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1 Introduction

Along with non-AdS holography developments, non-relativistic symmetries have attracted

a boost of attention recently. Although non-AdS holography is a general term which

ranges from flat space to Lifshitz holography — see [2] and references therein, they all

share a same feature in which the would-be holographic theory is non-Lorentzian. From

this perspective it is necessary to also formulate gravity in spacetimes with non-Lorentzian

structure. This formulation will be of great use for non-relativistic field theories as it

provides systematic of constructing fully covariant theories by coupling non-relativistic

quantum fields to background geometries. In low energy regime there exists many strongly

coupled systems in condensed matter with Galilean symmetries such as quantum Hall states

whose study is very natural from this perspective [3, 4]. Similar to the relativistic case where

the Minkowski spacetime or other relativistic backgrounds are geometric realizations of the

(Poincaré)-Lorentz symmetry, a geometric realization of Galilean symmetry is the so-called

Newton-Cartan geometry [5, 6]. Apart from holographic [7–9] and effective field theory

applications [3, 10–16] of the Newton-Cartan geometry, there have been recent connections

to hydrodynamics [17–20] and string theory [21–25].
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Newton-Cartan gravity [5, 6], a dynamical realization of this type of geometry, is a

frame independent (covariant) formulation of Newtonian gravity which means it reformu-

lates Newton’s theory of gravity in a coordinate invariant way [26–30]. Newtonian gravity

is quantified by the gravitational potential Φ and the mass density of the attracting massive

object ρ sitting together in the Poisson’s equation;

4Φ = 4πGρ , (1.1)

where 4 = ∂a∂a is the spatial Laplace operator and G is the Newton constant. Obviously

in a frame independent formulation one needs to work with the covariant version of (1.1).

Solving this equation is essential for determining the geodesic motion of a particle in the

geometry. While a natural way of obtaining a class of non-relativistic models such as

Newton-Cartan (NC) gravity is by taking an appropriate non-relativistic limit or a fifth

dimensional null reduction of the Einstein gravity, they can also be obtained in a gauging

procedure from appropriate spacetime symmetry groups [31–44]. The gauging procedure

is a powerful tool specially for constructing models of gravity which they do not seem to

occupy any limiting corner of the general relativity.1 Newton-Cartan gravity has exten-

sions to include twistless and arbitrary torsion. The presence of torsion in Newton-Cartan

geometry refers to the case where a specific non-relativistic diffeomorphism is allowed along

the time coordinate implying that the time is not absolute any more. A specific type of

torsion namely twistless torsion has been introduced [7, 8, 49] where unlike the arbitrary

torsional case preserves causality [1, 50–54]. We will consider the effect of both twistless

and arbitrary torsion to the Poisson’s equation (1.1) and other Newton-Cartan equations

in this work.

In the relativistic setup the causal structure of spacetime is preserved under conformal

symmetry which is a bigger symmetry group than the Poincaré symmetry. Conformal

symmetry is also an important feature of the AdS holography realized by the holographic

boundary theory. Classical field theories invariant under global (super-)conformal group,

have been exploited for constructing local (super-)Poincaré invariants via the so-called

‘conformal method’ by introducing compensating multiplets and minimally coupling and

then fixing them [55–58]. The analogue of the conformal algebra in the Galilean setting

is the Schrödinger algebra with Lifschitz scaling z = 2 [59–62]. In [1] a similar approach

denoted as the ‘non-relativistic conformal method’ has been introduced for constructing

local Galilean invariants in the Newton-Cartan geometry with twistless torsion by exploring

and classifying classical Schrödinger field theories in flat background. This classification

was carried out off-shell by obtaining the Hořava-Lifshitz gravity Lagrangian at z = 2 and

on-shell by obtaining the Newton-Cartan gravity equations of motion with twistless torsion.

In this work by focusing on the second classification, we will show that not all terms in

the (twistless) torsional Newton-Cartan field equations obtained in [1] are unique. We then

reapply the non-relativistic conformal method this time for a Schrödinger field theory on

the Newton-Hooke background which is the non-relativistic version of (A)dS spacetime and

1A famous example is the Hořava-Lifshitz gravity [45, 46] which can be formulated by gauging the

Schrödinger algebra [1, 47, 48].
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re obtain the field equations and fix the ambiguity in the Poisson’s equation completely.

We also manifest three maximum arbitrariness in other field equations associated to the

Ehlers conditions and the torsion equation.

This paper is organized as follows. After introducing the twisted Schrödinger algebra

which is the basis of our construction in section 2, we review the non-relativistic conformal

construction of [1] in section 3. Then, in section 4 we derive the rigid twisted Schrödinger

transformation on the Newton-Hooke background. In section 5 we derive field equations

for twistless torsional Newton-Cartan gravity including the Ehlers conditions, Poisson’s

equation and the torsion equation starting from some on-shell Schrödinger field theories

on the Newton-Hooke background. Finally in section 6 we relax torsion arbitrary and find

the corrections to the Poisson’s equation. We conclude in section 7 and also gather related

formulas for Schrödinger gravity in appendix A.

2 Twisted Schrödinger algebra

The Galilean algebra is a Kinematical algebra consisting of {H,Pa, Jab, Ga} as generators of

time and spatial transformations, spatial rotation and Galilean boost respectively. Accord-

ingly they transform as scalar, vector, tensor and vector representations of so(d). Apart

from that the only non-trivial commutation relation is

[H,Ga] = Pa . (2.1)

The Bargmann extension of this algebra requires to add a new generator N which commutes

with all generators of the algebra. The algebra then includes one more commutation

relation in addition to (2.1)

[Ga, Pb] = −Nδab . (2.2)

The Newton-Hooke deformation of this algebra includes yet another non-trivial commuta-

tion relation,

[H,Pa] = − 1

R2
Ga . (2.3)

As we will shortly argue, −1/R2 can be denoted as a non-relativistic cosmological constant.

This can be argued as follows; had we started from the (A)dSd+1 algebra whose spacetime

translation generators do not commute;

[Pa, Pb] = − 1

L2
Jab , [H,Pa] = − c2

3L2
Ga , (2.4)

with −1/L2 being the relativistic cosmological constant, the Newton-Hooke extension of

the Galilei algebra is obtained by the scaling limit [63];

c→∞ ,
c2

3L2
→ 1

R2
. (2.5)

The conformal extension of the Newton-Hooke algebra is the Schrödinger algebra. Namely,

analogues to the Bargmann algebra, the Newton-Hooke algebra can be embedded into
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the Schrödinger algebra Schz in d + 1 dimensions as a subalgebra, where the dynamical

exponent z refers to the anisotropic scale transformation of space-time coordinates i.e.

t→ λzt , xa → λxa , a = 1, · · · , d . (2.6)

At z = 2 the Schrödinger algebra includes a new generator K for special conformal trans-

formation and N remains central. The commutation relations are given in (A.1) where the

Schrödinger algebra is written in a new basis which is suitable for this embedding. We may

view this by the following linear change of basis (twist) in the time translation generator

of the standard Schrödinger algebra

H → H − 1

R2
K . (2.7)

This defines an isomorphism on the algebra level which gives back (2.3) and modifies also

the following commutation relation;

[D,H ] = −2

(
H − 2

R2
K

)
. (2.8)

We sometimes refer to the Schrödinger algebra in this particular basis as twisted Schrödinger

algebra.

3 Newton-Cartan geometry

The non-relativistic structure of Newton-Cartan geometry in d + 1 dimensions can be

described as a spacetime with a non-vanishing clock one-form τ = τµdx
µ and a degenerate

symmetric tensor hµν such that its temporal part is zero τµh
µν = 0. These variables define

the local time direction and the inverse of a metric in spatial directions respectively. They

are related to Galilean vielbein (eµ
0, eµ

a) in frame formalism by

τµ ≡ eµ0 , hµν ≡ eµaeνb δab , a = 1, · · · , d , (3.1)

where the frame indices a refer to spatial local Galilean frame while µ is the curved index.

The inverse of these variables are naturally defined from the following orthonormality

conditions;

τµτµ = 1 , τµeµ
a = 0 ,

τµe
µ
a = 0 , eµ

aeµb = δab . (3.2)

We specially find this frame formalism useful for going to the non-coordinate basis and

doing calculation there. In this basis a given Newton-Cartan tensor Tµ is represented as

Tµ = T0τµ + Taeµ
a , T0 ≡ τνTν , Ta ≡ eνaTν . (3.3)

Another advantage of the frame formalism is its close connection with gauging viewpoint

of the spacetime algebras where vielbein behave as gauge fields of spacetime translations.
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In these non-Lorentzian setups the generator of Galilei-boost acts non-trivially as

in (2.1)–(2.3). The commutation relation (2.1) results in non-invariance of the vielbein

eµ
a and the inverse τµ under boost;

δGτ
µ = −Λaeµa , δGeµ

a = Λaτµ , (3.4)

where Λa is the parameter of local Galilei boost transformation. We can however remedy

this by associating a vector field Mµ to the generator of central charge symmetry whose

transformation under boost is dictated by the commutation relation (2.2) as a shift in

its spatial projection δMa = Λa. This vector field is essential to define boost-invariant

quantities

êµ
a = eµ

a − τµMa , τ̂µ = τµ + eµaMa , Φ = M0 +
1

2
MaMa . (3.5)

Out of these independent variables (τµ, eµ
a,Mµ) and their inverses we can construct

Bargmann connection gauge fields associated to the Galilei rotation and boost as dependent

ones whose variations under the algebra are preserved up to some torsion terms;

Ωµ
ab = −2eν [a∂[µeν]

b] + eµce
νaeρb∂[νeρ]

c − τµeνaeρb∂[νMρ] , (3.6a)

Ωµ
a = τν∂[µeν]

a + τνeρaeµb∂[ρeν]
b + eνa∂[µMν] + τµτ

ρeνa∂[ρMν] . (3.6b)

Curvatures associated to the boost and spatial rotation and time translation are constructed

from the gauge fields in the standard way,

Rµνa(G) = 2∂[µΩν]
a − 2Ω[µ

abΩν]b +
2

R2
e[µ

aτν] , (3.7a)

Rµνab(J) = 2∂[µΩν]
ab − 2Ω[µ

caΩν]
b
c , (3.7b)

Rµν (H) = 2∂[µτν] . (3.7c)

The spatial and temporal projection of the last curvature is identifying torsion in the theory.

Twistless Torsion Arbitrary Torsion

Ra0(H) 6= 0 ,Rab(H) = 0 Ra0(H) 6= 0 ,Rab(H) 6= 0

The discussion on the arbitrary torsional Newton-Cartan is postponed to section 6. For

simplicity we use another name for Ra0(H)/2 which is generically non-zero in the twistless

torsional Newton-Cartan gravity;

ba ≡
1

2
Ra0(H) = ea

µτν∂[µ τν] . (3.8)

A natural interpretation for ba is given by the gauge field associated to dilatation in

Schrödinger gravity — see appendix A.

Here we find it useful to give the spatial and temporal projection of gauge fields asso-

ciated to rotation and boosts by substituting Mµ = M0τµ +Mae
a
µ in (3.6);

Ω0
ab = −2τµeν [a∂[µeν]

b] − ∂[aM b] + Ω[ab]
cM

c − 1

2
Rab(H)M0 , (3.9a)

Ωc
ab = −2eµce

ν [a∂[µeν]
b] + eµaeνb∂[µeν]

c , (3.9b)

Ω0a = 2τµeνa∂[µeν]
bMb + ∂0Ma − ∂aM0 − 2baM0 . (3.9c)

Ωab = ea
µτν∂[µeν]b + eµbτ

ν∂[µeν]a + ∂[aMb] − Ω[ab]cM
c +

1

2
Rab(H)M0 . (3.9d)
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From equations (3.9) it is easy to prove two identities;

D[aMb] =
1

2
Rba(H)M0 , (3.10)

D0Ma = DaΦ + 2baM0 −MbDaMb , (3.11)

where D is the covariant derivative with respect to Galilean spatial rotation and boost in

the absence of torsion i.e.

DµMa = ∂µM
a − Ωµ

acMc − Ωµ
a , Dµba = ∂µba − Ωµa

cbc , DµΦ = ∂µΦ . (3.12)

Here we also define the corresponding covariant derivatives in the presence of twistless

torsion;

Ka = D0ba +M · D ba + baM · b−Mab · b , (3.13a)

Kab = DaMb +Mabb +Mbba , K = δabKab . (3.13b)

4 Non-relativistic conformal method

Using the relativistic conformal method one can obtain Poincaré invariants such as Einstein-

Hilbert term from real free conformal scalar field theories coupled to conformal gravity. The

role of the scalar field is to compensate for the scale symmetry. One can explicitly break

the conformal symmetry down to Poincaré by fixing the value of the scalar field such that

its variation becomes zero. As it was described in [1] and will be briefly reviewed here, this

method can be applied for obtaining Galilean invariants by starting from a Schrödinger

field theory and breaking the associated scaling and central charge symmetries. Since in

this case there are two symmetries that should be compensated we introduce two real scalar

fields (ϕ, χ);

δϕ = wΛDϕ , δχ = Mσ , (4.1)

where w and M are the corresponding weights of these fields under local scaling ΛD and

local central charge σ symmetries. The transformation rules (4.1) automatically define the

covariant derivatives associated to these fields which would be useful for coupling these

fields to Schrödinger gravity later;

Dµϕ = (∂µ − wbµ)ϕ , Dµχ = ∂µχ−Mmµ . (4.2)

For a list of higher Schrödinger covariant derivatives see appendix A.

Reminding that Schrödinger independent gauge fields transform under these symme-

tries according to (A.3);

δ(τµ)Sch = 2ΛD(τµ)Sch , δ(eµ
a)Sch = ΛD(eµ

a)Sch , δmµ = ∂µσ , (4.3)

the transformation of (ϕ, χ) compensating fields in (4.1) is such that Galilei variables

(τµ)G, (eµ
a)G and Mµ remain invariant under these symmetries once we relate them to the

corresponding Schrödinger variables (τµ)Sch, (eµ
a)Sch and mµ as below;

(τµ)G = ϕ−
2
w (τµ)Sch , (eµ

a)G = ϕ−
1
w (eµ

a)Sch , Mµ = mµ −
1

M
∂µχ . (4.4)
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In principle one can start from a Galilean invariant made out of (τµ)G, (eµ
a)G and Mµ

variables and make it invariant under extra scaling and central charge symmetries by in-

troducing (ϕ, χ) Stükelberg fields and substituting (4.4) into the Galilean invariant theory.

This is the same as coupling a Schrödinger invariant (ϕ, χ)-field theory to Schrödinger

gravity. This implies that in principle one can also find Galilean invariants starting from

a Schrödinger field theory of (ϕ, χ). In [1] this has been done for the case of a Schrödinger

field theory in flat background. In this work we do this on a curved (Newton-Hooke)

background owning a non-relativistic cosmological constant. We think this is an important

check because at the end everything are gauged and there is no more a preferred reference

frame, so one can just set the cosmological constant to zero and compare the invariants.

In fact as we will see the result almost matches with [1] but also contains new terms in the

invariant which were missed before.

4.1 Rigid Schrödinger transformation on Newton-Hooke background

In order to write the (ϕ, χ)- Schrödinger field theory on the Newton-Hooke spacetime, we

should first derive the corresponding rigid Schrödinger symmetries. To do this we need to

fix gauge fields to their background values and require their transformations to vanish —

it is clear that all gauge fields are Schrödinger algebra-valued;

(τµ)Sch = δµ0 , (eµ
a)Sch = δµ

a , mµ =
x2

2R2
δµ0 . (4.5)

The gauge fixing conditions (4.5) correspond to the Newton-Hooke spacetime or a flat

Newton-Cartan geometry with a Newton potential (see e.g. [64]). Using the U(1) trans-

formation and local Galilean boosts, we can introduce new coordinates with mµ = 0.

Imposing the fixing conditions (4.5) on dependent gauge fields in (A.7), gives

ωµ
a = − x

a

R2
δµ0 , ωµ

ab = 0 , fµ = 0 , ba = 0 . (4.6)

Requiring fixing conditions (4.5) and (4.6) are preserved under the transformation

rules (A.2)–(A.3), we assume that the left hand side of (A.2) is zero and solve for those

parameters associated to global (rigid) transformations. We find,

Λa = λa cos
t

R
+
ba

R
sin

t

R
−λKxa cos

2

R
t− 2

R
λDx

a sin
2

R
t , Λab = λab ,

ΛK = λK cos
2

R
t+

2

R
λD sin

2

R
t , ΛD = −R

2
λK sin

2

R
t+ λD cos

2

R
t ,

σ = σ0 +
1

2
λkx

2 cos
2

R
t+

1

R
λDx

2 sin
2

R
t− λaxa cos

t

R
− 1

R
baxa sin

t

R
,

ξa = −λab xb +
R

2
λK x

a sin
2

R
t− λD xa cos

2

R
t− λaR sin

t

R
+ ba cos

t

R
,

ξ0 = b0 +
R2

2
λK −

R2

2
λK cos

2

R
t−RλD sin

2

R
t , (4.7)

where b0, ba, λa, λab, λK , λD and σ0 are constant parameters. One may check that

whenever R → ∞, then we can obtain the same results in [1] for Bargmann algebra. The
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relations between above parameters are as follows

−∂0ξ
0 = 2ΛD , −∂0ξ

a = −∂aσ = Λa ,

∂c∂bξ
a = 0 , ∂0∂bξ

a = δb
aΛK ,

∂0∂0ΛD = −4ΛD/R
2, −∂0ΛD = ΛK . (4.8)

We use the relations (4.8) to prove that the equations of motion are invariant under rigid

or local Newton-Hooke transformations. Finally the action of above rigid transformations

on the (φ, χ) scalar fields become,

δϕ =
(
ξ0∂0 + ξa∂a + wΛD

)
ϕ

= b0∂0ϕ+ T ′ba∂aϕ− Tλa∂aϕ− λabxb∂aϕ+ λk
(
T 2∂0ϕ+ TT ′xa∂aϕ− wTT ′ϕ

)
− λD

(
2TT ′∂0ϕ+ [1− 2T 2/R2]xa∂aϕ− w[1− 2T 2/R2]ϕ

)
, (4.9)

δχ =
(
ξ0∂0 + ξa∂a

)
χ+ Mσ

= b0∂0χ+ ba
(
T ′∂aχ−MxaT/R

2
)
− λa

(
T∂aχ+ MxaT

′)− λabxb∂aχ
+ λk

(
T 2∂0χ+ TT ′xa∂aχ+ Mxaxa[1− 2T 2/R2]/2

)
− λD

(
2TT ′∂0χ+ [1− 2T 2/R2]xa∂aχ− 2MxaxaTT

′/R2
)
, (4.10)

where T = R sin t
R and prime is the derivative with respect to t. It is obvious that when

R → ∞ we recover T → t and the transformation rules in (4.9) and (4.10) match with

those given in [1] on the flat background.

5 Twistless torsional Newton-Cartan gravity equations

Newton-Cartan field equations are covariantly constructed from curvature 2-forms (3.7)

and should be invariant under all possible Newton-Cartan transformations including boost

symmetry. Since we have already exhausted some of the curvature 2-forms to solve depen-

dent gauge fields (3.6) in terms of independent gauge fields (τµ, eµ
a,Mµ) we are left with

few other possibilities. In the torsionless case it is known that the Newton-Cartan covari-

ant field equations of motion can be expressed in terms of the following set of curvature

2-forms in the Bargmann algebra [38];

Rµν(H) = 0 , (5.1a)

τµeνaRµνa(G) = 0 , (5.1b)

eνcRµνca(J) = 0 . (5.1c)

In fact it can be easily shown that the same set of equations are also invariant under

boost and work for the Newton-Hooke algebra — see also [65]. We drop the label G from

quantities above as it is understood that they are Galilean variables which should not be

confused with their Schrödinger partners in appendix A.

The equation (5.1a) is the torsionless condition and it endows the Newton-Cartan

geometry with a foliation with respect to the absolute time which means that the clock

1-form τ is closed dτ = 0. The second condition (5.1b) gives the covariant version of

– 8 –
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the Poisson’s equation [66] and the third equation (5.1c) corresponds to Ehlers conditions.

These conditions are all invariant once torsion is zero and provide d(d+1)
2 + d+ 1 equations

for the same number of unknown variables; the spatial metric γij , the shift vector Ni and

the Newton potential Φ defined in (3.5). Note that due to the zero torsion condition (5.1a),

the laps function N is fixed to unity. This is no more the case in the torsional case.

5.1 Ehlers conditions

In order to generalize Ehlers conditions in (5.1c) to the case of twistless torsional Newton-

Cartan gravity, due to the presence of torsion ba, we need to add more terms to make

it covariant under all transformations. We can obtain alternative equation by starting

from the following Schrödinger invariant equations and reduce them to Galilei invariants

by gauge fixing á la [1]. Note that below R(J) and D are curvature 2-form and covariant

derivative defined in terms of Schrödinger gauge fields — see appendix A;

Rab(J)−#1ϕ
−1DaDbϕ−#2ϕ

−2DaϕDbϕ = 0 , (5.2a)

R0a(J) + #1ϕ
−1D0Daϕ+ #2ϕ

−2D0ϕDaϕ+
#2

M
ϕ−1(DaDbχ)(Dbϕ) = 0 , (5.2b)

where #1 and #2 are two arbitrary coefficients (at least at this stage). Note that these

extra terms were chose to zero in [1] but we can add them as they transform covariantly

the same. Moreover we have defined

Rab(J) = eµae
ν
cRµν

c
b(J) , R0a(J) = τµeνcRµν

c
a(J) . (5.3)

Now we use equations (A.7)–(A.8) and gauge fix ϕ = 1 and χ = 0 to reduce above equations

in terms of Newton-Cartan curvature 2-formRµνab(J). This renders the torsional extension

of (5.1c) field equations;

Rab(J)+(d−2+#1)Dabb+(d−2−#2)babb+δab (D·b−(d−2+#1)b·b) = 0 , (5.4a)

DbKab−DaK+(1+#2)Kabb
b−baK+(d−1−#1)Ka = 0 . (5.4b)

Above we used the boost invariant covariant derivatives (3.13). We may fix arbitrary coef-

ficients in equations (5.4) by comparing it with a similar result in [33]. In four dimensions

(d = 3) the similar equation of [33] is;

Raccb(J)− 2Dabb − 4babb = 0 . (5.5)

This suggests that we may reproduce (5.5) form (5.4) by fixing the arbitrary coefficients as

#1 = −3 and #2 = 5 in four dimensions. We will see that for these coefficients the last con-

tribution in (5.4a) can be made zero by the torsion equation such that both results match.

Equations (5.4a) and (5.4b) are d(d+1)
2 + d equations for (d+2)(d+1)

2 + 1 geometric data

(corresponding to the spatial metric on constant time surfaces γij , the lapse function N , the

shift vector Ni and the Newton potential Φ). So we should find two more equations; one is

the covariant Poisson’s equation for Φ and one would be the torsion equation corresponding

to N . In the following we use non-relativistic conformal method discussed in section 4 to

obtain these equations in the twistless torsional ba 6= 0 case in section 5.2 and 5.3. In

section 6 we also extend the Poisson’s equation for the case of arbitrary torsion.
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5.2 Poisson’s equation

Upon substituting Galilean variables from (4.4) into (5.1a) and fixing the Schrödinger back-

ground as in (4.5), we obtain the following Schrödinger invariant constraint and equation;

∂aϕ = 0 , ϕ3∂0∂0ϕ+
1

R2
ϕ4 − 1

R2
= 0 , w = 1 . (5.6)

Starting from this set of equations we can couple them to Schrödinger gravity by improving

partial derivatives to covariant derivatives;

Daϕ = 0 , ϕ3D0D0ϕ+
1

R2
ϕ4 − 1

R2
= 0 , w = 1 . (5.7)

The equations (5.7) are invariant under all local Schrödinger transformation in (4.1)

and (A.3) when w = 1. Finally as expected by fixing the value of the scalar field to

ϕ = 1 in (5.7) we recover the torsionless Newton-Hooke equations (5.1a);

ba = 0 , τ̂µ∂µK +KabKab −4Φ +
d

R2
= 0 , (5.8)

where we have used the definition (3.13b) to write it in terms of boost invariant variables.

Equation (5.8) is exactly the same equation that arises in [34] for ba = 0.

Twistless torsional. In the presence of twistless torsion i.e. ba 6= 0 the equations of

motion are given in [1, 33, 34]. In [1] these equations were obtained by exploiting the

non-relativistic conformal method starting from a Schrödinger field theory in flat space-

time. Here we revisit this construction by starting from a Schrödinger field theory in a

curved background (Newton-Hooke spacetime) and obtain new background independent

contribution to equations of motion of [1]. In this case ba is no longer zero which at the

level of the field theory it implies ∂aϕ 6= 0 and so the field equation (5.6) is not invariant

under the Galilean boost, dilatation and spatial translation;

δ

(
ϕ3∂0∂0ϕ+

1

R2
ϕ4 − 1

R2

)
= −2ϕ3Λa(∂0∂aϕ)− (∂0Λa)ϕ3(∂aϕ) 6= 0 , (5.9)

with Λa given in (4.7). In the flat limit R → ∞ it was shown in [1] that in order to

make ∂2
0ϕ = 0 invariant, it is enough to consider the contribution of a compensating scalar

field χ which shift-transforms under local central charge Schrödinger symmetry (4.1) in the

following equation;

∂0∂0ϕ−
2

M
(∂0∂aϕ)(∂aχ) +

1

M2
(∂a∂bϕ)(∂aχ)(∂bχ) = 0 . (5.10)

However this equation is no more Schrödinger invariant in our fixed curved Newton-Hooke

background where the set of all possible transformations leaving this background intact

(rigid transformations) are given in (4.9) and (4.10). We may especially notice that the

spatial and temporal derivatives of χ shift-transform under boost as:

δG∂aχ ∼ −Mλa , δG∂0χ ∼ MT/R2 xaλa , (5.11)
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where T = R sin t
R . In the flat case the temporal derivative of χ does not shift-transform

under boost while here it does. The reason is that, the term which is responsible for such a

boost transformation involves time dependence whose contribution to this transformation

would be T ′′ ∼ T/R2. In the flat spacetime limit R → ∞ this is zero. As a consequence

of this fact, in the flat case at this order in time and spatial derivatives, in principle we

had four more possible invariants that could be added to equation (5.10) with arbitrary

coefficients

∂aϕ∂a

(
∂0χ−

1

2M
∂bχ∂bχ

)
, (5.12a)

ϕ−1∂aϕ∂aϕ

(
∂0χ−

1

2M
∂bχ∂bχ

)
, (5.12b)

∂a∂aϕ

(
∂0χ−

1

2M
∂bχ∂bχ

)
, (5.12c)

ϕ∂a∂a

(
∂0χ−

1

2M
∂bχ∂bχ

)
. (5.12d)

This obviously results in arbitrariness of coefficients of some of invariant terms such as

Φb · b and ΦD · b and b · DΦ in the final covariant Poisson’s equation (5.8) as they could

be generated independently from the above invariants (5.12). This is in fact not the case

in our model where we have a generalized set of rigid Schrödinger transformations (4.9)

and (4.10) which are not all preserved by (5.12). In other words none of (5.12) and neither

any linear combination of them transform covariantly under the twisted rigid Schrödinger

transformation (4.9) and (4.10). This is good as it leaves us with only a single invariant

made out of ∂2
0ϕ and consequently a single covariant Poisson’s equation in the twistless

torsional Newton-Cartan gravity as will follow below.

To this end, we can show that in order to make the field equation (5.6) invariant

under twisted rigid Schrödinger transformation (4.9) and (4.10) in the presence of torsion

∂aϕ 6= 0, we must consider combinations of first and second order derivatives ϕ, χ which

are added to equation (5.6). We will have:

ϕ3

[
∂0∂0ϕ−

2

M
(∂0∂aϕ)(∂aχ) +

1

M2
(∂a∂bϕ)(∂aχ)(∂bχ)

− 1

M
(∂a∂0χ)(∂aϕ) +

1

M2
(∂a∂bχ)(∂bϕ)(∂aχ)

]
+

1

R2
ϕ4 − 1

R2
= 0 . (5.13)

As was mentioned the first and the second line in (5.13) are two independent invariants in

flat spacetime while, the new feature of considering this field theory in a curved background

is to fix arbitrariness in the coefficients of these two terms in a unique way independently

of the cosmological constant − 1
R2 and at the same time excluding adding any other term

at this order in derivatives to (5.13). This implies that the final gravity field equations

that we are shortly going to obtain is unique. The independence of the coefficient of the

second line to the non-relativistic cosmological constant in (5.13) means that in the final

Poisson’s equation there exist new terms in addition to the ones obtained before in [1] even

if we turn off the cosmological constant.
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After gauging the field equation (5.13), we can get the extra equation of motion of

Newton-Cartan gravity by imposing the fixing conditions (ϕ = 1, χ = 0) which is the

twistless torsional extension of the Newton-Cartan equations of motion (5.8) as follows:

τµ
(
Rµaa(G) + 2M bRµbab(J)

)
+M bM cRbaac(J)− 2MaKa +DabaM bM b

+ 2Ωµ
a(−τµba + bbe

µ
bM

a − eµabbM b)−(MaMa)(b.b)− baD0Ma − baMbDaMb︸ ︷︷ ︸
−b·(D+2b)Φ

= 0 ,

(5.14)

where D is the Galilean covariant derivative. The last three terms in (5.14) are new

contribution and other terms were already derived in [1]. By using the identity (3.11), one

can show that the extra three terms in (5.14) add up to −b · (D + 2b) Φ and consequently

modify the coefficients of some of the terms in the final equation. We may rewrite the

whole equation in terms of Newton-Cartan variables as;

τ̂µ∂µK +KabKab −4Φ− 6 Φ b · b− 2 ΦD · b− 5 b · DΦ = − d

R2
. (5.15)

We can go back to the torsionless equation of motion (5.8), by replacing ba = 0 in the

equations of motion (5.15). In this derivation we started with the Schrödinger theory (5.13)

which has two time derivatives and other type of derivative terms are generated by requiring

covariance.

5.3 The torsion equation

In the twistless torsional Newton-Cartan case we still need one extra equation for torsion.

Inspired by [33] we propose the following Schrödinger invariant field equation;

∂a∂aϕ+ #3ϕ
−1∂aϕ∂aϕ = 0 . (5.16)

Note that we have required ∂aϕ 6= 0 for having a non-vanishing torsion ba 6= 0 and

∂a∂bϕ 6= 0 for making the field equation associated to ∂2
0ϕ in (5.13) invariant. The field

equation (5.16) is a possibility that does not affect these requirements and is obviously in-

variant under all Schrödinger transformation (4.9) and (4.10).2 After gauging this equation

by coupling to the Schrödinger gravity and then fixing the scalar value to unity we are left

with the following extra field equation for the twistless torsional Newton-Cartan gravity;

D · b− (d− 1−#3)b · b = 0 . (5.17)

Essentially the coefficient in front of b ·b in equation (5.17) is arbitrary and the consequence

of adding the term ϕ−1∂aϕ∂aϕ to (5.16) with an arbitrary coefficient. In references [33, 34]

an equation for torsion is given in four spcetime dimensions (d = 3) as

D · b+ 2b · b = e−1∂µ (e eµab
a) = 0 , (5.18)

that suggests to fix this arbitrariness to be #3 = 4 in four spacetime dimensions such that

equation (5.18) is reproduced.

2Both terms in (4.9) and (4.10) transform the same under Schrödinger transformations.
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6 Torsional Newton-Cartan gravity equations

So far we have only discussed twistless torsional Newton-Cartan gravity in which the fol-

lowing curvature is always assumed to be zero,

Rab(H) = 2eµae
ν
b∂[µτν] . (6.1)

In this section we are willing to relax this condition and obtain the covariant Poisson’s

equation in the presence of arbitrary torsion Rab(H) 6= 0 in three dimensions (d = 2). We

again follow the non-relativistic conformal method described in previous sections but this

time for arbitrary torsion [51]. Before starting this procedure it is necessary to revisit the

invariance of the conventional constraints of Schrödinger gravity for the case that we have

arbitrary torsionRab(H) 6= 0 and perhaps to modify them such that the ultimate dependent

gauge fields (ωµ
a, ωµ

ab, ba, fµ) transform covariantly under gauge transformation. This

work has been carried out in [51] where it is shown that in the presence of torsion only

the following constraints are modified to restore boost invariance comparing to those of

Schrödinger gravity in the absence of torsion in (6.2);

Rµν
a(P ) +Ra[µ(H)Mν] = 0 , (6.2a)

R0a
a(G) + 2M bR0b(J) +M bM cRbc(J)− 2M ·MMcDaR

ac(H) = 0 , (6.2b)

where DaR
ac(H) is defined according to (A.4) while Rab(J) and Mµ = − 1

MDµχ being the

contracted curvature 2-form and the covariant vector field as defined in (5.3) and (4.4)

respectively. As a consequence of solving these constraints we find that two of those

dependent gauge fields in (A.7) get modified;

ωµ
ab → ωµ

ab + 2MµR
ab(H) , (6.3a)

f0 → f0 +
1

d
M ·MMcDaRca(H) . (6.3b)

Again in order to obtain the covariant Poisson’s equation in the presence of arbitrary

torsion we may start from the Schrödinger field equation (5.13) in the Newton-Hooke

background (4.5)–(4.6).3 After coupling the equation (5.13) to Schrödinger gravity by

replacing derivatives with covariant ones it is no longer invariant under local Schrödinger

transformations. We rewrite the covariant version of equation (5.13) as follows;

ϕ3

[
D0D0ϕ−

2

M
(D0Daϕ)(Daχ) +

1

M2
(DaDbϕ)(Daχ)(Dbχ)− 1

M
(D0Daχ)(Daϕ)

+
1

M2
(DaDbχ)(Daχ)(Dbϕ)

]
+

1

R2
ϕ4 − 1

R2
= 0 . (6.4)

It is important to note that due to the presence of the torsion, in this case the spatial

covariant derivatives no longer commute on scalar fields;

[Da, Db]ϕ = −Rab(H)D0ϕ− wRab(D)ϕ , [Da, Db]χ = −Rab(H)D0χ . (6.5)

3The torsion does not contribute to the value of dependent gauge fields in (4.6).
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The variation of (6.4) under local Schrödinger boost transformation gives;

− ϕ
4

2M
ΛbRab(H)(D0Daχ) +

ϕ4

2M2
ΛcRbc(H)(DaDbχ)(Daχ) . (6.6)

Adding extra terms to (6.4) can compensate for this variation so that one can make the

whole equation invariant. We manage to accomplish this in three spacetime dimensions

(d = 2). Here we present the final result;

ϕ3

[
D0D0ϕ−

2

M
(D0Daϕ)(Daχ) +

1

M2
(DaDbϕ)(Daχ)(Dbχ)− 1

M
(D0Daχ)(Daϕ)

+
1

M2
(DaDbχ)(Daχ)− ϕ

2M2
(D0Daχ)(Dbχ)Rab +

ϕ

2M3
(DaDbχ)(Daχ)(Dcχ)Rbc

− 3ϕ

16M4
RbaRbc(Ddχ)(Ddχ)(Daχ)(Dcχ)

]
+

1

R2
ϕ4 − 1

R2
= 0 . (6.7)

A similar calculation has been done in [51] for the field equation (5.10) in three spacetime

dimensions (d = 2). Here we did this for the improved field equation (5.13). In fact one fea-

ture of (5.13) is that it automatically cancels the annoying variation terms one would get in

local variation of (5.10) but also introduces new terms in the variation as was shown in (6.6).

Now by fixing ϕ = 1 and χ = 0 in (6.7) we recover the equation (5.14) plus new terms:

(5.14)−Mbea
ν

(
τµ +

1

2
Mded

µ

)(
2D[µHν]

ab − 2H[µ
acHν]c

b
)
− 1

2
Mb(D0Ma)R

ab(H)

− 1

2
(MaMc)(DaMb)R

bc(H)− 3

16
MaM

aM cMbRcd(H)Rbd(H) = 0 , (6.8)

where Hµ
ab is given by

Hµ
ab = −1

2
MµR

ab(H)− (eµ
cM [a +M ce[a

µ )Rc
b](H)− τµMcM

[aRb]c(H) . (6.9)

7 Summary and discussion

In this paper we derived the twistless and arbitrary torsional Newton-Cartan equations

of motion by applying the non-relativistic conformal method of [1] in the presence of

the non-relativistic cosmological constant (Newton-Hooke background). The on-shell non-

relativistic conformal approach to Newton-Cartan gravity in [1] has been very successful for

constructing Galilean invariants. Especially for deriving the covariant Poisson’s equation

in this approach, one starts from a second-order-in-time derivative Schrödinger-covariant

equation consisting of two real scalar fields (φ, χ) compensating for non-relativistic scale

and central charge symmetries. In the torsion free case the corresponding field equation is

simply given by

∂2
0ϕ = 0 , ∂aϕ = 0 . (7.1)
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However, due to the on-shell derivation, here we showed that in the twistless torsional

case, there are some arbitrariness in the final frame independent Newton-Cartan gravity

equations including the Poisson’s equation. This arbitrariness is due to the presence of

other possible Schrödinger invariant equations in the flat background (5.12). In this sense

some part of the equations of motion obtained in [1] for Newton-Cartan gravity are not

unique, as we can add more terms to them. We showed that one can fix this arbitrariness

by considering the Schrödinger field theory in a curved Newton-Hooke background where

the former existing invariants are no longer invariant in this background. In fact one needs

to add new terms to the equation associated to the Poisson’s equation to make it invariant.

In the twistless torsional case we showed that equation (7.1) should be replaced by (5.13)

which indeed, has a same structure as equation (7.1) if we write it in a compact form as;

∂̂2
0ϕ = 0 , ∂aϕ 6= 0 , (7.2)

with ∂̂0ϕ = ∂0ϕ− 1
M∂aχ∂aϕ.4

By coupling this equation to Schrödinger gravity and turning off the compensator

fields we obtained the Poisson’s covariant equation (5.15). This affects the final covariant

Poisson’s equation by modifying the coefficients of some terms which are non-zero in the

twistless torsional case. Since the final theory is obviously background independent, the

result should be independent of the chosen background for the Schrödinger field theory. In

the next step we relaxed the torsion completely arbitrary and could obtain the covariant

Poisson’s equation using the same method in 2 + 1 dimensions (6.8).

We also improved the Ehlers conditions (5.4) and also presented a new equation asso-

ciated to the torsion (5.17) in the twistless torsional case. Still there are three arbitrary

free parameters in these equations that should be fixed. Eventually our aim is to promote

this construction to an off-shell level and hopefully remove such ambiguities [67].

It would be also interesting to obtain Newton-Cartan supergravity equations by ap-

plying the non-relativistic superconformal method applied to the supersymmetric version

of these Schrödinger equations here. Especially for the supersymmetric Poisson’s equation

one should first supersymmetrize (5.13).
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A From Schrödinger to Newton-Hooke

The Newton-Hooke algebra with the non-trivial commutation relations (2.1)–(2.3) is a sub-

algebra of the Schrödinger algebra whose commutation relations in an appropriate basis are;

[D,H ] = −2

(
H − 2

R2
K

)
, [H,K] = D , [K,Pa] = −Ga,

[D,K] = 2K , [H,Ga] = Pa , [D,Pa] = −Pa,

[D,Ga] = Ga , [Pa, Gb] = δabN , [H,Pa] = − 1

R2
Ga,

[Jab, Pc] = 2δc[aPb] , [Jab, Gc] = 2δc[aGb] , [Jab, Jcd] = 4δ[a[c Jb]d] . (A.1)

If we truncate D and K generators we end up with the Newton-Hooke algebra with central

extension. While the cosmological constant in the Newton-Hooke algebra plays the role of

a deformation parameter from Bargmann algebra, at their conformal extension level it is

only used to change the basis linearly by shifting the time translation generator as in (2.7)

which defines an isomorphism.

In this appendix we summarize the gauging procedure and other requisite formulas

of the Schrödinger algebra in this very basis which is appropriate to perform the non-

relativistic conformal method discussed in the bulk of the paper. The corresponding gauge

fields and gauge parameters are given in the table 1. Transformation rules of these gauge

fields follow from the algebra according to,

δA = LξA+ dε+ [A, ε] , (A.2)

with A and ε being a generic gauge field 1-form and a gauge transformation parameter

while LξA = (ξν∂νA+Aν∂µξ
ν) dxµ is the Lie derivative 1-form. It is understood that

all gauge fields transform as covariant vectors under general coordinate transformations

accounted for by the Lie derivative in (A.2) along ξµ = ξ0τ
µ + ξaeµ

a, so we only write

transformation under the rest of generators;

δτµ = 2ΛDτµ , (A.3a)

δeµ
a = Λabeµ

b + Λaτµ + ΛDeµ
a , (A.3b)

δωµ
a = DµΛa + Λabωµ

b + Λabµ − ΛDωµ
a + ΛKeµ

a , (A.3c)

δωµ
ab = DµΛab, (A.3d)

δbµ = ∂µΛD + ΛKτµ , (A.3e)

δfµ = ∂µΛK + 2ΛKbµ − 2ΛDfµ −
4

R2
τµΛD , (A.3f)

δmµ = ∂µσ + Λaeµa . (A.3g)

The covariant derivative Dµ is with respect to the Schrödinger spatial rotation gauge

field ωµ
ab;

DµX
ab··· = ∂µX

ab··· − ωµacXb···
c − ωµbcXa

c
··· + · · · . (A.4)
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H Pa Ga Jab D K N

τµ eµ
a ωµ

a ωµ
ab bµ fµ mµ

ξ0 ξa Λa Λab ΛD ΛK σ

Table 1. Schrödinger gauge fields and parameters.

Curvatures associated to these gauge fields are

Rµν(H) = 2∂[µτν] − 2b[µτν] , (A.5a)

Rµν
a(P ) = 2D[µeν]

a − ω[µ
aτν] − 2b[µeν]

a , (A.5b)

Rµν
a(G) = 2D[µων]

a − 2ω[µ
abν] − 2f[µeν]

a +
2

R2
e[µ

aτν] , (A.5c)

Rµν
ab(J) = 2D[µων]

ab , (A.5d)

Rµν(D) = 2∂[µbν] − 2f[µτν] , (A.5e)

Rµν(K) = 2∂[µfν] + 4b[µfν] − 2Λb[µτν] , (A.5f)

Rµν(N) = 2∂[µmν] − 2ω[µ
aeν]a . (A.5g)

These curvatures obviously obey Bianchi identities ∂[µRνρ] + [A[µ, Rνρ]] = 0.

Solving the following conventional curvature constraints [50],

R0a(H) = 0 , Rµν
a(P ) = 0 , Rµν(N) = 0 , R0a(D) = 0 , (A.6a)

R0a
a(G) + 2mbR0a

a
b(J) +mbmcRba

a
c(J) = 0 , (A.6b)

would return the dependent gauge fields ωµ
ab, ωµ

a, ba and fµ in terms of independent fields

τµ, eµ
a, mµ and b0 such that the transformations in (A.3) are preserved;

ωµ
a = τν∂[µeν]

a + τνeρaeµb∂[ρeν]
b + eνa∂[µmν] + τµτ

ρeνa∂[ρmν] + eµ
ab0 , (A.7a)

ωµ
ab = −2eν [a∂[µeν]

b] + eµce
νaeρb∂[νeρ]

c − τµeνaeρb∂[νmρ] + 2eµ
[abb] , (A.7b)

ba = ea
µτν∂[µτν] , (A.7c)

fa = 2ea
µτν∂[µbν] , (A.7d)

f0 =
2

d
τµeνa

(
D[µων]

a + b[µων]
a
)

+
2

d

(
R0a

ac(J) +
1

2
maRab

bc(J)

)
mc −

1

R2
, (A.7e)

where d is the space dimensions and we used the decomposition fµ = τµf0 + eµ
afa. Note

that unlike in (A.3), above f0 is obviously not invariant under central charge symmetry

N . We can however promote this symmetry to a Stükelberg symmetry by introducing a

Stükelberg field χ which shift-transform under N [50]. We then break this gauge symmetry

by choosing the gauge χ = 0 as properly used in the non-relativistic conformal construction

of the Newton-Cartan gravity theory [1] which was reviewed in section 4.
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A.1 Covariant derivatives

In order to couple the scalar (ϕ, χ)-Schrödinger field theories (5.6) and (5.13) to Schrödinger

gravity we should replace all partial derivatives with Schrödinger-covariant derivatives

which according to the transformation rules (A.3) and (4.1) for the compensating scalar

fields (ϕ, χ) are defined as below;

D0ϕ = τµ(∂µ − wbµ)ϕ , (A.8a)

Daϕ = eµa(∂µ − wbµ)ϕ , (A.8b)

D0D0ϕ = τµ(∂µD0ϕ− (w − 2)bµD0ϕ+ ωµ
aDaϕ+ wfµϕ) , (A.8c)

D0Daϕ = τµ(∂µDaϕ− (w − 1)bµDaϕ− ωµabDbϕ) , (A.8d)

DaDbϕ = eµa(∂µDbϕ− (w − 1)bµDbϕ− ωµbcDcϕ) , (A.8e)

Daχ = eµa(∂µχ−Mmµ) , (A.8f)

DaD0χ = eµa(∂µD0χ+ ωµ
bDbχ+ 2bµD0χ) , (A.8g)

D0Daχ = τµ(∂µDaχ− ωµabDbχ+ bµDaχ+ Mωµ
a) , (A.8h)

DaDbχ = eµa(∂µDbχ− ωµbcDcχ+ bµDbχ+ Mωµ
b) , (A.8i)

DaDbD0χ = eµa(∂µDbD0χ+ ωµ
cDbDcχ+ 3bµDbD0χ− fµDbχ) . (A.8j)
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to Newton-Cartan and Hořava-Lifshitz gravities, JHEP 04 (2016) 145 [arXiv:1512.06277]

[INSPIRE].

[2] M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554]

[INSPIRE].

[3] D.T. Son, Newton-Cartan Geometry and the Quantum Hall Effect, arXiv:1306.0638

[INSPIRE].

[4] M. Geracie, Galilean Geometry in Condensed Matter Systems, Ph.D. Thesis, University of

Chicago (2016) [arXiv:1611.01198] [INSPIRE].
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three-dimensional Hořava-Lifshitz gravity, Phys. Rev. D 94 (2016) 065027

[arXiv:1604.08054] [INSPIRE].

[48] D.O. Devecioglu, N. Ozdemir, M. Ozkan and U. Zorba, Scale invariance in Newton-Cartan
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