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Abstract
We investigated the trophic transfer potential of CuO-NPs from Artemia salina to Amatitlania nigrofasciata. The Cu uptake was
investigated by exposure of the instar II nauplii to 0, 1, 10, and 100 mg/L CuO-NPs for 4 h. Dietborne exposure of fish larvae to
CuO-NPs was done for 21 days through feeding with pre-exposed nauplii. Thereafter, all survived fish were fed for 21more days
with non-contaminated nauplii. The results showed that NPs could be taken up by nauplii in a concentration-dependent manner.
The highest uptake of Cu by nauplii was found to be 50.5 ± 1.4 mg/g dry weight at 100 mg/L. The copper accumulation in fish
larvae increased significantly with increasing Cu content in pre-exposed nauplii to different concentrations of CuO-NPs (p <
0.05). At the end of the depuration phase, although the Cu elimination was significantly higher in fish that were fed with more
contaminated nauplii, but the survival rate, average final weight, and length of those larvae was still significantly less than the
control group (p < 0.05). The accumulated Cu after the depuration phase in cichlid larvae was 25.4 ± 0.5, 29 ± 8.0, 33.9 ± 9.7, and
42.3 ± 4.0 μg/g dry weight at 0, 1, 10, and 100 mg/L of CuO-NPs-treated Artemia. The current findings indicated the ability of
manufactured CuO-NPs to be transferred from one trophic level to the next as assessed in the simple food chain consisting of pre-
exposed A. salina and A. nigrofasciata.
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Introduction

Over the past two decades, the production and application of
manufactured nanomaterials (MNMs) in different fields in-
cluding electronics, medicine, remediation, engineering, and
food industry has been raised (Vance et al. 2015). Metal and
metal oxide nanoparticles exhibit specific physiochemical
properties including its surface, optical, thermal, and electrical

properties that differentiate them from their native bulk com-
pounds (Rastogi et al. 2017).

Copper oxide nanoparticles (CuO-NPs) due to excellent
optical, electrical, physical, and magnetic properties are used
as essential component in the nano-devices (Phiwdang et al.
2013). These nanoparticles because of their antimicrobial and
biocide properties are also used in many biomedical applica-
tions (Katwal et al. 2015). Engineered nanomaterials may in-
evitably discharge into aquatic environment from its
manufacturing waste, nanoproducts and its byproducts
(Moore 2006; Navarro et al. 2008). It has been shown that
aquatic animals such as fish can be exposed to nanoparticles
via their digestive system with subsequent negative effects at
cellular and molecular levels (Chupani et al. 2018a, b;
Chupani et al. 2017). The predicted environmental concentra-
tion (PECs) of Cu-NPs in aquatic environments is 0.06 mg
Cu/L (Chio et al. 2012). Although copper (Cu) is one of the
essential trace elements for living organisms, but the copper
ions released from NPs at high concentration could cause
cellular damage (Gottschalk et al. 2009). Toxicity of CuO-
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NPs to fish is mainly related to release of copper ions (Black
et al. 2015) and nanoparticles which cause oxidative stress
mediated by reactive oxygen species (ROS) generation at
the NP surface (Melegari et al. 2013), bioaccumulation in
tissues, inducement of liver necrosis, and alteration of sinusoi-
dal spaces in the gills (Al-Bairuty et al. 2013). The uptake of
Cu in tissues of common carp (Cyprinus carpio) exposed to
CuO-NPs (2.5 and 5 mg/L) for 20 days was in order of liver >
gill > muscle > intestine (Mansouri et al. 2016). Song et al.
(2015) found that aqueous exposure of rainbow trout
(Oncorhynchus mykiss) and fathead minnow (Pimephales
promelas) fish to copper nanoparticles (50 nm) resulted in
damage to gill filaments and gill pavement cells.

Trophic transfer of aqueous metals in the aquatic food
chain has been widely recognized (Rainbow et al. 2006;
Mathews and Fisher 2008) but studies into the potential tro-
phic transfer of engineered nanoparticles (ENPs) are scarce
(Rahmani et al. 2016; Tangaa et al. 2016). A few studies
reported the food chain transport of ENPs in freshwater
(Dalai et al. 2014; Mattsson et al. 2014) and marine (Wang
et al. 2016; Conway et al. 2014) ecosystems. Ates et al. (2014)
demonstrated CuO-NPs transfer between trophic levels from
Artemia salina to goldfish (Carassius auratus). The transfer
of TiO2-NPs from clamworms (Perinereis aibuhitensis) to
juvenile turbots (Scophthalmus maximus) along a marine ben-
thic food chain was also reported (Wang et al. 2016).
Accumulated ENPs may cause pathological damages of target
organisms and nutritional compositional changes of higher
trophic level organisms (Wang et al. 2016). The bioaccumu-
lation and trophic transfer of ENPs may be affected by water-
borne exposure (direct route) and dietborne exposure (indirect
route) (Wang et al. 2016). Wu et al. (2017) expressed that the
uptake and trophic transfer of CuO-NPs from the algae
Chlorella vulgaris to the crustaceanDaphnia magna is depen-
dent on the type of exposure. According to findings, dietary
exposure resulted in lower toxicity and Cu accumulation com-
pared to direct exposure.

Brine shrimp, Artemia sp., as an invertebrate zooplankton
involve in the energy flow of the food chain in many of salt-
water lake ecosystems (Ates et al. 2013). Artemia sp. is a
species of the non-selective filter feeders which can directly
ingest particles smaller than 50 μm (Hund-Rinke and Simon
2006). Therefore, they are prime candidates for uptake of NPs
from environmental discharges (Ates et al. 2014).
International Organization for Standardization (ISO) has also
recently issued a test specification (ISO TS 20787,
International Organization for Standardization 2017) on the
use of Artemia sp. nauplii in the toxicity assessment of
MNMs (Johari et al. 2018). This zooplankton is also widely
used as a live food for fish nutrition in aquaculture. Therefore,
feeding of fish with ENPs-treated Artemia could be helpful for
understanding the transfer and fate of ENPs by dietary expo-
sure from lower to higher trophic levels. In this study, brine

shrimp nauplii (Artemia salina) and convict cichlid larvae
(Amatitlania nigrofasciata) were selected as a non-selective
filter feeder and a carnivorous fish to investigate the trophic
transfer potential of CuO-NPs by dietary exposure and the
ability of larvae to eliminate ingested NPs during depuration
phase.

The objective of this study was to investigate the uptake of
CuO-NPs byArtemia through waterborne exposure, as well as
copper bioaccumulation and elimination rates in convict cich-
lid larvae after dietary exposure and depuration phases, re-
spectively. The effects of pre-exposed Artemia to CuO-NPs
on survival and growth performance of larvae were also
determined.

Materials and methods

CuO nanoparticles and characterization

CuO-NPs were purchased from US Research Nanomaterials,
Inc. (3302 Twig Leaflane, Houston, TX77084) in dry powder
form. Imaging and elemental analysis of the CuO-NPs powder
were done using field emission scanning electron microscopy
(FE-SEM;MIRA3 TESCAN, Brno, Czech Republic) coupled
with energy dispersive X-ray spectroscopy (EDS). The diam-
eters of 200 individual nanoparticles or their aggregates/
agglomerates were measured randomly on SEM images to
estimate the mean size distribution of particles by
AxioVision digital image processing software (Release
4.8.2.0, Carl Zeiss Micro Imaging GmbH, Germany).

To prepare a stock suspension of 1000 mg/L, 0.1 g dry
powder of CuO-NPs (US Research Nanomaterials, Inc.,
3302 Twig Leaflane, Houston, TX77084) was dispersed in
100 ml double distilled water by 60 min ultrasonication in a
bath-type sonicator (SOLTEC 2200 MH-SD). This suspen-
sion stored in dark bottle at room temperature in the laboratory
until utilization. Also, the hydrodynamic diameter and zeta
potential of particles in 10 mg/L well-dispersed suspension
of CuO-NPs were determined by Zetasizer Nano (ZS) instru-
ment )ZEN3600 Malvern Instruments Ltd., Worcestershire,
UK).

Test organisms

The cysts of Artemia salina were obtained from Tierarzt
Company (Thailand) and stored at 4 °C. Artificial seawater
were (ASW) used for all experiments which were prepared by
dissolving 300 g of synthetic seawater salt (Delta Marine®,
Inc., Iran) to 10 L of deionized water followed by continues
aeration for 24 h. For hatching, approximately 1 g of the dry
cysts was incubated in 1 L artificial seawater (30 g/l) in a
transparent BV^–bottomed glass incubator at 30 ± 1 °C.
Artemia hatched within a period of 24 h under conditions of
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continuous light illumination of 1500 lx provided by a fluo-
rescent lamp and constant aeration from the bottom of the
hatching incubators. The newly hatched nauplii (instar I) were
maintained in the hatching incubators for another 24 h to turn
to instar II.

Ten healthy and mature convict cichlid (Amatitlania
nigrofasciata) breeders were purchased from a local aquarium
shop. In order to allow the pairing to occur naturally, the fish
were kept in mixed-sex in 150-L glass aquariums at 26 ± 1 °C,
pH 7.3 and fed on commercial pellets (BioMar®, France)
twice a day. Following pair-bond formation, each pair of fish
were transferred to 75-L spawning glass aquariums equipped
with clay pots as spawning substrate and air stones for aera-
tion. After spawning and hatching the eggs, the newly born
larvae were kept until their yolk sacs were absorbed. Then, the
larvae were transferred to 50-L glass aquariums for trophic
transfer experiments.

Exposure of A. salina to CuO-NPs

After conducting a series of pre-tests (data not shown), con-
centrations of 0 (control), 1, 10, and 100mg/L of copper oxide
nanoparticles (CuO-NPs) were selected as exposure concen-
trations. A stock suspension of CuO-NPs (1000 mg/L) was
diluted to each glass vessels (1 L) filled with 500 ml of artifi-
cial seawater (Table 1) to achieved the final exposure concen-
trations. At the same time, approximately 2000 Artemia nau-
plius (instar II) were transferred into each exposure vessels
which contained CuO-NPs (0, 1, 10, and 100 mg/L) under
continuous light and aeration from the bottom in triplicate.
After 4-h exposure, nauplii were collected on 100-μm sieve,
thoroughly rinsed with deionized water, then filtered on 0.45-
mmWhatman® filter paper and later used to measure copper
accumulation.

Exposure of cichlids to CuO-NPs pre-exposed A. salina

Dietary exposure included uptake (21 days) and depuration
(21 days) phases. The treatments consisted of larvae fed with
instar II nauplii of A. salina pre-exposed for 4 h to CuO-NPs

(1, 10, and 100 mg/L) or controls (fed on untreated Artemia,
cultured in clean water) in triplicate. Each replicate consisted
of 20 convict cichlid larvae (initial body weight was 28.4 ±
1.7 mg) that were placed in a glass aquariums filled with 50 L
dechlorinated tap water (Table 1) and equipped with sponge
filter. Fish were fed with freshly treated A. salina once a day at
density of about 2000 nauplii per aquarium (100 nauplii per
fish). In order to prevent the effects of unconsumed brine
shrimps and fish feces on the quality of water, 1 h after each
meal, all the fish of each aquarium were transferred to new
aquariums containing fresh water. The photoperiod was ad-
justed to 16:8 h dark/light by a fluorescent lamps and water
temperature was adjusted to 26 ± 1.0 °C using aquarium
heaters. At the end of uptake phase (end of the 21st day), all
the fishes of each aquarium were anesthetized using 50 mg/L
tricaine methanesulfonate (MS222) and their weights and
lengths were recorded. After biometry, ten larvae from each
replicate were sampled for bioaccumulation study and the
remaining larvae were transferred to fresh water in separate
aquariums for depuration study and fed on non-contaminated
brine shrimp at density of 100 nauplii/fish/day for 21 more
days. At the end of the depuration phase (end of the 42nd day),
all the remaining fish were euthanized using 250mg/LMS222
and after biometry, these were used to measure copper body
burden.

Measurement of copper concentration

The sampled nauplii as well as sampled fish larvae of uptake
and depuration phases were thoroughly rinsed with deionized
water and dried for 24 h using a freeze-dryer (Dena Vacuum,
FD-5005-BT). Dried samples were carefully weighted and
then digested by adding 1–3 ml concentrated nitric acid
(Suprapur® grade, Merck, Germany) and heating at 100 °C
for 2 h on a Bain-Marie bath (Memmert, WNB 45 model).
Once completely dissolved, the contents were diluted to 10 ml
with double deionized water (ZOLALAN ZU101 model,
Iran). The Cu concentrations were measured using a graphite
furnace atomic absorption spectrophotometer (wavelength
range 190–900 nm; sensitivity Cu 5μg/ml; GFAAS,
Phoenix-986, Biotech, USA) in triplicate. The device was first
calibrated with standard copper solution (TraceCERT®,
1000 mg/L Cu in nitric acid, Sigma-Aldrich).

To calculate the eliminated copper at the end of
depuration phase, in each treatment, the amount of Cu
body burden after 21 days of dietary exposure to con-
taminated nauplii was subtracted from the Cu body bur-
den after 21 days of feeding with non-contaminated
nauplii during depuration phase. Also, the percentage of
elimination rates of copper were calculated using follow-
ing equation (Sarkheil et al. 2018); where E is elimina-
tion rate at the end of depuration phase, A is the accu-
mulated copper following 21 days of dietary exposure to

Table 1 The properties of artificial seawater and tap water used in
exposure experiments

Parameters Unit Concentration

Artificial seawater Tap water

Salinity g/L 30 –

Electrical conductivity (EC) μS/cm 29.0 ± 0.1 –

Hardness (CaCO3) mg/L 5360 ± 91 270 ± 36

Dissolved oxygen (DO) mg/L 6.4 ± 0.1 8.1 ± 0.2

pH – 8.1 ± 0.05 7.9 ± 0.2
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CuO-NPs, and R is remained Cu in the body at the end
of depuration phase.

E ¼ A−Rð Þ=A� 100

Statistical analysis

The percentage data were transformed using the arcsine
square root. Normality assumption of data was determined
using the Kolmogrov-Smirnov test. One-way analysis of var-
iance (ANOVA) followed by a Duncan multiple range test
were used to detect significant differences among groups.
Statistical significance was accepted at the level of p < 0.05.
All data were recorded as a mean value with standard devia-
tion (mean ± SD). All statistical analyses were performed

using SPSS software (Version, 19, IBM SPSS, Armonk, NY,
USA).

Results

Characterization of CuO-NPs

The results of FESEM and EDS analyses (Fig. 1a, b)
proved nanoscale sizes and presence of copper and oxy-
gen as the main elemental composition of CuO nanopar-
ticles. Based on FESEM images part of the nanoparticles
were aggregated/agglomerated in the dry powder and a
mean diameter of 83.2 ± 73.2 nm and a size distribution
that ranged from 3.7 to 564.6 nm were determined. The
results of Zetasizer instrument showed that the
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Fig. 1 FESEM image (a) and EDS analysis (b) of dry powder of CuO-NPs as well as hydrodynamic size distribution (c) of 100 mg/L well-dispersed
CuO-NPs suspension
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ultrasonication method well-dispersed aggregated/
agglomerated NPs in distilled water and mean hydrody-
namic diameter of CuO-NPs was 30.8 ± 4.2 nm (Fig. 1c)
and its zeta potential was − 3.2 ± 1.8 mV.

Copper uptake by Artemia salina

The Cu content in A. salina exposed to different concentra-
tions of CuO-NPs for 4 h are illustrated in Fig. 2. The Cu
content in instar II nauplii exposed to 10 and 100 mg/L of
CuO-NPs increased significantly compared to control
(p < 0.05). The uptake of Cu increased to 50.4 ± 1.4 mg/g
dry weight at 100 mg/L of CuO-NPs.

Effects of dietary exposure to CuO-NPs on cichlid
larvae

Figure 3 shows the Cu content in whole body of convict
cichlid (A. nigrofasciata) larvae fed for 21 days with
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Fig. 4 Survival rate (%) (a), average final body weight (b), and length (c)
of convict cichlid (Amatitlania nigrofasciata) larvae after 21 days of
dietary exposure to CuO-NPs through nauplii of Artemia salina pre-
exposed to 0, 1, 10, and 100 mg/L NPs. The data with different letters
are significantly different (mean ± SD, ANOVA, p < 0.05)
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Fig. 3 Cu content in whole body of convict cichlid (Amatitlania
nigrofasciata) larvae (μg/g dry weight) after 21 days of dietary
exposure to CuO-NPs through nauplii of Artemia salina pre-exposed to
0, 1, 10, and 100 mg/L NPs. The data with different letters are signifi-
cantly different (mean ± SD, ANOVA, p < 0.05)
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Fig. 2 Cu content in Artemia salina (mg/g dry weight) after exposure to
CuO-NPs (0, 1, 10, and 100 mg/L) for 4 h. The data with different letters
are significantly different (mean ± SD, ANOVA, p < 0.05)
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A. salina pre-exposed to different concentrations of CuO-
NPs. In the control group, the background Cu content in
larvae was 30.5 ± 1.6 μg/g dry weight which increased
significantly coincident with increasing the concentration
of Cu in dietary exposure (p < 0.05). The highest value of
Cu content was observed in fish larvae following feeding
with pre-exposed Artemia to 100 mg/L CuO-NPs
(p < 0.05).

The variations in the survival rate, average final
weight, and length of fish larvae exposed to CuO-NPs-
treated Artemia are shown in Fig. 4 (a–c). After 21 days
of exposure, the survival rate, average final weight, and
length of larvae inversely decreased coincident with in-
creasing the concentration of CuO-NPs (p < 0.05). The
highest toxicity effect on larvae was observed following
the dietary exposure with pre-exposed Artemia to
100 mg/L CuO-NPs (p < 0.05).

Accumulation and elimination rates of ingested
copper in cichlid larvae

The values of accumulation and elimination of Cu in
cichlid larvae after 21 days of depuration phase are
shown in Table 2. The amount of eliminated Cu in-
creased significantly with elevation of CuO-NPs concen-
tration in dietary exposure compared to the control
(p < 0.05). The elimination rate of Cu ranged between
68.4 and 77.8% among different treatments. After
21 days of depuration phase, there was no significant
difference in the Cu body burden of larvae which die-
tary exposed to pre-exposed Artemia to 1 and 10 mg/L
CuO-NPs and the control (p > 0.05), but this value was
still significantly higher at 100 mg/L (p < 0.05).

After 21 days of depuration phase, the survival rate,
average final weight, and length of cichlid larvae ex-
posed to different concentrations of CuO-NPs-treated
Artemia were significantly lower than the control
(p < 0.05) (Fig. 5a–c). The lowest survival rate was re-
corded in larvae dietary exposed with pre-exposed
Artemia to 100 mg/L CuO-NPs (p < 0.05) (Fig. 5a).

Discussion

The results of the present study revealed that the uptake of
copper by larval stage (instar II) of A. salina from saltwater
was in concentration-dependent manner. Cu body burden in
the nauplii increased to 50.4 ± 1.4 mg/g dry weight because of
4-h exposure to high concentration of CuO-NPs (100 mg/L).
CuO-NPs aggregate more significantly in saltwater compared
with the freshwater due to the increasing counter ions and
positively charged cations that reduced the surface stabiliza-
tion (Ates et al. 2014). Conway et al. (2014) reported that the
CuO nanoparticles size reached 416 nm in natural seawater
medium. Adam et al. (2015) also revealed that the most of
CuO nanoparticles formed large aggregates during the expo-
sure of Daphnia magna to sub-lethal concentrations of these
nanoparticles. However, the nanoparticles that aggregate sizes
are still in the size range that Artemia can assimilate
(Bhuvaneshwari et al. 2016). The results of a study showed
a concentration-dependent increase in the accumulation of
CuO-NPs in different life stages of A. salina (Madhav et al.
2017). Sarkheil et al. (2018) also reported that the toxicity of
nanoparticulate zinc oxide on the brine shrimp A. franciscana
was dependent on concentration and exposure period.

Recently, concerns about the adverse effects of NPs on the
food chain have grown rapidly because of the fact that
ingested nanoparticles at the lower trophic levels could be
transferred to higher organisms (Ates et al. 2014). The transfer
and bioaccumulation of metal oxide ENPs to fish by dietary
exposure has been reported in literatures (Skjolding et al.
2014; Ates et al. 2014; Wang et al. 2016). In the present study,
the accumulation of copper in convict cichlid larvae through
dietary exposure (pre-exposed A. salina to CuO-NPs) was
investigated. At the end of exposure phase, Cu content of
larvae exposed to 1, 10, and 100 mg/L of CuO-NPs-treated
Artemia reached the values of 101.7 ± 26.4, 146.4 ± 13.8, and
194.9 ± 32.0 μg/g dry weight respectively. These results re-
vealed that Cu body burden in convict cichlid larvae was
affected by Cu content in contaminated Artemia, so that, the
exposure of larvae to Artemia with a higher Cu content result-
ed to higher Cu body burden in larvae. Similarly, Ates et al.
(2014) revealed that in a dietary exposure route including pre-

Table 2 Elimination and
accumulation rates of copper in
convict cichlid (Amatitlania
nigrofasciata) larvae fed with
CuO-NPs-treated Artemia after
21 days of depuration phase
(mean ± SD)

Exposure concentrations
of CuO-NPs (mg/L)

Eliminated Cu
(μg/g dry weight)

Elimination rate
of Cu (%)

Accumulated Cu
(μg/g dry weight)

0 (control) 5.1 ± 2.0a 16.5 25.4 ± 0.5a

1 72.6 ± 39.8b 68.4 29.0 ± 8.0a

10 112.4 ± 23.6bc 76.2 33.9 ± 9.7ab

100 152.6 ± 38.1c 77.8 42.3 ± 4.0b

Means with different letters in the same column are significantly different (ANOVA, p < 0.05)
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exposed Artemia, accumulation of Cu in different tissues of
goldfish,C. auratus, increased with increasing CuO-NPs con-
centration. The results of the present study revealed that sur-
vival rate, average final weight, and length of convict cichlid
larvae decreased inversely with increasing copper concentra-
tion in the diet (CuO-NPs contaminate nauplii). It is reported

that the growth of juvenile turbot (S. maximus) exposed to 50
and 100 mg/L of TiO2 NPs- t rea ted c lamworms
(P. aibuhitensis) gradually decreased with increasing Ti con-
tents in clamworms after 20 days of dietary exposure (Wang
et al. 2016).

This study included a 21-day depuration phase to
assess the ability of nanoparticles to be eliminated from
the body of fish. During this phase, Cu body burden in
larvae decreased by about 16.5%, 68.4%, 76.2%, and
77.8% at 0, 1, 10, and 100 mg/L of CuO-NPs-treated
Artemia, respectively. In fact, the higher elimination rate
occurred in larvae exposed to higher concentrations of
CuO-NPs-treated Artemia due to more Cu body burden.
Lakani et al. (2016) reported that during recovery time
for 7 days, accumulated Cu in tissues of Siberian stur-
geon (Acipenser baerii) juvenile exposed to waterborne
Cu-NPs (50, 100, and 200 μg/l) for 14 days significant-
ly decreased but it was still higher than the control. The
amount of accumulated Cu after the depuration phase in
cichlid larvae that exposed to 0, 1, 10, and 100 mg/L of
CuO-NPs-treated Artemia were found to be 25.4 ± 0.5,
29.0 ± 8.0, 33.9 ± 9.7, and 42.38 ± 4.01 μg/g dry weight,
respectively. Despite the highest elimination rate of Cu
in larvae exposed to 100 mg/L of CuO-NPs-treated
Artemia, the 21-day depuration phase was not enough
for complete elimination of excess copper from the
body and the Cu body burden in this group was still
significantly higher than control. As is clear, the convict
cichlid larvae were not able to eliminate all of the
ingested NPs, and part of these NPs accumulated inside
their body. Although in comparison to the control
group, at the end of depuration phase, there were no
significant differences in the Cu body burden of larvae
that dietary exposed to 1 and 10 mg/L CuO-NPs-treated
Artemia, but even at low concentrations, the dietary ex-
posure to CuO-NPs-treated Artemia showed their toxic
effect on decline in growth performance of larvae. The
survival rate, average final weight, and length of larvae
exposed to 1, 10, and 100 mg/L of CuO-NPs-treated
Artemia were significantly lower than the control group.

Conclusion

It was found that the A. salina nauplii (instar II) were able to
uptake CuO-NPs (and or copper compounds derived from
them) from saltwater in a concentration-dependent manner.
The results indicated the trophic transfer ability and bioaccu-
mulation of manufactured CuO-NPs from brine shrimp
nauplii to convict cichlid (A. nigrofasciata) larvae. The reduc-
tions of survival and growth performance of larvae were ob-
served following dietary exposure, even after elimination of a
large amount of Cu during the depuration phase.
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Fig. 5 Survival rate (%) (a), average final body weight (b), and length (c)
of convict cichlid (Amatitlania nigrofasciata) larvae after 21 days of
depuration phase (the depuration phase followed 21 days of dietary
exposure to CuO-NPs through nauplii of Artemia salina pre-exposed to
0, 1, 10, and 100 mg/L NPs). The data with different letters are signifi-
cantly different (mean ± SD, ANOVA, p < 0.05)
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