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Effect of the angle of oblique stagnation-point flow impinging
axisymmetrically on a vertical circular cylinder with mixed
convection heat transfer
Asghar B. Rahimia and Reza Bayatb

aFaculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran; bSama Technical and Vocational Training
College, Islamic Azad University, Mashhad, Iran

ABSTRACT
Governing equations in the boundary layer induced by a steady
incompressible oblique stagnation-point flow axisymmetrically impinging
on a vertical constant temperature cylinder along with mixed convection
heat transfer due to buoyancy forces are reduced to ODEs using
similarity transformations and are solved numerically. Assuming constant
strength �k for the oblique flow and by changing the obliqueness angle
α in between zero to 90°, solution of equations’ system has been
repeated at any specific value of α in the states of assisting or opposing
flow. Using the resulting data, the behaviour of the flow parameters like
Nusselt number, situation of streamline Ψ = 0 at incident point and other
characteristics are found against the flow obliqueness angle. The results
are presented for Reynolds numbers 0.1, 1, 10, and 100 and buoyancy
parameter values of l = −1, 0, 1 in which the heat and flow
mechanisms are special cases of opposing flow, no buoyancy flow, and
assisting flow, respectively.
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Nomenclature

a radius of cylinder
A radial flow velocity (m/s)
B shear flow velocity (m/s)
f, g dimensionless velocity functions
gg gravitational acceleration
h convective heat transfer coefficient
k thermal conductivity
�k free stream flow velocity (m/s)
m, n coefficients
Nu Nusselt number
p dynamic pressure
Pr Prandtl number
r coordinate in radial direction of cylinder
Re Reynolds number
T temperature
Tz temperature on cylinder wall
T∞ free stream temperature
u, w viscous flow’s r and z-component velocity
U, W invicsid flow’s r and z-component velocity
z coordinate in axial direction of cylinder
zs z-value of stagnation point
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α flow obliqueness angle
αs tangent angle at incident point of stagnation line
ath thermal diffusivity
β volumetric thermal expansion coefficient
η dimensionless parameter
θ dimensionless temperature function
λ mixed convection parameter
μ dynamic viscosity
ν Kinematic viscosity
ρ density
tw shear stress on cylinder wall
cinv invicsid flow stream function
cvis viscous flow stream function
c∗ dimensionless stream function

1. Introduction

The key to the vast variety of studies being accomplished regarding the problem of stagnation- point
flows on a plate or a cylinder is their wide applications in the industry. Achieving accurate results of
flow behaviour in the viscous boundary layer would be possible by the use of analytical methods,
especially the use of similarity solutions. However, the main challenge of this approach is finding
suitable similarity variables plus finding solutions to the governing differential equations.

The two-dimensional laminar incompressible steady flow impinging perpendicularly and obli-
quely on a flat plate was tackled by many researchers in early nineteens. They were able to trans-
form the governing equations into ordinary differential equations which could be solved by the use
of numerical methods. This was also done for the situations in which a cylinder was stationary and
or rotating. The continuing studies in twenties are reviewed here. A perturbation formulation for
the heat transfer problem of an axisymmetric stagnation flow was introduced by Rahimi (2003)
considering high Reynolds numbers. Another study on oblique stagnation-point flow on a circular
cylinder was conducted by Weidman and Putkaradze (2003). In two separated studies, Saleh and
Rahimi (2004a, 2004b, 2004c) took into account a moving cylinder with a time-dependent axial
velocity and uniform suction and blowing under stagnation point-flow and heat transfer by use
of similarity solutions. Also, a solution for stagnation flow and heat transfer was taken into account
for a moving cylinder along with transpiration by (Rahimi 2004) using perturbation methods with
high Reynolds numbers as perturbation parameter. Furthermore, Saleh and Rahimi (2005)
expressed results using appropriate similarity variables for an axisymmetric radial stagnation-
point flow on a cylinder with constant rotational velocity and time-dependent angular velocity.
Wang (2007) used similarity solution in the problem of stagnation flow on a cylinder with axial
movement and replaced partial slip condition for no-slip condition on its wall. Rotational move-
ment with time-dependent angular velocity for cylinder was also considered by Rahimi and Saleh
(2007) as continuing studies. They (2008a; 2008b) also went further to consider simultaneous axial
and rotational movement along with transpiration on the problem of axisymmetric stagnation-
point flow and heat transfer on the cylinder. The case of unaxisymmetric heat transfer in stagna-
tion flow on a cylinder with simultaneous axial and rotational movements which is caused by
unaxisymmetric distribution of wall temperature or wall heat flux around the cylinder’s surface
was also dealt with by Rahimi and Saleh (2008). The problem of time-dependent transpiration,
axial and rotational movements for a cylinder by use of similarity solutions were presented by
Haghighi and Rahimi (2010) in the case of axisymmetric stagnation-point flow and heat transfer.
Case of compressible fluid for the problem of stagnation-point flow and heat transfer on a station-
ary cylinder was first brought about by Mohammadiun and Rahimi (2012) and Mohammadiun,
Rahimi, and Kianifar (2013). They were successful in coming up with similarity variables while
including the effect of variable density in the resulting similar equations of velocity and tempera-
ture, which should have been solved simultaneously. The problem of mixed convection heat

850 A. B. RAHIMI AND R. BAYAT



transfer for a vertical flat plate in both normal axisymmetric stagnation-point flow and inclined
cases were recently considered by Wang and Ng (2013). The work of stagnation flow and heat
transfer on a stretching/shrinking cylinder with surface permeation was presented in two papers
of Najib, Bachok, and Arifin (2014), and Najib et al. (2014). The task of unaxisymmetric stagna-
tion-point flow and heat transfer on a moving cylinder with time-dependent axial velocity and
non-uniform normal suction and blowing was investigated by Alizadeh, Rahimi, and Najafi
(2016). The interesting case of compressible fluid problem was further progressed by Rahimi,
Mohammadiun, and Mohammadiun (2016) for the condition of axially moving cylinder. The geo-
metry of rotating vertical cylinder in the case of three-dimensional, unsteady stagnation-point flow
considering mixed convection heat transfer was numerically investigated by Bayat and Rahimi
(2017a). They actually solved the three-dimensional Navier–Stokes and energy equations directly
and for the first time by computational methods without employing any similarity variables. Also,
the task of mixed convection heat transfer for unsteady impulsive oblique stagnation-point flow on
a vertical cylinder was investigated by Bayat and Rahimi (2017b). This work shows what happens
when an axisymmetric oblique stagnation-point flow starts suddenly towards a cylinder which is
affected by a free convection flow, too. Variation of the flow characteristics and their distributions
against the time parameter was represented in this work.

In the present analysis, the steady-state problem of mixed convection heat transfer for a vertical
circular cylinder impinged by an oblique stagnation-point flow is dealt with and the effect of flow
obliqueness on some characteristics is investigated. So, this problem is a new situation which
includes both oblique free-stream flow and the vertical flow caused by free convection heat transfer,
simultaneously. A constant velocity axisymmetric outer flow impinges on a circular cylinder, obli-
quely. The flow is supposed to be inviscid far from the cylinder but in the neighbourhood of the sur-
face (boundary layer), equations of viscous flow are reduced to ODEs using similarity
transformations and are solved numerically to determine velocity and temperature of the flow
field. This solution is repeated for any arbitrary angle of outer flow in the range of zero to 90° for
assisting or opposing buoyancy and several inclination angles.

2. Problem formulation

Axisymmetric incompressible steady-state stagnation- point flow impinges obliquely on a vertical
circular cylinder with radius a and infinite length with constant wall temperature Tw in the space
influenced by gravity acceleration gg . A schematic of this problem for two states of assisting and
opposing flow against buoyancy forces is presented in Figure 1. It is considered that the flow far
from the cylinder has inviscid behaviour and is composed of two perpendicular flows: Normal stag-
nation flow onto the cylinder’s surface and Shear flow parallel to the cylinder’s axis. Assuming the
axisymmetric coordinate system (r, z), shown in Figure 1, by referring to Weidman and Putkaradze
(2003), the oblique stream function and velocity components with coefficients A ≻ o and B ≻ 0 are
as follows:

cinv = A(r2 − a2)z + B
1
2a

(r2 − a2)2 (1)

U = − 1
r
∂c

∂z
= −A r − a2

r

( )

W = 1
r
∂c

∂r
= 2Az + 2Ba

r2

a2
− 1

( )
⎧⎪⎪⎨
⎪⎪⎩ (2)

It is easily provable that velocity field of Equation (2) is true in the continuity equation. The strength
of normal stagnation flow and axial shear flow are indicated by coefficients A and B, respectively.
Their summation gives the total strength of the oblique flow �k, which is constant at any obliqueness
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angle, so:

A+ B = Const. = �k (3)

Since the separating streamline ψ = 0, from Equation (1) has parabolic form, we use the tangent angle
of that at the incidence point on the cylinder wall, called α, as the flow obliqueness scale. This
definition, relying on the inviscid free stream flow, is used just as a scale and the correct tangent
angle named as as has different values in practice because of the fluid viscosity effects. For consider-
ing the influence of α in equations of oblique flow velocities, constants A and B in Equation (1) must

Figure 1. Schematic of the inviscid oblique stagnation-point flow axisymmetrically impinging on a vertical circular cylinder at obli-
queness angle α in existence of buoyancy forces; (a) assisting flow (b) opposing flow.
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be determined. For ψ = 0 at r = a in Equation (1):

tana = dz
dr

∣∣∣∣
∣∣∣∣c=0
r=a

= B
A

(4)

Using Equations (3), and (4), we obtain:

A = cosa
sina+ cosa

�k, B = sina
sina+ cosa

�k (5)

For finding the flow field in the laminar boundary layer (region close to the cylinder’s surface), we
need to obtain governing equations in this region for the purpose of solving them. These equations in
the axisymmetric cylindrical coordinate system employing velocity components u (r, z) in r-direc-
tion, w (r, z) in z-direction and temperature field T (r, z) are as follows:

Mass continuity:

∂

∂r
(ru)+ r

∂w
∂z

= 0 (6)

Momentum continuity (Navier–Stokes equations):

u
∂u
∂r

+ w
∂u
∂z

= − 1
r

∂p
∂r

+ y
∂2u
∂r2

+ 1
r
∂u
∂r

− u
r2

+ ∂2u
∂z2

( )
(7)

u
∂w
∂r

+ w
∂w
∂z

= − 1
r

∂p
∂z

+ y
∂2w
∂r2

+ 1
r
∂w
∂r

+ ∂2w
∂z2

( )
+ ggb(T − T1) (8)

The last term in Equation (8) is the Boussinesq’s approximation of buoyancy forces in z-direction. In
that, gg is gravitational acceleration and β is fluid volumetric thermal expansion coefficient of fluid.
The positive sign indicates the gravity acceleration is in negative z-direction, then buoyancy forces
are toward positive direction, i.e. flow direction, (assisting flow), whereas the minus sign indicates the
condition positive z-direction gravity which makes buoyancy forces oppose the flow (opposing flow),
refer to Figure 1.

Energy continuity:

u
∂T
∂r

+ w
∂T
∂z

= ath
∂2T
∂r2

+ 1
r
∂T
∂r

+ ∂2T
∂z2

( )
(9)

In which, ath is thermal diffusivity. With respect to the no-slip condition on the cylinder’s surface on
the one side, and viscous flow transformation to inviscid flow far from the cylinder on the other side,
the boundary conditions of the problem are, as

r = a: u = w = 0 and T = Tw

r � 1:
u = U

w = W

{
and T = T1

(10)

The viscous region stream function is considered to be

cvis = Aa2f (h)z + Ba3g(h) (11)

To transform nonlinear momentum equations to the solvable linear form, the similarity transform-
ations for the velocity components (extracted from above equation) and temperature variable are
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used as follows:

u = −Aah−1
2f (h)

w = 2Af ′(h)z + 2Bag ′(h)
T − T1
Tw − T1

= u(h)

⎧⎪⎪⎨
⎪⎪⎩ , h = r

a

( )2
(12)

Continuity Equation (6) is satisfied by the above-mentioned similarity variables, automatically. Elim-
inating the pressure term from Equations (7) and (8) yields a system of ODE as

h f ′′′ + f ′′ +m Re[1+ f f ′′ − f ′2] = 0

hg ′′′ + g ′′ +m Re[ f g ′′ − f ′g ′]+ l

n
u = 0

hu′′ + [1+m Re Pr .f ]u′ = 0

⎧⎪⎪⎨
⎪⎪⎩ (13)

Which m, n and other dimensionless parameters such as Reynolds number, Prandtl number and
mixed convection parameter λ have the following definitions:

m = cosa
sina+ cosa

, n = sina
sina+ cosa

0 , a , 90◦

Re = a2�k
2y

, Pr = y

ath
, l = +

ggba(Tw − T1)
8y�k

(14)

Also, by considering Equation (10) the following boundary conditions for ODEs system (13) are
obtained:

f (1) = 0, f ′(1) = 0, f ′(1) = 1
g(1) = 0, g ′(1) = 0, g ′′(1) = 1
u(1) = 1, u(1) = 0

⎧⎨
⎩ (15)

It is notable that the first two equations in (13) with λ = 0 are exactly the same ones presented by
Weidman and Putkaradze (2003) as Equations (2.11.a) and (2.11.b). Since they defined the Reynolds
number based on the normal flow strength, then it is replaced by the term (m. Re) here. This is a
verification of our results in an exact form.

Using the resulting data of functions f, g and θ, it is possible to calculate some flow characteristics;
Nusselt number and wall shear-stress can be obtained from the below relations:

Nu = ha
2k

=
−k

∂T
∂r

[ ]
r=a

× a

2k(Tw − T1)
= −u′(1) (16)

tw = m
∂w
∂r

( )
r=a

= 4m�k m f ′′(1)
z
a
+ ng ′′(1)

[ ]
(17)

The position where the separation streamline meets the cylinder’s surface, zs, with the shear- stress
equal to zero, and the slope of this streamline at the incident point, tgas, are calculated by

zs = z|tw=0 = −a tana
g ′′(1)
f ′′(1)

(18)

tgas = dz
dr

( )
cvis=0

[ ]
r=a

= − 2
3
tga

mRe g ′′(1)+ l

n
f ′′(1)

f ′′2(1)

⎡
⎢⎣

⎤
⎥⎦ (19)
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Also, it is clear that for λ = 0, the two above equations are exactly identical with relations pointed by
(4.2) and (4.4) in Weidman and Putkaradze (2003), respectively. This is again another way to verify
results obtained in our study.

Finally, dimensionless stream functions for inviscid and viscous regions can be rewritten as fol-
lows:

c∗
inv =

cinv
�ka3

= m(h− 1)
z
a
+ 1

2
n(h− 1)2 (20)

Figure 3. Distribution of thermal function θ(η) for Re = 1, Pr = 0.7 and different obliqueness angles α = 10°, 30°, 60°.

Figure 2. Distribution of radial velocity function f’(η) for Re = 1 and different obliqueness angles α = 10°, 30°, 60°.
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c∗
vis =

cvis
�ka3

= mf (h)
z
a
+ ng(h) (21)

3. Solution and results

The ODEs system (13) along with the boundary conditions expressed by Equations (15), has been
solved for two constants Pr = 0.7 and λ = ±1 in the range of 0 < α < 90°. For this purpose, the

Figure 4. Distribution of axial velocity function g’(η) for Re = 1, Pr = 0.7and different obliqueness angles α = 10°, 30°, 60°; (a) assist-
ing flow (b) opposing flow.
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fourth-order Runge–Kutta method has been used and correct initial values for f"(1), θ’(1) and g"(1)
have been found using a shooting method algorithm up to 13th decimal place accuracy.

Distribution of the radial velocity function f’(η) for Re = 1 which is obtained for three sample
angles, α = 10°, 30°, 60° are shown in Figure 2. Distribution of thermal function θ(η) is depicted
in Figure 3 for Re = 1 and Pr = 0.7. According to these diagrams, when obliqueness angle α increases,
the range of variation of f’ and θ (velocity and thermal boundary layer) increase too. This comes from
reduction of the normal flow strength.

Figure 5. Variation of boundary layer thickness η99% based on distribution of f’(η) and θ(η) for constant value of Pr = 0.7; (a) Re = 1
(b) Re = 10.
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Distribution of the axial velocity function g’(η) for Re = 1, Pr = 0.7 and same angles in two cases
of assisting and opposing flow are presented in Figure 4. The curve convexity at initial part of the
diagrams in Figure 4(a) is due to the buoyancy forces acting in direction of shear flow along the cylin-
der’s axis. Because of the reinforcing effect of buoyancy forces on assisting flow, especially for small
values of α, the convexity is toward positive side too, but in the case of the opposing flow, it is towards
the negative z. For larger values of α, the amount of convexity decreases because of increasing shear
flow strength and elimination of the buoyancy effects.

Figure 7. Variation of Nusselt number against obliqueness angle α, for Re = 0.1, 1, 10, 100.

Figure 6. Variation of boundary value f"(1) against obliqueness angle α for Re = 0.1, 1, 10.
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The diagrams in Figure 5 are related to the variation of boundary layer thickness according to the dis-
tribution of functions f’(η) or θ (η) which are drawn for Re = 1, 10. The quantity η99% denoted the value of
η where the value of function gains 99% of its target. According to the diagrams, from obliqueness angle
about 80°, the variation of boundary layer thickness grows rapidly. Besides, in larger Reynolds numbers,
we witness boundary layer with less thickness for both functions f’(η) and θ (η). Another point in dia-
grams is the greater thermal boundary layer in proportion to dynamic boundary layer at any angle α.

The variation of boundary value f"(1) against obliqueness angle for Re = 0.1, 1, 10 is observed in
Figure 6. Also, the same variation for θ’(1), which is equal to Nusselt number by applying a minus

Figure 8. Variation of boundary value g"(1) against obliqueness angle α for Re = 0.1, 1, 10; (a) assisting flow, (b) opposing flow.
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sign is shown in Figure 7. According to the recent diagram, Nusselt number decreases when α
increases and experiences a severe drop from an angle about 70°. Moreover, Nusselt number
becomes larger for larger Reynolds numbers at any arbitrary angel α.

The variations of the boundary value g"(1) against obliqueness angle for Re = 0.1, 1, 10 and constant
values pr = 0.7 and λ = 1 in both states of assisting and opposing flow are shown in Figure 8. According
to the diagrams, the value of g"(1) in both sides of α’s with the range of (α < 10° and α > 80°), approxi-
mately, faces severe variations. It is seen from diagram 8-b that g"(1) changes sign from negative to
positive at obliqueness angle about 25° for opposing flow case and specific Reynolds numbers.

Figure 9. Variation of boundary value g"(1) against obliqueness angle α for, Pr = 0.7 and different conditions of buoyancy forces λ
=−1, 0, +1, (a) Re = 1, (b) Re = 100.
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A comparison of variation of the boundary value g"(1) against obliqueness angle for assisting flow
(λ = 1), opposing flow (λ = −1) and no-buoyancy flow (λ = 0) with constant values of Re = 1 and Pr =
0.7 is depicted in Figure 9. As it is observed, by increasing α all the three diagrams behave similarly
and the curves converge to themselves. This behaviour is because of increasing shear flow contri-
bution against normal flow which causes buoyancy forces to weaken. But at angles near to zero,
because of buoyancy forces effect on the shear velocity function g’(η), a contrary behaviour of two
diagrams for assisting and opposing cases are seen. The same trend is observed for Re = 100 in
Figure 9(b). So, the variations of f ′′(1) and g ′′(1) with incident angle affects the shear stress and
the position of the incident point of separating streamline on the cylinder surface directly.

In Figure 10, four streamline patterns for the cases of inviscid flow, viscous flow with no buoyancy
forces (λ = 0), viscous flow with assisting buoyancy forces (λ = 1) and viscous flow with opposing
buoyancy forces (λ =−1) are drawn, respectively, for a specific obliqueness angle α = 10°. Besides,
all separating streamlines Ψ = 0 for these mentioned cases are drawn in Figure 11 to facilitate
their comparison. According to streamline pattern in Figure 10(b), for no-buoyancy viscous flow,
we witness displacement of incident point toward opposite side (negative z-direction) which is
due to the no-slip condition on the cylinder wall and laminar flow in the vicinity of the wall.

Figure 10. Streamline patterns for obliqueness angle α = 10° in dimensionless coordinate system (r, z); (a) inviscid flow (b) viscous
flow without buoyancy forces, λ = 0 (c) viscous flow with assisting buoyancy forces, λ = 1 (d) viscous flow with opposing buoyancy
forces, λ =−1.
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According to patterns of Figure 10(c) and 10(d), the existence of mixed convection heat transfer
(buoyancy forces) in the case of assisting flow, causes more displacement of incident point toward oppo-
site side whereas opposing buoyancy forces, shift this point to accordant side (positive z-direction).

The variations of the position of separating streamline incident point, zs and its tangent line
angle, αs against obliqueness angle α for constant values Re = 1, 100 and Pr = 0.7 for three cases
of λ = −1, 0, 1 are presented in Figures 12 and 13. Regarding opposing flow case, it is observed
in Figure 12 that for small values of α, the buoyancy forces shift the incident point to the positive
side of z-axis, however, this point for the flow without buoyancy forces (λ = 0) is placed in the
negative side. This regime continues until a specific value of α (here about 27°) and by more
increase in angle, zs it finally moves to the opposite side of the flow. For the tangent angle αs,
according to Figure 13, we see this angle in both cases of no-buoyancy flow and assisting flow
always in the same direction to α and the effect of buoyancy forces just causes its value to become
greater than that of the flow without buoyancy.

In the case of the assisting flow, the buoyancy forces shift the incident point to the negative side of
z-axis compared to the flow with no buoyancy, as it can be seen in Figure 12. Angle αs for this flow
case, according to Figure 13, changes sign by increasing α. It means that in small values of α, the
direction of separating streamline is downward (negative z) and from a specific limit on (here
about 27°) its direction inclines upward due to more reduction of the buoyancy forces.

4. Conclusions

The steady-state problem of mixed convection heat transfer from a vertical cylinder under impin-
gement of an axisymmetric oblique stagnation-point flow has been studied here with consideration
of the effect of flow obliqueness angle on the characteristics of its boundary layer. In the boundary
layer region near the cylinder’s surface, nonlinear equations of viscous flow have been reduced to
ODEs using similarity transformations and have been solved using the numerical forth order
Rung–Kutta method. Since the outer flow is with constant strength, the solution process has
been repeated for any arbitrary angle of obliqueness, in between zero (net normal stagnation

Figure 11. Comparison of separating streamline (Ψ = 0) with obliqueness angle α = 10° for different flows λ =−1, 0, 1 in dimen-
sionless coordinate system (r, z).
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flow) to about 90° (net axial flow) in the cases of assisting in or opposing to buoyancy forces. The
computational obtained results of the problem indicate variation of different parameters such as
Nusselt number, boundary value of dimensionless axial and radial velocity functions, angle and
position of streamline separation, etc. against flow obliqueness angle. Based on the resulting
figures, the boundary value of axial velocity function and Nusselt number decrease by increasing
the angle of obliqueness α, whereas, the boundary value of radial velocity function has an abrupt
grows in both sides of the range of α. For assisting flow case this quantity reaches +∞ as α→0 or
α→90°, but in opposing flow case it reaches −∞ as α→0 and asymptotes to+∞ as α→90°, so there is

Figure 12. Variation of position of the incident point of separating streamline against obliqueness angle α for constant values, Pr =
0.7 and different flows with λ =−1, 0, 1, (a) Re = 1, (b) Re = 100.
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a specific value of α where this quantity is zero. Incident streamline tangent angle αs for three cases
of assisting flow, opposing flow and no-buoyancy flow increases against α, however, this ascension
behaviour for assisting flow, starts from negative values (which means opposed direction to α),
becomes zero and extends to positive side. The position of streamline incident point zs of assisting
flow is greater than that of no-buoyancy flow, both of them located in negative side, and their value
grows against α. This parameter initially has positive value for opposing flow and reaches to zero
and then takes negative values by increasing α. So, the variations of initial values of axial and radial
velocity functions with incident angle affects the shear stress and the position of the incident point
of separating streamline on the cylinder surface directly.

Figure 13. Variation of tangent angle of the separating streamline at incident point against obliqueness angle α for constant
values, pr = 0.7 and different flows with λ =−1, 0, 1, (a) Re = 1, (b) Re = 100.
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