
International Journal of Applied Engineering Research  
ISSN 0973-4562 Volume 2, Number 4 (2007), pp. 595–607 
© Research India Publications 
http://www.ripublication.com/ijaer.htm 
 

 
 

Compact Finite Difference Investigation of Pressure 
Field Governed by a Three Dimensional  

Wave Equation 
 
 

M. J. Maghrebi, M. Farzaneh and M. Shariati 
 

Faculty of Mech. Eng., Shahrood Uni. of Tech., Shahrood, I. R. Iran 
E-mail : javad@shahroodut.ac.ir 

 
 

Abstract 
 

Numerical Simulation of three dimensional wave equation is conducted in 
a cubic domain which contains two parts, part A and part B. Part A of the 
domain is a I -shaped empty channel, containing air, and part B, containing a 
solid medium, is the difference between the whole cubic domain and part A. 
A Dirichlet type boundary condition is specified at the inlet boundary. At all 
other boundaries of the cubic domain a null Neumann boundary conditions are 
imposed. As an initial condition a null pressure distribution is specified 
everywhere in the cubic domain except at the inlet boundary. All spatial 
derivatives are calculated using a compact finite difference scheme. 
Computations are advanced in time using a compact third order Runge-Kutta 
scheme. These computations have to be performed twice in succession for 
each sub-time step of the Runge-Kutta scheme. The numerical code is 
successfully tested against an exact solution.  This issue is followed by the 
discussion of a three-dimensional simulation. These results, for pressure, are 
then integrated over the entire surface of the end plane to introduce the load 
applied to the plane. Both results indicates that the compact finite difference 
simulation of the wave equation produce a satisfactory and reliable result.  

 
Keywords: Compact Finite Difference; Pressure Field; Three Dimensional 
Wave Equation; Reflecting Boundary Conditions. 

 
 
Introduction 
The extension of the piecewise exponential method (PEM) for the case of 
multidimensional wave problems was studied by Zalizniak [1]. This was performed 
on the basis of operator splitting and the PEM scheme for the one-dimensional wave 
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equation. He provided numerical results for two problems of wave propagation in 
comparison with the analytical solutions.  
     A direct numerical model was developed for determining the transverse wave 
forces that act on an asymmetric structure on a submerged permeable breakwater in a 
three-dimensional, non-breaking wave field by Dong-Soo et.al. [2]. The model 
combined the volume of fluid (VOF) method and the porous body model to accurately 
simulate the nonlinear interaction between water waves and a porous structure. He 
performed laboratory experiments which revealed the validity of the numerical model. 
The propagation of waves in two-dimensional and three-dimensional bounded visco-
elastic medium was described in the space frequency domain, leading to a Helmholtz-
type boundary value problem, which is non coercive, non-Hermitian, and complex 
valued by Taeyoung et.al.3].  
     They derived first-order absorbing boundary conditions and used to minimize 
spurious reflections from the artificial boundaries. They described the global 
procedures for the approximate solution of the problem. For the spatial discretization 
they use rectangular nonconforming finite element methods.  Mattsson and Jan 
Nordstrom [4] derived high order finite difference approximations in rectangular 
geometries for the second order wave equation with discontinuous coefficients. The 
proposed method was verified by 1-D and 2-D numerical simulations. Sreekanth et.al. 
[5] developed a spectral finite element with embedded transverse crack to simulate the 
diagnostic wave scattering in composite beams with various forms of transverse 
crack.  
     The results of numerical simulations for comparing with 2D finite element 
prediction showed the efficiency of the method to predict the crack location and 
overall trends due to various crack configurations. An efficient numerical algorithm 
for solving viscous and non-viscous wave equations were developed by Hyeona 
et.al[6]. A three-level second-order implicit algorithm were used without introducing 
auxiliary variables.  
     A locally one-dimensional procedure which has a splitting error not larger than the 
truncation error was suggested to solve problems of diagonal diffusion tensors in 
cubic domains. Both the three-level algorithm and its locally one dimensional 
procedure were proved to be unconditionally stable. An error analysis for the 
numerical solution of viscous waves were performed to show the accuracy and the 
efficiency of the new algorithms for the propagation of acoustic waves. Finite volume 
evolution Galerkin schemes for the three-dimensional wave equation system were 
derived by Lukacova et.al.[7]. Numerical experiments proved the accuracy and the 
multidimensional behavior of the solutions.  
     In this paper the numerical simulation of three dimensional wave equation is 
performed using the compact finite difference scheme for the spatial derivatives and 
the compact third order Runge-Kutta scheme for temporal derivative. The pressure is 
taken as the field variable and the governing equation is solved for pressure. Initial 
condition, which are the pressure distribution and the time rate of the pressure are set 
to zero everywhere within the domain. Boundary conditions are reflected type 
boundary condition on every plane of the boundary except at the inlet. The inlet of 
computational domain is forced by a function which varies with time. The numerical 
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experiment is validated against an exact solution of the wave equation. The proposed 
method reveals the potential and applicability of the numerical analysis for solving the 
hyperbolic type governing equations. 
 
Governing Equation 
The wave equation is governed by a hyperbolic differential equation. That is 
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• p, pressure, is the field variable. 
The wave equation is solved in a cubic domain. 
     The computational domain with the coordinate system used are shown in Fig.(1). 
The domain consists of two parts with different properties. Part A of the domain is a 
I  shaped, containing air, and part B, which is the difference between the whole cubic 
domain and part A, contains soil. The whole of the computational domain, which is 
cubic, is divided into equal increments in the x,y and z directions. The grid sizes in 
each spatial directions are denoted by x∆ , y∆  and z∆ respectively.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Computational domain. 
 
 
Boundary and Initial Conditions 
Since both temporal and spatial derivatives appeared in the governing equation are 
second order, two initial conditions and two boundary conditions, in each spatial 
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direction, are needed. The initial conditions are pertaining to pressure p and the time 

derivative of pressure 
t

p

∂
∂

at t=0. Both of these distributions are set to zero within the 

domain except at the inlet boundary which is specified according to the inlet forcing 
condition. Dirichlet type boundary condition is specified at the inlet boundary of the 
computational domain. At all other boundaries a null Neumann boundary condition is 
used. This is  due to the fact that the rate of change of pressure in a solid medium is 
negligible in compare with the rate of change of pressure in a gas medium such as air. 
Since the end plane is solid the outflow boundary condition is also facilitated by a null 
Neumann type boundary condition. 
 
 
Modeling of Spatial Derivatives 
The right hand side of the governing equation contains Laplacian operator. The 
second derivatives in the Laplacian in each spatial direction is evaluated using the 
compact finite difference scheme of Lele [8]. According to the scheme the second 
derivative in any spatial direction, say (x), is modeled implicitly as Eq.(2). 
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where 
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     At the immediate vicinity  of the boundaries (at j=1 and j=J-1), the second-order 

compact finite difference scheme Eq.(2) is used with 
10

1=α . At j=0, a one-sided, 

third  order scheme is used. That is: 
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 At the solid boundary of (j=J) the following form which meets the null derivative 
boundary condition [9] is employed. 
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     In other two spatial direction s (y,z) an analogous approach used for determining 
the second derivatives in  (x) are used. The exceptions relate to y=0 and z=0 planes 
where the null derivative must be imposed. At these boundaries the following form is 
used. For example at y=0 plane: 
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     The accuracy of the numerical scheme representing the second spatial derivative is 
illustrated in Fig.(2). The figure shows the order of accuracy for 
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difference scheme is used for determining the second derivative. Here c.c. denotes a 
complex conjugate. 
     In constructing the right hand side of the wave equation the wave speed must be 
considered as appropriate for each part. In other words, the wave speed for the grids 
in part A and B of the computational domain must be set as the air and soil wave 
speeds, respectively. The field variable, p, is updated for whole of the domain at the 
same time and this is not computed for each part A and B individually. Owing to this 
fact and as the governing equation for both parts are the same no explicit boundary 
conditions are required at the common surfaces between the A and B parts. When 
solving for the both parts, the boundary conditions pertains to the external surfaces of 
the cubic domain and the interaction between the common surfaces are implicitly 
treated by the wave equation. This strategy is very similar to determining the support 
reactions of a truss in which the internal joint reactions are not appeared in the free 
body diagram of the whole truss body.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Order of accuracy for second derivative approximation using compact finite 
difference scheme 
 
 

Table 1: Third order Runge-Kutta time advancement scheme 
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Figure 3: Order of time advancement scheme for 
)(tu

dt

du −=
 with 1.u(0) =  

 
 
Time Advancement Scheme 
Wray A. [8] developed a compact, third order, Runge-Kutta scheme. This is used here 
to advance the computations in time. According to this scheme, the time advancement 
of the following model equation  

)(uR
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du =            (6) 

is performed in three sub-steps as described in Table.(1).The table shows that the time 
advancement of Eq.(6) by one time increment t∆ requires computation of the right-
hand side (R) in three successive sub-time-steps. In each of these sub-steps, time (t) is 
incremented by tdc ii ∆+ )(  and u is accumulated by linear combination of R's 

associated with the current time level  and that of the previous sub-time-step. Results 
in the second column of the third sub-time-step is regarded as the solution 
incremented by t∆ . The coefficient used in the time advancement scheme ( ic , id ) can 

be obtained using the Taylor series expansion for 'R and ''R  and equating  the terms 
of like orders. This leads to  
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There are two parameter families of solutions to the preceding set of 
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equations.  The scheme will be self-starting if .01 =d  
One parameter families of solution to the set of equations is, 
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     Detailed  discussion can be studied in Maghrebi [8]. A test case is performed to 
validate  the order of accuracy for the Rung-Kutta time advancement scheme applied 
to the following equation. 
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     This equation has an exact solution of tetu −=)( if 1)0( =u  is taken as the initial 
condition. The Eq. (7) is solved for )(tu at 1=t  using different time increments. The 
results, indicating the maximum errors between the numerical results and the exact 
solution, are illustrated in Fig.(3).  This definitely ensures the third order of accuracy 
for the time advancement of the computation. 
     Since the wave equation is a second order differential equation with respect to 
time, time advancement of the simulation is performed in two successive steps. 
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 as the initial condition. Note that both initial conditions are used  

to update g . 

     Next, ),,,( tzyxg
t

p =
∂
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) is updated for p . The right-hand side of the equation 

),,,( tzyxg is not evaluated as preceding part but it is explicitly specified as the 
second initial condition. Here also both initial conditions are used to update p . Note 
that the updated distributions for g  and p  are regarded as new initial conditions 
which will be used for the next sub-steps in the time advancement process. These 
computations, according to the compact third order Runge-Kutta scheme, are repeated 
over three sub-steps to advance the solution by one time increment. Application of the 
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preceding process must be implemented N  time steps to obtain the solution at the end 
of the time interval. 
  
 
Code Verification 
The numerical code is validated against an exact solution of  a three dimensional case. 
The solution to the three dimensional wave equation will  converge  to   

tzyxtzyxp 3sin()cos()cos()sin(),,,( =  

if 0)0,,,( ==tzyxp  and )cos()cos()sin(3)0,,,( zyxzyx
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 are used as the 

initial conditions. The inlet boundary conditions must also be specified as 
0),,,0( =tzyp . Parameters used in this test case are chosen such that the null 

Neumann boundary conditions exist at all of the solid boundaries. Hence, 
2

π=xL , 

π=yL , π2=zL . The spatial resolution of the simulation is 404010 ×× , 12 =c  for 

both parts of the domain. The results for the 2L  norm of the error within the entire of 
the computational domain after advancing  the simulation one thousand time steps is 
found to be 12409996.2 −e  which definitely ensures the accuracy of the numerical 
simulation conducted. 
 
Input File Structure 
The code is written such that the input data  file can be easily generated. The  
construction of an  input data file for the next three dimensional simulation is as 
follows.  
 

Length of the domain in x------= 15. 
Length of the domain in y------= 5. 
Length of the domain in z------= 4. 
C_Air----------------= 340. 
C_Soil---------------= 2000. 
time increment-----------= .00001 
number of the grids in x------= 60 
number of the grids in y------= 20 
number of the grids in z------= 16 
number of substeps---------= 3   
number of time steps--------= 4421 
Amplitude of oscillation-Pf-----= 100000. 
Bi-----------------= 1. 
Step Numbers Required 4 impact time-= 10 
 

The multiplication of the last entry of the data file by the time increment is the time 
period shown by T in  Eq.(8). 
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Three Dimensional Simulation 
The results of the pressure time history at xLx = , 2/yLy = , 2/zLz =  in one, two and 

three dimensional simulations are shown in Fig.(5). It is observed that the maximum 

pressure occurs at 
c

L
t x= . The next maximum is observed at 

c

L
t x3= . Both of these 

values correspond to the time required for the wave to reflect form the exit, xLx = , 

and the inlet, 0=x , boundaries.   
     The results  of pressure time history in a much smaller time extents of 

05.004.0 ≤≤ t  are shown  in Fig.(6) to clearly illustrate the time variation of the 
pressure around the maximum. The figure indicates that the maximum pressure 
corresponding to the one dimensional simulation is much higher than that of the two 
and three dimensional simulations. This is because of the damping property of the null 
Neumann type boundary conditions. In one, two and three dimensional simulations 
one, three and five boundaries are facilitated by the damping conditions, null 
Neumann boundary conditions, respectively. The three dimensional simulation of the 
wave equation has been terminated at a time corresponding to the maximum pressure. 
At this time level the pressure distribution is plotted as in Fig.(4).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Pressure iso-levels on the outlet boundary of the domain. 

 
 

     Since 2/zLz =  is the line of symmetry, it is expected to obtain a symmetric 

pressure distribution about 2/zLz = . This is clearly observed in Fig.(4).  Careful 
examination of the figure also reveals that the maximum of the pressure locates at the 
centroid of the I  shaped  empty channel (section A ).  
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     The time corresponding to the maximum load is shown to be approximately  

c

L
t x= . The other maximums relate to the time with  odd coefficients of 

c

L
t x= (i.e. 

c

L
t x3= , 

c

L
t x5= ,…) approximately. These results are coincided with the response of 

the wave due to reflection from the streamwise boundaries in x . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Pressure time history. 

 
     Since the storage of pressure field  at any instance in the computational domain is 
very memory demanding and time consuming, the integral of pressure on the end 
plane is calculated. This is indeed the surface integral of pressure over the entire of 
the end plane )( xLx = . In other words, the time history of the resulting force ),( tLF x  

applied to the end plane of the computational box is calculated and recorded. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Pressure time history in one, two and three dimensional simulation 
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where A is the cross-sectional area representing the end plane of the computational 
domain. Shown in Fig.(7) is the force applied on A  due to the pressure distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Time history of load applied to section A of the end plane. 
 
 
     The magnitude of the force has to be less than 51064 ××=fzy PLL . This fact is 

clearly observed in Fig.(7) for three-dimensional simulation. According to the 
numerical investigations performed on the code, it was observed that the location of 
maximum load is altered when the size of the computational box is changed. It was 

also investigated that the time corresponding to the maximum load is 
c

L
t x=  exactly, 

if the wave speed in different mediums are assumed to be the same.  
     To find the maximum pressure distribution on the end plane of the computational 
domain, two entries in the data file are adjusted carefully. These two entries are time 
increment and the number of time steps. The multiplication of these two entries is the 
critical time at which the load is found to be maximum. Since the code is thoroughly 
verified, any divergence or discrepancy will be related to the stability requirement. In 
other words, the time increment must be small enough to ensure the restriction and the 
requirement of CFL number. Otherwise, the simulation will be diverged quickly. The 
CFL condition has not been studied analytically, using Von Neumann stability 
analysis say, but the value must not exceed  0.7 according to the numerical 
investigation performed on the code. 
     The inlet boundary condition of the simulations were introduced according to   
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where 100000=fP  and 1=b . 

This boundary condition is imposed at the entire of the inlet boundary regardless of 
the solid or the air medium. 
. 
  
Conclusions 
The numerical simulation of the three dimensional wave equation was conducted in a 
cubic domain containing two parts, part A and part B. Part A of the domain was a I  
shaped, containing air, and part B, containing soil, was the difference between the 
whole domain and part A. A Dirichlet type boundary condition was specified at the 
inlet boundary. Other conditions imposed at the solid boundaries were the null normal 
derivatives. Null pressure distribution was supplied for the initial conditions 
everywhere in the domain except at the inlet boundary. Spatial derivatives in any 
directions were calculated using a compact finite difference scheme. For each time 
increment computations were advanced in time using compact third order Runge-
Kutta scheme which has to be applied twice in succession in each sub-time step. The 
numerical code was successfully validated against an exact solution. The load time 
trace which was the surface integral of the pressure applied to the end plane of the 
computational domain were generated and discussed. The numerical results revealed 
that the modeling of the three dimensional wave equation using the compact finite 
difference and the compact third order Runge-Kutta schemes produced  a reliable and 
satisfactory results. 
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