= ×f min p Gaps( )
t TS FTS LTS f F

t
f

6
( ) f (6)

= ×f min p VP( )
j P

j7
(7)

The mathematical formulation of the problem reads as follows.
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+ + +
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t

td

i F C
it

t
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(22)

+X X i i C F f F t TS1; , ( ), ,it i t f f
1 (23)

+X X i C F i C F f F t TS1; ( ), ( ), ,it i t f f f
1 1 2 (24)

+X X i C F i C F f F t TS1; ( ), ( ), ,it i t f f f
2 1 2 (25)

+X X i i C F f F t TS1; , ( ), ,it i t f f
1 1 2 (26)

+X X i i C F f F t TS1; , ( ), ,it i t f f
1 2 2 (27)

+X X i i C F f F t TS1; , ( ), ,it i t f f
2 2 2 (28)

=X X t TS i A C; , , ( )it it
1 (29)

=X t TS i E C0; , , ( )it
1 (30)

=X X t TS i A C; , , ( )it it
1 1 2 (31)

=X t TS i E C0; , , ( )it
1 2 (32)

=X X t TS i A C; , , ( )it it
2 1 2 (33)

=X t TS i E C0; , , ( )it
2 2 (34)

X X t TS i DT C; , , ( )it it
1 (35)

X X t TS i DT C; , , ( )it it
1 1 2 (36)

Table 2
The second stage variables.

Zfd A binary variable that takes the value of 1 if in scenario , at least one
course of Ff is scheduled in day d and takes 0, otherwise

Gappt
j1 An auxiliary binary variable defined for calculating the idle time, indicating if in

scenario professor j offers at least one course in any time slot before time slott
Wjd A binary variable that takes the value of 1 if in scenario , at least one

course of PCj is scheduled in day d and takes 0, otherwise
Gappt

j2 An auxiliary binary variable defined for calculating the idle time, indicating if in
scenario professor j offers at least one course in any time slot after time slott

Xit A binary variable that takes the value of 1 if in scenario , course
i C1 is assigned to time slot t and takes 0, otherwise

Gapst
f A binary variable that takes the value of 1 if in scenario , group f is idle in time slot t

and takes 0, otherwise
Xit

1 A binary variable that takes the value of 1 if in scenario , the first
session of course i C2 is assigned to time slot t and takes 0, otherwise

Gapst
f 1 An auxiliary binary variable defined for calculating the idle time, indicating if in

scenario at least one course is offered for group f in any time slot before time slott
Xit

2 A binary variable that takes the value of 1 if in scenario , the second
session of course i C2 is assigned to time slot t and takes 0, otherwise

Gapst
f 2 An auxiliary binary variable defined for calculating the idle time, indicating if in

scenario at least one course is offered for group f in any time slot after time slott
Gappt

j A binary variable that takes the value of 1 if in scenario , professor j
is idle in time slot t and takes 0, otherwise

VPj The penalty cost which represents the difference between lbcj and the total course
credits offered by professor j in scenario , in case of violation of the minimum course
credits constraint

Yii A binary variable that takes the value of 0 if the two courses i and i are assigned without overlapping and takes 1, otherwise
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Due to the multi-objective framework considered for this model, a
weighted sum objective function which is normalized based on a fuzzy
evaluation system is presented in Eq. (8), where +few and few determine
the upper and lower bounds of function e, respectively. How to calculate
these bounds is subsequently described in the next section. As regards the
hard constraints considered in the construction of the initial timetable,
constraint (9) ensures that the one-session courses in set C1 are assigned
to only one time slot during a week. This constraint is also imposed on
two-session courses of set C2 by constraints (10) and (11). Constraints
(12)–(14) guarantee that if a professor of a specific course is not available
at a given time slot, then no lecture of the course can be scheduled at that
period. Constraint (15) establishes that different sessions of a two-session
course must be scheduled in non-consecutive days. Constraints (16)–(18)
are designed for the pre-assigned courses and constraint (19) stipulates
the number of courses scheduled in each time slot must be less than or
equal to the number of available rooms. Constraint (20) prevents the
model from considering solutions with more than one course assigned to
the same professor in a given time slot. The maximum number of lectures
assigned to the professors and student groups in a working day is defined
using constraints (21) and (22), respectively. Constraints (23)–(28) avoid
conflicts in student groups so that all courses of a given group must be
scheduled in different time slots.

For the second stage, the constraints are arranged as follows.
Constraints (29)–(37) are for initializing and integrating the decision
variable dedicated to scenarios. Constraint (38) ensures that the two
sessions of a course in setC2 must get canceled or fixed, simultaneously.
Constraint (39) describes the working days of professors and student
groups, so that day d is defined as a working day in case that at least
one class is scheduled in it. Constraints (40) and (41) aim at calculating
the total number of course credits assigned to the professors which are
below their minimum limit of credits (lbcj). Constraints (42)–(47)
enumerate the course conflict. The idle time of professors and students
in each scenario is determined in constraint (48)–(53) where M in-
dicates a big positive number. Constraint (54) ensures that each student
group fulfills a minimum credit requirement for each semester. Finally,
the two last constraints indicates the type of the decision variables.

2.3. Determination of the lower and upper bounds

As previously mentioned, in order to achieve a weighted sum objective
function, lower and upper bounds are needed. It is generally the case that
the upper and lower bounds for a given model are obtained by solving the
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maximization and minimization problems of that model, respectively. For
this purpose, we firstly solve a specific mathematical model to reach each
of the bounds. Since the probability of scenarios is an important factor
included in the objective functions, the maximum and minimum of this
factor are regarded in for the upper and lower bound calculation, re-
spectively. Assume as the scenario in which all the courses have not-
fixed status, in other words =DT Cst . In the following, we provide the
maximization models to obtain the upper bounds of the seven objective
functions in the main formulation. The lower bounds are similarly
achieved using the minimization version of the same models.
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i i i C i C
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2.4. The two-stage separated model

Since the course timetabling models presented in the literature are
investigated as a single-stage procedure regardless of the probable sce-
narios in the second stage, in this section, we aim at comparing our de-
veloped model with those traditional methods by developing two different
models for the first and second stages, separately. Consider M1 and M2 as
the models proposed for the first and second stages, respectively. We show

this approach in which the first stage is considered independent from the
second stage as M1 M2. In this approach, firstly we generate the M1
model consisting of constraints (9)–(28) as well as Eq. (8) as the single
objective function in which parameter is omitted. Thereafter, based
upon the timetable generated by M1 model and realization of a possible
scenario, we apply theM2 model in order to gain the finalized timetable. It
should be mentioned that this model comprises constraints (29)–(56) and
Eq. (8) such that only the realized scenario is included.

As a comparison, the integrated model allows for uncertainty when
attempting to reach an initial timetable while the separated model does
not consider possible scenarios.

3. Solution approach

In this section, we focus on developing a solution approach for the
integrated model, in order to achieve high-quality solutions in a rea-
sonable computational time. Meanwhile, the goal is to obtain an initial
solution almost similar to the one resulted by the M1 model and then
applying M2 to get the final solution. It is worth mentioning that in this
procedure, the initial solution is achieved by evaluating the possible
scenarios while this is ignored in implementation of M1.

The process addressed in this section is a heuristic algorithm, called
HA, which results in an initial solution, and the completed procedure to
present the final result is denoted by HA M2. It is also assumed that
there is at least one feasible solution achieved by this algorithm.

The following notations are considered in HA algorithm (see
Table 3).

In Algorithm 1, we show the sketch of the overall structure of HA
which is similar to the GRASP algorithm. Each run will stop when the
time limit is reached. HA takes a UCTP instance as an input and it
contains a “While” loop. In each iteration, an initial solution which is
achieved by applying Algorithm 2, is improved by using the local search
procedure, shown in Algorithm 3. The algorithm then performs the next
iteration in case of not finding a better solution rather than the best
found one, otherwise updates the best solution and continues searching.

Algorithm 1.. Pseudo-code of HA algorithm

HA (A UCTP instance)

1. Sol
2. time limit has not been metWhile ( )
3. Sol Initial_Solution (UCTP instance)
4. Sol SolLocal Searsh_ ( )
5. If (Sol is better than Sol )
6. Sol Sol
7. End If
8. End While
9. SolReturn

End HA

Table 3
Notations of HA.

Sol Initial solution
Sol The best found solution
LC Set of courses to be rescheduled in the local search
ATS Set of feasible time slots for a selected course
c The selected course for assigning to a time slot
n ATS( )i The feasible time slots for coursei
Index i( ) An index used to calculate the selection probability of course i
Indext t( ) An index used to calculate the selection probability of time slott
prob i( ) The selection probability of coursei
prob t( ) The selection probability of time slot t
prob Probability vector
Obj t( ) The objective value in case of assigning the selected course to time

slott
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Algorithm 2.. Pseudo-code of the Initial_Solution

Initial_Solution (A UCTP instance)

1. Input: Initialize all input parameters based on the given UCTP instance
2. Sol preassignments
3. CWhile ( )2

4. c Course_Selection(C Sol, )2

5. ATS c SolAvailable_Timeslots( , )
6. =ATSIf ( )
7. goto 1
8. End If
9. c ATSTimeslot_Selection( , )
10. SolUpdate( )
11. ATS c SolAvailable_Timeslots( , )
12. =ATSIf ( )
13. goto 1
14. End If
15. c ATSTimeslot_Selection( , )
16. SolUpdate( )
17. C C c2 2

18. EndWhile
19. CWhile ( )1

20. c Course_Selection(C Sol, )1

21. ATS c SolAvailable_Timeslots( , )
22. =ATSIf ( )
23. goto 1
24. End If
25. c ATSTimeslot_Selection( , )
26. SolUpdate( )
27. C C c1 1

28. End While
29. SolReturn

End Initial_Solution

The pseudo-code depicted in Algorithm 2 aims at finding an initial
timetable, in which the pre-assigned courses are firstly fixed.
Thereafter, the two-session and one-session courses are scheduled, re-
spectively, since assigning the two-session courses are more difficult
than others. Algorithm 3 is an indication of the course selection pro-
cedure, which is designed to choose an appropriate course for assigning
to the timetable. Specifying a set of suitable time slots for the selected
course (Algorithm 4), we then apply Algorithm 5 in order to reach the
best time slot among the available ones and update the initial timetable
with the new assignment. It is to be noted that in case of finding no
feasible time slot for a specific course, the algorithm stops and apply the
initial solution procedure to re-start the algorithm.

Algorithm 3.. Pseudo-code of the Course_Selection

Course_Selection (C, Sol)

1. i CFor ( )
2. n ATS i Sol( ) Available_Timeslot( , )i
3. End For
4. i CFor( )
5.

+index i max n ATS n ATS( ) ( ( )) ( ) 1
i C

i i

6. End For
7. sum index i( )i
8. i CFor( )
9. prob i index i sum( ) ( )
10. End For
11. Return probRoulette_Wheel( )

End Course_Selection

The pseudo-code shown in Algorithm 3 is to select a course in order
to be assigned to the course timetable. In this regard, the courses with
less flexibility are more probable to be selected. In other words, the
courses with smaller set of feasible time slots, regarding as less flexible
ones, shown by index(i) for course i. In order to assign higher selection
probability to less flexible courses, we consider =prob i index i sum( ) ( )
where =sum index i( )i . Next, a course is selected based on a biased
random selection approach, called the Roulette Wheel Selection (RWS)
method in the literature.

Thereafter, an appropriate time slot has to be chosen for the selected
course in order to be able to properly assign it to the available time-
table. As a result, Algorithm 4 is firstly used, to specify the set of
available time slots. Algorithm 5 is then applied, in which the objective
values are estimated while considering the available time slots for the
given course. After calculating the selection probabilities for the time
slots, the final time slot is selected using RWS method.

Algorithm 4.. Pseudo-code of the Available_Timeslots

Available_Timeslot (c, Sol)

1. ATS
2. t TFor( )
3. Sol t cIf ( ) is feasible for
4. ATS ATS t
5. End If
6. End For
7. ATSReturn

End Timeslot_Selection

Algorithm 5.. Pseudo-code of the Timeslot_Selection

Timeslot_Selection (c, ATS)

1. t ATSFor( )
2. Obj t c t( ) objective_Function( , )
3. End For
4. t ATSFor( )
5.

+indext t max Obj t Obj t( ) ( ( )) ( ) 1
t ATS

6. End For
7. sum indext t( )t ATS
8. t ATSFor( )
9. prob t indext t sum( ) ( )
10. End For
11. Return probRoulette_Wheel( )

End Timeslot_Selection

The local search method, presented in Algorithm 6, is a procedure
developed to improve the initial solution. As is given in the following
algorithm, % of the courses in the initial solution are removed from the
timetable at the first step and then they are assigned to the empty sets
C1 andC2 based on their credit. Afterwards, a procedure which is almost
similar to the initial solution construction is utilized, where a greedy
method is applied for selecting the courses and time slots, as well. We
call these procedures as Greedy-Course Selection and
Greedy_Timeslot_Selection procedures.

It should be noted that the selection procedures in this algorithm
may sometimes lead to an infeasible solution. Regarding the greedy
methods, no specific process is designed to escape the infeasibility in
case of need. As a result, when facing such a problem, the algorithm
reassigns all the removed courses and continues the process. Ultimately,
the algorithm either improve or just return untouched initial solution in
worst-case scenario.
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Algorithm 6.. Pseudo-code of the Local_Search

Local_Search (Sol)

1. LC % of all courses which scheduled in Sol and do not have any pre-
assignment.

2. C1 and C2

3. Input: Assign LC to C1 and C2 and delete all LC courses fromsol
4. CWhile ( )2

5. c Greedy_Course_Selection C Sol( , )2

6. ATS c SolAvailable_Timeslots( , )
7. =ATSfI ( )
8. Apply the Initial_Solution to assign courses of LC to Sol
9. End If
10. c ATSGreedy_Timeslot_Selection( , )
11. SolUpdate( )
12. ATS c SolAvailable_Timeslots( , )
13. =ATSIf ( )
14. Apply the Initial_Solution to assign courses of LC to Sol
15. End If
16. c ATSGreedy_Timeslot_Selection( , )
17. SolUpdate( )
18. C C c2 2

19. End While
20. CWhile ( )1

21. c Greedy_Course_Selection (C Sol, )1

22. ATS c SolAvailable_Timeslots( , )
23. =ATSIf ( )
24. Apply the Initial_Solution to assign courses of LC to Sol
25. End If
26. c ATSGreedy_Timeslot_Selection( , )
27. SolUpdate( )
28. C C c1 1

29. End While
30. SolReturn

End Local_Search

4. Computational results

In this section, computational experiments are conducted to eval-
uate the performance of the solution approaches. The algorithms were
coded in C++ using CPLEX 12.6.3 and run on a computer with an Intel
Core i7 CPU and 40 GB of RAM. The following two subsections give
details of the results attained using the proposed exact and metaheur-
istic methods, respectively.

4.1. Data sets generation and parameters setting

The tests were performed on 48 instances organized into 6 groups of
8 instances each. Table 4, in which the parameters of these sets are
specified, includes a column defining the total number of variables each
test set contains. As is evident from the table, the parameter Cst| |, which
denotes the number of courses with non-deterministic status, has a
significant impact on the number of variables because we have

=| | 3 Cst| | where number 3 is related to the three status of each course

of set Cst , i.e. fixed, canceled and not-fixed. The values of parameters
are randomly chosen, regarding the real-world data sets. Also, we set

= 0.2 based on fine tunning.
In order to determine the parameters PFit we followed the approach

of Movahedfar, Ranjbar, Salari, and Rostami (2013) in which all
courses are divided into four categories in terms of profitability of
presentation each course in different time slots. For example, it is better
for both students and professors to participate in difficult courses in the
morning rather than time slots immediately after lunch time. Also, we
consider identical values for weightsW1 toW7in all of our developed test
instances. In real cases, these values can be determined based upon the
well-known Analytical Hierarchy Process (AHP) method (see
Triantaphyllou, 2000) using a 7×7 matrix and expert judgment.

4.2. The results of the integrated model

Having solved the test problems, we provide the summarized results
of the exact models in Table 5. As is presented, the optimal solution is
obtained for 39 out of 48 instances as follows. The first four groups
within the given time limit (3 h) are solved optimally. Considering the
other two groups, 25% of the instances of group 5 are optimally solved
in the determined time limit, while this value is 0% for the last group,
which has the highest complexity among all. To further illustrate this
issue, the running time, the CPLEX gap and the deviation of the op-
timality are pointed out in the following table.

4.3. EVPI index

Birge and Louveaux (2011) addressed the expected value of perfect
information (EVPI) as a parameter measuring the maximum amount a
decision maker would be ready to pay in return for complete and ac-
curate information about the future. Regarding the stochastic pro-
graming, this parameter measures how much it is reasonable to pay to
obtain perfect information about the future in case of uncertainty. In
the problems like ours, in which uncertainty is supposed to be modeled
through a number of scenarios with different probabilities, we are able
to gain the value of having the complete information, i.e. where no
uncertainty is included, using this parameter.

In order to calculate EVPI, we first consider a specific scenario
which is certain to happen in the future, and then obtain the solution
for that situation. Considering all the scenarios separately as the only

Table 4
Parameters of the data sets.

Group wd td C C1 C2 Cst| | nf lbs lbc NC P| | Number of variables

1 3 3 10 5 5 2 2 3 3 2 4 2844
2 3 4 12 6 6 2 2 3 3 2 5 4716
3 4 3 14 7 7 3 3 3 3 2 5 15,561
4 4 4 16 8 8 3 3 3 3 2 6 24,198
5 4 4 16 8 8 4 3 3 3 2 6 71,826
6 5 4 22 11 11 4 3 3 3 2 9 126,291

Table 5
Results of the integrated model.

Group 1 2 3 4 5 6

Instance 1 Run time (s) 0.3 6.3 162.7 7601.6 10801.6 10802.2
CPLEX gap 0 0 0 0 0.2 0.3

Instance 2 Run time (s) 0.4 1.1 3293.2 1910.8 10802.2 10802.8
CPLEX gap 0 0 0 0 0.1 0.2

Instance 3 Run time (s) 0.8 1.8 76.2 2336.4 10801.9 10,800
CPLEX gap 0 0 0 0 0.1 0.9

Instance 4 Run time (s) 1.3 1.3 332.1 2750.7 10800.6 10802.6
CPLEX gap 0 0 0 0 0.2 0.3

Instance 5 Run time (s) 2.1 31.9 308.8 2078.3 10808.9 10,806
CPLEX gap 0 0 0 0 0.1 0.3

Instance 6 Run time (s) 0.6 1.9 25.4 30.0 372.102 10802.1
CPLEX gap 0 0 0 0 0.0 0.4

Instance 7 Run time (s) 1.6 1.4 127.6 295.9 2565.76 10802.4
CPLEX gap 0 0 0 0 0.0 0.4

Instance 8 Run time (s) 10.6 7.3 563.4 949.7 10800.6 10,803
CPLEX gap 0 0 0 0 0.9 0.3

Average run time 2.2 6.6 611.2 2244.2 8469.2 10802.6
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single happening scenario, there are several optimal solutions re-
sulting in an identical objective value. Using the probabilities of
scenarios as the weights, we then calculate the weighted sum of the
objective values, which denotes the optimal value for the case where
no uncertainty is involved. For example, such value in the instance
#27 is −0.418. Having also the optimal solution obtained by solving
the integrated model which is −0.396 for instance #27, we can
reach the EVPI value. For instance #27, we have
EVPI =−0.418− (−0.396)= 0.021. In other words, for a mini-
mization problem, the objective value reached by considering de-
terministic situation is better than the value obtained in case of un-
certain parameters. The deviation of the integrated model from the
optimal solution in case of certainty is equal to = 0.050.021

0.418 or 5%.
Similarly, we calculated an average of deviation over 34 instances,
for ones the optimal solution of the integrated model was available,
and the 4% result confirms the efficiency of the proposed integrated
model.

4.4. Comparison of the integrated and separated models

In this section, the discussion is about performance comparison of
the integrated model and the separated one. For this purpose, the 29
instances those solved and reached optimality using the integrated
model, are separately solved by M1 M2, so that the M1 model is firstly
implemented and then M2 is applied over the output of and M1 using
Montecarlo simulation approach. For this, the M2 model is replicated as
many as 100 | | to give a high chance of realization to all scenarios. In
order to compare the integrated and separated models, we define the
percent deviation for instance q as = ×PD 100q

z z
z| |

q q

q
where zq in-

dicates the objective function obtained for instance q using a specified
method and zq shows the best found objective function for that in-
stances among all developed solution approaches. Also, we define the
APD as the average of PD over a group of instances.

Table 6 shows the results obtained from the mentioned process. The
34 problems ranked in descending order belong to the 5 groups of test
sets, from 1 to 5 sequentially, where the last two problems are the only
members of group 5. Focusing on the running time, it is evidently
concluded that M1 M2 model runs in much less computing time in
comparison to the integrated model. The reason is that M1/M2 model
broke down a larger real-scale problem into two sub-problems, where a
great number of decision variables are omitted due to inconceivable
scenarios. It is to be mentioned that the average run time for a given
instance is specified by adding the M1 running time to the mean of the
computing times needed for the several runs of M2.

Also, Table 6 indicates that the average superiority percentage of
the integrated model increases for larger size instances and also those
instances having more course with uncertain status.

Furthermore, we investigate the performance of the developed ap-
proaches by applying them on some instances which differ in number of
courses with uncertain status. In this regard, we choose 3 test problems
where their optimal solution was previously gained in 3 hours time
limit. Thereafter, 4 instances are generated by iteratively changing Cst
in each of the specified problems, so the overall of 12 instances are
created in from of 3 categories while the only difference in each group
is Cst . For this part, instance 1 and 2 are chosen from group 4 and in-
stance 3 is a member of group 3, where the parameter previously de-
fined in Table 2. Having defined the 12 instances, we then solve them
by both the integrated and separated models and report the obtained
results in Table 7.

Table 7 indicates the superiority percentage of the integrated model
grows as the number of uncertain courses (C| |st ) in each instance in-
creases. In other words, the efficiency of the two-stage stochastic pro-
gramming model approach is by far better in problems with the higher
levels of uncertainty.

4.5. Detailed results of HA/M2 solution approach

In this section, we investigate the performance of HA/M2 approach.
For this purpose, we implement both the integrated model and the HA/
M2 approach with four different time limits. We impose a limit of 1, 10,
30 and 180min on the CPU run times for the data sets and run the two
proposed approaches within each time limit.

Table 6
Comparative results of the integrated and separated models.

Instance Average
run time of
M1/M2

Run time of
the
integrated
model

PD of
M1/
M2

Superiority
percentage of
the integrated
model

Average of
superiority
percentage

1 0.32 0.28 0% 33% 42%
2 0.29 0.40 1% 26%
3 0.32 0.82 4% 40%
4 0.32 1.32 27% 59%
5 0.36 2.14 41% 49%
6 0.28 0.60 1% 21%
7 0.35 1.56 9% 67%
8 0.35 10.56 11% 39%

9 0.74 6.35 7% 69% 50%
10 0.33 1.12 0% 44%
11 0.42 1.79 2% 51%
12 0.42 1.26 2% 24%
13 0.70 31.86 0% 38%
14 0.42 1.85 219% 50%
15 0.38 1.42 11% 65%
16 0.64 7.32 56% 59%

17 0.51 162.74 0% 45% 54%
18 4.94 3293.22 72% 46%
19 1.02 76.21 92% 71%
20 0.79 332.14 9% 62%
21 1.36 308.85 200% 40%
22 0.91 25.38 0% 46%
23 4.47 127.65 291% 45%
24 1.19 563.44 40% 80%

25 9.20 7601.63 41% 70% 56%
26 2.18 1910.77 0% 40%
27 1.71 2336.41 24% 57%
28 16.15 2750.66 35% 53%
29 1.37 2078.31 0% 63%
30 0.59 30.04 0% 43%
31 2.32 295.96 5% 60%
32 1.48 949.74 3% 58%

38 0.50 372.10 3% 56% 58%
39 2.66 2565.76 76% 60%

Average 1.8 760.3 38% 51%

Table 7
Impact of the number of courses with uncertain status on the integrated and
separated models.

C| |st 1 2 3 4

Instance 1 Run time of the integrated model (s) 1 5.2 38.5 372.1
Run time of M1 M2 (s) 0.5 0.3 0.4 0.4
Superiority percentage of the
integrated model

22% 34% 56% 65%

Instance 2 Run time of the integrated model (s) 6.0 37.5 269.3 2565.8
Run time of M1 M2 (s) 3.7 5.1 3.8 3.6
Superiority percentage of the
integrated model

36% 39% 50% 65%

Instance 3 Run time of the integrated model (s) 2.3 8.9 91.8 2008.2
Run time of M1 M2 (s) 1.3 1.1 1.1 0.9
Superiority percentage of the
integrated model

17% 63% 70% 71%

Average of superiority percentage of the integrated
model

25% 45% 59% 67%
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Table 8 provides the results of APD obtained by implementing the
integrated model as well as the HA/M2 method, while imposing the
mentioned time limits. As is given, both algorithms converge to optimal
solutions in case of expanded running times. It is noteworthy that the
HA/M2 approach is able to provide better results in 1-minute time
limit, while underperforms the integrated model in larger running time
limits. It is to be noted that in this table, the last row defines the su-
periority of integrated model over HA/M2 in percentage.

As regards the M1/M2 approach, the APD is 51% in 1-minute time
limit. Since this method obtained the optimal solution of M1 for all the
instance, no improvement has been achieved within the larger time
limits. Although the results denote the better performance of this
method rather than the integrated one (in 1-minute time limit), the
integrated model attains better solutions in other time limits. It should
be mentioned that regarding a 180-minute time limit, this algorithm
has reached the value of 29% in terms of deviation percentage, where
the integrated model is unable to show such level of performance.

As previously mentioned in the above table, the HA/M2 approach
failed to outperform the integrated model in many instances. Since this
method has been developed for large-size problems, we shift our focus
on some instances of group 6 that did not reach the optimal solution in
180min. Presenting Table 9, in which the APD values are summarized,
we can conclude that the HA/M2 model outperforms the integrated
model in large size instances, where the imposed time limit is up to
30min. Regarding the superiority percentage of the integrated model in
last row of Table 9, it can be concluded that HA/M2 model obtains
better solutions in large-scale problems. It is to be mentioned that the
value of APD for the large instances solved by M1/M2 method is 95%.

5. Conclusions and future research

In this paper, a university course timetabling problem has been
studied while considering the cancelations risk of the provided courses.
In many universities where the registration is implemented in two steps
of (1) pre-registration and (2) drop/add phases, there may be some
courses need to be canceled because of not reaching the required
threshold in terms of total registered students. As a result, the cance-
lation risk accounts for the inherent uncertainty within the proposed
problem, in which the satisfaction of students and professors are to be
maximized. Regarding the solution method, we have developed a two-
stage stochastic programming approach and compared the results with
the M1 M2 model, where no uncertainty has been considered, as well as
a heuristic method named HA M2. Having investigated the obtained
results, we reach to this point that the two-stage stochastic program-
ming approach shows a good performance, especially in case of dealing
with a high-level uncertainty. The HA M2 model has been also able to
provide qualified solutions for large-size instances in a limited CPU run
time. The results obtained from the M1 M2 approach has shown that

the solution obtained by this method can be considered as an appro-
priate initial solution when there is a moderate level of uncertainty in
the problem, otherwise it fails to present qualified solutions.

For future research, we believe the following directions to be pro-
mising.

(I) In addition of cancelation of some courses, as a recourse action in
the drop/add phase, it would be much practical to consider the
possibility of adding some new courses from a limited number of
not offered courses.

(II) In this model, the probabilities of scenarios have been assumed to
be independent while they may inherit some levels of dependency.
There is a high chance that a fewer registered students in one
course be under the influence of a higher number of registered
students in another course. As a research direction, it is an inter-
esting topic and the Bayesian inference may help in this case.

(III) The proposed solution approach in this problem can provide good
solutions for large size instances for those CPLEX failed to reach
the optimality within a three-hour time limit. As a future study,
developing new heuristic or metaheuristic solution approaches to
obtain high-quality solutions for all types of instances is greatly
beneficial.
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