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Abstract

Numerical Simulation of three dimensional wave equation is conducted in
a cubic domain which contains two parts, part A and part B. Part A of the
domain is a () -shaped empty channel, containing air, and part B, containing a
solid medium, is the difference between the whole cubic domain and part A.
A Dirichlet type boundary condition is specified at the inlet boundary. At all
other boundaries of the cubic domain a null Neumann boundary conditions are
imposed. As an initial condition a null pressure distribution is specified
everywhere in the cubic domain except at the inlet boundary. All spatial
derivatives are calculated using a compact finite difference scheme.
Computations are advanced in time using a compact third order Runge-Kutta
scheme. These computations have to be performed twice in succession for
each sub-time step of the Runge-Kutta scheme. The numerical code is
successfully tested against an exact solution. This issue is followed by the
discussion of a three-dimensional simulation. These results, for pressure, are
then integrated over the entire surface of the end plane to introduce the load
applied to the plane. Both results indicates that the compact finite difference
simulation of the wave equation produce a satisfactory and reliable result.

Keywords: Compact Finite Difference; Pressure Field; Three Dimensional
Wave Equation; Reflecting Boundary Conditions.

Introduction

The extension of the piecewise exponential method (PEM) for the case of
multidimensional wave problems was studied by Zalizniak [1]. This was performed
on the basis of operator splitting and the PEM scheme for the one-dimensional wave
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equation. He provided numerical results for two problems of wave propagation in
comparison with the analytical solutions.

A direct numerical model was developed for determining the transverse wave
forces that act on an asymmetric structure on a submerged permeable breakwater in a
three-dimensional, non-breaking wave field by Dong-Soo et.al. [2]. The model
combined the volume of fluid (VOF) method and the porous body model to accurately
simulate the nonlinear interaction between water waves and a porous structure. He
performed laboratory experiments which revealed the validity of the numerical model.
The propagation of waves in two-dimensional and three-dimensional bounded visco-
elastic medium was described in the space frequency domain, leading to a Helmholtz-
type boundary value problem, which is non coercive, non-Hermitian, and complex
valued by Taeyoung et.al.3].

They derived first-order absorbing boundary conditions and used to minimize
spurious reflections from the artificial boundaries. They described the global
procedures for the approximate solution of the problem. For the spatial discretization
they use rectangular nonconforming finite element methods. Mattsson and Jan
Nordstrom [4] derived high order finite difference approximations in rectangular
geometries for the second order wave equation with discontinuous coefficients. The
proposed method was verified by 1-D and 2-D numerical simulations. Sreekanth et.al.
[5] developed a spectral finite element with embedded transverse crack to simulate the
diagnostic wave scattering in composite beams with various forms of transverse
crack.

The results of numerical simulations for comparing with 2D finite element
prediction showed the efficiency of the method to predict the crack location and
overall trends due to various crack configurations. An efficient numerical algorithm
for solving viscous and non-viscous wave equations were developed by Hyeona
et.al[6]. A three-level second-order implicit algorithm were used without introducing
auxiliary variables.

A locally one-dimensional procedure which has a splitting error not larger than the
truncation error was suggested to solve problems of diagonal diffusion tensors in
cubic domains. Both the three-level algorithm and its locally one dimensional
procedure were proved to be unconditionally stable. An error analysis for the
numerical solution of viscous waves were performed to show the accuracy and the
efficiency of the new algorithms for the propagation of acoustic waves. Finite volume
evolution Galerkin schemes for the three-dimensional wave equation system were
derived by Lukacova et.al.[7]. Numerical experiments proved the accuracy and the
multidimensional behavior of the solutions.

In this paper the numerical simulation of three dimensional wave equation is
performed using the compact finite difference scheme for the spatial derivatives and
the compact third order Runge-Kutta scheme for temporal derivative. The pressure is
taken as the field variable and the governing equation is solved for pressure. Initial
condition, which are the pressure distribution and the time rate of the pressure are set
to zero everywhere within the domain. Boundary conditions are reflected type
boundary condition on every plane of the boundary except at the inlet. The inlet of
computational domain is forced by a function which varies with time. The numerical
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experiment is validated against an exact solution of the wave equation. The proposed
method reveals the potential and applicability of the numerical analysis for solving the
hyperbolic type governing equations.

Governing Equation
The wave equation is governed by a hyperbolic differential equation. That is
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e p, pressure, is the field variable.

The wave equation is solved in a cubic domain.

The computational domain with the coordinate system used are shown in Fig.(1).
The domain consists of two parts with different properties. Part A of the domain is a
(1 shaped, containing air, and part B, which is the difference between the whole cubic
domain and part A, contains soil. The whole of the computational domain, which is
cubic, is divided into equal increments in the x,y and z directions. The grid sizes in
each spatial directions are denoted by Ax, Ay and Azrespectively.
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Figure 1: Computational domain.

Boundary and Initial Conditions
Since both temporal and spatial derivatives appeared in the governing equation are
second order, two initial conditions and two boundary conditions, in each spatial
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direction, are needed. The initial conditions are pertaining to pressure p and the time
derivative of pressure P at 1=0. Both of these distributions are set to zero within the
1

domain except at the inlet boundary which is specified according to the inlet forcing
condition. Dirichlet type boundary condition is specified at the inlet boundary of the
computational domain. At all other boundaries a null Neumann boundary condition is
used. This is due to the fact that the rate of change of pressure in a solid medium is
negligible in compare with the rate of change of pressure in a gas medium such as air.
Since the end plane is solid the outflow boundary condition is also facilitated by a null
Neumann type boundary condition.

Modeling of Spatial Derivatives

The right hand side of the governing equation contains Laplacian operator. The
second derivatives in the Laplacian in each spatial direction is evaluated using the
compact finite difference scheme of Lele [8]. According to the scheme the second
derivative in any spatial direction, say (x), is modeled implicitly as Eq.(2).
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At the immediate vicinity of the boundaries (at j=1/ and j=J-1), the second-order

e . . 1 .
compact finite difference scheme Eq.(2) is used with o = 0 At j=0, a one-sided,
third order scheme is used. That is:
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At the solid boundary of (j=J) the following form which meets the null derivative
boundary condition [9] is employed.
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In other two spatial directions (y,z) an analogous approach used for determining

the second derivatives in (x) are used. The exceptions relate to y=0 and z=0 planes

where the null derivative must be imposed. At these boundaries the following form is

used. For example at y=0 plane:

-3

fyz (Po = P2) (5)
The accuracy of the numerical scheme representing the second spatial derivative is

illustrated in Fig.(2). The figure shows the order of accuracy for

p; + 2p;—l =

po+2p, =
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p(x)=zllj:/_2m2;9(k)exp(27rikx/ Lx)+c.c. when the preceding compact (finite

difference scheme is used for determining the second derivative. Here c.c. denotes a
complex conjugate.

In constructing the right hand side of the wave equation the wave speed must be
considered as appropriate for each part. In other words, the wave speed for the grids
in part A and B of the computational domain must be set as the air and soil wave
speeds, respectively. The field variable, p, is updated for whole of the domain at the
same time and this is not computed for each part A and B individually. Owing to this
fact and as the governing equation for both parts are the same no explicit boundary
conditions are required at the common surfaces between the A and B parts. When
solving for the both parts, the boundary conditions pertains to the external surfaces of
the cubic domain and the interaction between the common surfaces are implicitly
treated by the wave equation. This strategy is very similar to determining the support
reactions of a truss in which the internal joint reactions are not appeared in the free
body diagram of the whole truss body.
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Figure 2: Order of accuracy for second derivative approximation using compact finite
difference scheme

Table 1: Third order Runge-Kutta time advancement scheme

First location Second
location

u" Ru")

u =u" +c,AR R =R(u)

u =u +(c,R +d,R)At R =Ru')

u™ =u +(c;R +d,R)At




600 M. J. Maghrebi, M. Farzaneh and M. Shariati

Maximum of | Error|
5
T

o
=Y

g, N=—3.027253
o,

107"

100 1000

du
— =—u(t)
Figure 3: Order of time advancement scheme for ¢ with WO =1.

Time Advancement Scheme
Wray A. [8] developed a compact, third order, Runge-Kutta scheme. This is used here
to advance the computations in time. According to this scheme, the time advancement
of the following model equation

du

—=R(u 6

7 (u) (6)
is performed in three sub-steps as described in Table.(1).The table shows that the time
advancement of Eq.(6) by one time increment Afrequires computation of the right-
hand side (R) in three successive sub-time-steps. In each of these sub-steps, time (7) is
incremented by (c; +d,)At and u is accumulated by linear combination of R's

associated with the current time level and that of the previous sub-time-step. Results
in the second column of the third sub-time-step is regarded as the solution
incremented by At . The coefficient used in the time advancement scheme (c;,d; ) can

be obtained using the Taylor series expansion for R'and R and equating the terms
of like orders. This leads to

¢ te,te;+d +d, +d; =1
¢,C,y +c3[£(1+£)+c2(1+£)]:l
c, Cy c, 2
C126‘2 +¢;l¢, +c2(1+£)]2 +c12d3 = 1
c, 3

c,C,Ch, = —
16265
6

There are two parameter families of solutions to the preceding set of
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equations. The scheme will be self-starting if d, =0.
One parameter families of solution to the set of equations is,

c %,dl=0
3
5 -5
:—’d = —
2T hT
3 _4
co=2d, =—~
577 15

Detailed discussion can be studied in Maghrebi [8]. A test case is performed to
validate the order of accuracy for the Rung-Kutta time advancement scheme applied
to the following equation.

du

E = —M(l')

This equation has an exact solution of u(r) =e™" if u(0)=1 is taken as the initial
condition. The Eq. (7) is solved for u(z)at f =1 using different time increments. The
results, indicating the maximum errors between the numerical results and the exact
solution, are illustrated in Fig.(3). This definitely ensures the third order of accuracy
for the time advancement of the computation.

Since the wave equation is a second order differential equation with respect to
time, time advancement of the simulation is performed in two successive steps.

2
Sincea—zpzi(a—p) the wave equation can be written as a—gzczvzp where
ot~ ot ot ot
g—pz g(x,y,z,t). In other words, the first step in the time advancement of the
t

governing equation is to form the right hand side of ?}—gzczv2 p using initial

t
condition for p. The second step is to update the initial condition for

g(x,y,z,t)using 8_p as the initial condition. Note that both initial conditions are used
t

to update g .
Next, aa_p: g(x,y,z,t)) is updated for p. The right-hand side of the equation
t

g(x,y,z,t)1s not evaluated as preceding part but it is explicitly specified as the
second initial condition. Here also both initial conditions are used to update p . Note
that the updated distributions for g and p are regarded as new initial conditions

which will be used for the next sub-steps in the time advancement process. These
computations, according to the compact third order Runge-Kutta scheme, are repeated
over three sub-steps to advance the solution by one time increment. Application of the



602 M. J. Maghrebi, M. Farzaneh and M. Shariati

preceding process must be implemented N time steps to obtain the solution at the end
of the time interval.

Code Verification
The numerical code is validated against an exact solution of a three dimensional case.
The solution to the three dimensional wave equation will converge to

p(x,y,z,t) =sin(x)cos(y)cos(z) sin(\/gt
if p(x,y,z,t=0)=0 and %—f(x, v,2,0) = \/gsin(x) cos(y)cos(z) are used as the

initial conditions. The inlet boundary conditions must also be specified as
p(0,y,z,t)=0. Parameters used in this test case are chosen such that the null

Neumann boundary conditions exist at all of the solid boundaries. Hence, L, = 5,

L =n,L = 27 . The spatial resolution of the simulation is 10x40x40, c¢* =1 for

both parts of the domain. The results for the L’ norm of the error within the entire of
the computational domain after advancing the simulation one thousand time steps is
found to be 2.409996e¢ "> which definitely ensures the accuracy of the numerical
simulation conducted.

Input File Structure

The code is written such that the input data file can be easily generated. The
construction of an input data file for the next three dimensional simulation is as
follows.

Length of the domain in x------ = 15.
Length of the domain in y------ =
Length of the domain in z------ =4,
C_Air---------------- = 340.

(@) | S ——— =2000

time increment----------- =.00001
number of the grids in x------ =60
number of the grids in y------ =20
number of the grids in z------ =16
number of substeps--------- =
number of time steps-------- =4421
Amplitude of oscillation-Pf-----= 100000.
55 S —— =

Step Numbers Required 4 impact time-= 10

The multiplication of the last entry of the data file by the time increment is the time
period shown by 7 in Eq.(8).
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Three Dimensional Simulation
The results of the pressure time history atx=L_,y=L, /2, z=L_ /2 in one, two and

three dimensional simulations are shown in Fig.(5). It is observed that the maximum

L, ) . 3L,
pressure occurs at ¢t = —=. The next maximum is observed at t = —=. Both of these
c c

values correspond to the time required for the wave to reflect form the exit, x=L_,

and the inlet, x = 0, boundaries.

The results of pressure time history in a much smaller time extents of
0.04 <¢<0.05 are shown in Fig.(6) to clearly illustrate the time variation of the
pressure around the maximum. The figure indicates that the maximum pressure
corresponding to the one dimensional simulation is much higher than that of the two
and three dimensional simulations. This is because of the damping property of the null
Neumann type boundary conditions. In one, two and three dimensional simulations
one, three and five boundaries are facilitated by the damping conditions, null
Neumann boundary conditions, respectively. The three dimensional simulation of the
wave equation has been terminated at a time corresponding to the maximum pressure.
At this time level the pressure distribution is plotted as in Fig.(4).
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Figure 4: Pressure iso-levels on the outlet boundary of the domain.

Since z=L,/2 is the line of symmetry, it is expected to obtain a symmetric
pressure distribution aboutz =L_/2. This is clearly observed in Fig.(4). Careful

examination of the figure also reveals that the maximum of the pressure locates at the
centroid of the () shaped empty channel (section A ).
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The time corresponding to the maximum load is shown to be approximately

L . . . .. L.
t =—=. The other maximums relate to the time with odd coefficients of r =—*(i.e.

C C
3L 5L . o .
t=—=, t=—>="...) approximately. These results are coincided with the response of
C C

the wave due to reflection from the streamwise boundaries in x .
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Figure 5: Pressure time history.

Since the storage of pressure field at any instance in the computational domain is
very memory demanding and time consuming, the integral of pressure on the end
plane is calculated. This is indeed the surface integral of pressure over the entire of
the end plane (x = L) . In other words, the time history of the resulting force F(L_,?)

applied to the end plane of the computational box is calculated and recorded.
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Figure 6: Pressure time history in one, two and three dimensional simulation
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F(x,t)= Ip(x, v, Xx,1)dA
A

where A is the cross-sectional area representing the end plane of the computational
domain. Shown in Fig.(7) is the force applied on A due to the pressure distribution.
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Figure 7: Time history of load applied to section A of the end plane.
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The magnitude of the force has to be less than L L P; = 4x6x10°. This fact is

clearly observed in Fig.(7) for three-dimensional simulation. According to the
numerical investigations performed on the code, it was observed that the location of
maximum load is altered when the size of the computational box is changed. It was

also investigated that the time corresponding to the maximum load is ¢ = L exactly,
c
if the wave speed in different mediums are assumed to be the same.

To find the maximum pressure distribution on the end plane of the computational
domain, two entries in the data file are adjusted carefully. These two entries are time
increment and the number of time steps. The multiplication of these two entries is the
critical time at which the load is found to be maximum. Since the code is thoroughly
verified, any divergence or discrepancy will be related to the stability requirement. In
other words, the time increment must be small enough to ensure the restriction and the
requirement of CFL number. Otherwise, the simulation will be diverged quickly. The
CFL condition has not been studied analytically, using Von Neumann stability
analysis say, but the value must not exceed 0.7 according to the numerical
investigation performed on the code.

The inlet boundary condition of the simulations were introduced according to

—bt

px=0.y.5.0=P, (- e’ 8)
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where Pf =100000 and b=1.

This boundary condition is imposed at the entire of the inlet boundary regardless of
the solid or the air medium.

Conclusions

The numerical simulation of the three dimensional wave equation was conducted in a
cubic domain containing two parts, part A and part B. Part A of the domain was a [)
shaped, containing air, and part B, containing soil, was the difference between the
whole domain and part A. A Dirichlet type boundary condition was specified at the
inlet boundary. Other conditions imposed at the solid boundaries were the null normal
derivatives. Null pressure distribution was supplied for the initial conditions
everywhere in the domain except at the inlet boundary. Spatial derivatives in any
directions were calculated using a compact finite difference scheme. For each time
increment computations were advanced in time using compact third order Runge-
Kutta scheme which has to be applied twice in succession in each sub-time step. The
numerical code was successfully validated against an exact solution. The load time
trace which was the surface integral of the pressure applied to the end plane of the
computational domain were generated and discussed. The numerical results revealed
that the modeling of the three dimensional wave equation using the compact finite
difference and the compact third order Runge-Kutta schemes produced a reliable and
satisfactory results.
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