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ABSTRACT

Advance and recession curves are of great importance for assessing the performance of border irrigation. In recent years, scal-
ing techniques have helped to reduce the required measurements and to provide formulation of soil–water relations. The pur-
pose of this study was to develop an invariant equation for calculating advance and recession curves in border irrigation using
scaling techniques. The kinematic wave model and the Philip infiltration equation were used to simulate border irrigation. Scale
factors were defined such that the kinematic wave equation remained independent of the initial and boundary conditions of the
soil. Scaled advance and recession curves showed certain patterns, which led us to introduce a power and a binomial equation
for advance and recession phases, respectively. The scaled equations were applied on 25 vegetated and non-vegetated borders.
Four performance indices were calculated for each border, including application efficiency (Ea), deep percolation ratio (DPR),
tail water ratio (TWR) and water requirement efficiency (Er). Results showed that the maximum differences between measured
and estimated values were 4% for Ea, 9% for DPR and 4% for Er. Considering the simplicity and soil-condition independence
of the proposed method, it can be concluded that scaled advance and recession curves could provide a reasonable estimate of
border irrigation performance. © 2019 John Wiley & Sons, Ltd.
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RÉSUMÉ

Les courbes de progression et de récession revêtent une grande importance pour l’évaluation des performances de l’irrigation
par planches. Ces dernières années, les techniques d’analyse d’échelle ont permis de réduire les mesures requises et de formuler
les relations sol–eau. Le but de cette étude était de développer une équation invariante pour le calcul des courbes de progression
et de récession dans l’irrigation par planches à l’aide de techniques d’analyse d’échelle. Le modèle d’onde cinématique et
l’équation d’infiltration de Philip ont été utilisés pour simuler l’irrigation par planches. Les facteurs d’échelle ont été définis
de telle sorte que l’équation d’onde cinématique reste indépendante des conditions initiales et limites du sol. Les courbes de
progression et de récession échelonnées montrent certains comportements, ce qui a conduit à introduire une équation de puis-
sance et une équation binomiale pour les phases de progression et de récession, respectivement. Ces équations ont été
appliquées sur 25 bordures végétalisées et non végétalisées. Quatre indices de performance ont été calculés pour chaque
planche, notamment l’efficacité d’application (Ea), le rapport de percolation profonde (DPR), le rapport d’eau de queue
(TWR) et l’efficacité des besoins en eau (Er). Les résultats ont montré que la différence maximale entre les valeurs mesurées
et estimées était de 4% pour Ea, 9% pour DPR et 4% pour Er. Compte tenu de la simplicité et de l’indépendance des conditions
de sols de la méthode proposée, on peut en conclure que les courbes de progression et de récession à l’échelle pourraient
fournir une estimation raisonnable des performances de l’irrigation par planche. © 2019 John Wiley & Sons, Ltd.
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INTRODUCTION

Surface irrigation is among the most common methods used
for applying water on farms around the world, although wa-
ter productivity is low in this type of irrigation (Adamala
et al., 2014). Surface irrigation systems can be assessed by
their performance indices, such as advance and recession
curves (Clemmens, 2007). There are three approaches for
modelling the advance and recession phases in surface irri-
gation. The first is based upon hydraulic models (e.g.
Sirmod, 2003; Bautista, 2012a), while the second approach
deals with water balance models (e.g. for the advance phase:
Strelkoff, 1977; Shepard et al., 1993; Khatri and Smith,
2006; Ebrahimyan et al., 2009, and for the recession phase:
Strelkoff, 1977; Clemmens, 2007). The third refers to empir-
ical models (e.g. for the advance phase: SCS method; and
for the recession phase: Ram and Lal, 1971). Considering
the application of Saint-Venant equations (continuity and
momentum equations), there are the three approaches of
the full hydrodynamic (HD), zero inertia (ZI) and kinematic
wave (KW) models. All of these approaches should be
solved by numerical methods and computer calculations.
The water balance model, which is based on the continuity
equation, is not capable of simulating some processes of sur-
face irrigation such as recession phase and runoff volume.
Empirical models have some coefficients which depend on
input data and geometry of the borders. Based on the litera-
ture, one can see the importance of developing a hydraulic
model that can accurately estimate advance and recession
phases simultaneously.

In recent years, promising methods have been developed
which reduce the requirements for measuring soil parame-
ters such as infiltration (Khatri and Smith, 2006) and hy-
draulic conductivity (Kosugi and Hopmans, 1998). Miller
and Miller (1956) were first to apply scaling techniques on
soils based on the similar media concept (Miller and Miller,
1956; Sadeghi et al., 2016). Based on this concept, however,
two porous media are scaled through a physical characteris-
tic length (scaling factor) when they are similar in their de-
tailed microscopic geometry. Miller and Miller (1956) then
suggested the concept of similar water flow in porous media
in order to scale Darcy and continuity equations. They stated
that water flow would be similar in two similar porous me-
dia and equal scaled initial and boundary conditions.

In general, porous media scaling has three different appli-
cations in soil physics: (i) studying the spatial variability of
soil hydraulic functions (e.g. Warrick and Hussen, 1993;
Sadeghi et al., 2016); (ii) derivation of general solutions
for soil water processes such as infiltration (Khatri and
Smith, 2006; Sadeghi et al., 2012); solute transport (Sadeghi
and Jones, 2012) and soil moisture redistribution (Warrick
and Hussen, 1993); (iii) formulation of soil water relations
with minimum possible variables (e.g. Katopodes and

Strelkoff, 1977; Yitayew and Fangemeier, 1984; Ram and
Singh, 1985; Strelkoff and Clemmens, 1994; Alazba,
1999; Rasoulzadeh and Sepaskhah, 2003; Navabian et al.,
2009; Bautista et al., 2012b).

In areas related to formulating equations of water and soil,
governing equations of surface irrigation (e.g. Saint-Venant
equations) are an example of scaling application. Based on
Strelkoff and Clemmens (1981), transforming surface irriga-
tion equations into dimensionless form, the number of inde-
pendent parameters are reduced and, therefore, the general
model is more understandable. Katopodes and Strelkoff
(1977) and Strelkoff and Clemmens (1994) developed di-
mensionless (scaled) equations for border irrigation using
reference variables (scaling factors). They also prepared
graphs to use these equations based on soil types (e.g. α
and k in the Kostiakov infiltration equation). However, a
large number of graphs are required for all soil conditions.
Yitayew and Fangemeier (1984) presented dimensionless
graphs for open-ended border irrigation. The amount of run-
off, then, could be calculated by having dimensionless
length and cut-off time in the Kostiakov equation. Alazba
(1999) plotted scaled advance curves of border irrigation
corresponding to each number of infiltration families. As a
result, water advance times can be acquired according to soil
type and existing advance curves. Bautista et al. (2012b)
improved the volume balance method by calculating water
volume on the surface using a scaling technique.

In all the cases above, Saint-Venant equations were suc-
cessfully scaled, while the results are not unique because
of dependency on soil type. The infiltration equation
changes from one soil to another, thus dimensionless equa-
tions of one soil cannot be used for others. Furthermore,
the recession phase has not been discussed and formulated
in the literature at all. However, SIRMOD (Walker, 2003)
and SRFR/WinSRFR (Bautista et al., 2012a) are the most
comprehensive software developed so far for designing sur-
face irrigation systems. But there are some instances where
sufficient data are not available and use of a so-called quick
method, that employs minimal measured data, is required. It
is, therefore, important to develop, compare or evaluate
these methods. Thus, the purpose of this study was to de-
velop a quick method with a scaling approach for simulating
the advance and recession phases in open border irrigation
that is invariant to soil type, initial and boundary conditions.

MATERIALS AND METHODS

The two basic principles of conservation of mass and con-
servation of momentum, also known as the Saint-Venant
equations, are fundamental to surface irrigation hydraulics
(Strelkoff and Katopodes, 1977). Based on the Saint-Venant
equations, different models have been developed to simulate
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water flow on the soil surface. While different models
have used the mass conservation equation in the same
way, application of the momentum conservation equation
was different. In this concept, Saint-Venant equations are di-
vided into three categories: full hydrodynamic, zero inertia
and kinematic models. We used the kinematic wave model
in this paper because of its simplicity.

Neglecting terms related to the dynamics of flow (i.e. lon-
gitudinal slope of field assumed equal to that of the energy
grade line), the momentum equation can be solved using
one of the steady-state equations which form the basis of
stage–discharge relations (e.g. Manning, Chezy and
Darcy–Weisbach equations). These models are known as
steady depth or flow models. In the case of using the

Manning equation, friction slope is Sf ¼ S0 ¼ q2n2

y10=3 (Walker

and Humpherys, 1983), where n is roughness coefficient, q
(m2 min�1) is flow rate discharge per unit width, y (m) is
flow depth, S0 is longitudinal slope and Sf is friction slope.

The proper initial and boundary conditions (Equa-
tions (1a)–(1c))) are defined as

t ¼ 0 : q x; 0ð Þ ¼ 0; y x; 0ð Þ ¼ 0 (1a)

0 < t≤tco : q 0; tð Þ ¼ q0; y 0; xð Þ ¼ y0 (1b)

t > tco : q 0; tð Þ ¼ 0 (1c)

where q0 (m
2 min�1) is flow rate discharge per unit width,

tco (min) is time of cutoff and y0 (m) is flow depth at the be-
ginning of the border (normal depth).

Clemmens (1981) introduced a two-branch infiltration
function and demonstrated its potential in modelling the in-
filtration process. This formulation is also used byWinSRFR
4.1 (Bautista et al., 2012a). Since gravity force is negligible
at the beginning of the border, the infiltration function may
be read as Z = St0.5 (Philip, 1957), where S (mm/min0.5) is
sorptivity, t (min) is cumulative time and Z is infiltration
depth (mm). As time continues, the infiltration rate ap-
proaches the final infiltration rate, and the equation becomes
Z ¼ St0:5b þ f 0 t � tbð Þ, where f0 (mm min‾¹) is the final in-
filtration rate and tb (min) is the branching time at the inter-
section of two branches; however, infiltration time and
infiltration rate should be in conformity with each other.
Thus, tb is transition time from the first branch to the second:

tb ¼ 0:5S
f 0

� �2

(2)

As a result, conservation equation for short and long times
becomes:

∂q
∂x

þ ∂y
∂t

þ 0:5St�0:5 ¼ 0 (3)

∂q
∂x

þ ∂y
∂t

þ f 0 ¼ 0 (4)

Scaling

The first step in scaling any equation would be to transform
parameters into dimensionless form by dividing them by a
scaling factor. For the conservation and momentum equa-
tions (Equations (3) and (4)), dimensionless parameters are
determined as follows:

q� ¼ q
qc
; x� ¼ x

X c

y� ¼ y
Y c

; t� ¼ t
Tc

(5)

where starred parameters are dimensionless parameters and
qc, Yc, Xc and Tc are scaling factors for flow rate, flow depth,
waterfront advance distance and time, respectively. The next
step is to determine a few relations between scale factors and
some physical parameters. Since the infiltration equation is
different in the short and long term, scaling factors will also
be different.

1 Short-term branch: Equation (5) is substituted into
Equation (3), which results in

qc
X c

∂q�

∂x�
þ Y c

T c

∂y�

∂t�
þ 0:5ST�0:5

c t��0:5 ¼ 0 (6)

Equation (6) is made non-dimensional by dividing by Yc
T c
:

qcTc

X cY c

∂q�

∂x�
þ ∂y�

∂t�
þ 0:5

ST 0:5
c

Y c
t��0:5 ¼ 0 (7)

Scale factors are selected in such a way that the scaled
kinematic wave equation will be independent of soil type
and initial and boundary conditions. Since hydraulic param-
eters are time-independent at the beginning of the borders,
scaling factors of flow rate (qc) and flow depth (Yc) are
determined assuming a laminar flow at the beginning of
the border. Tc and Xc are defined in such a way that the
kinematic wave is independent of soil type. Thus, scaling
factors are as follows:

qc ¼ q0 (8)

Y c ¼ nq0ffiffiffiffiffi
S0

p
� �3=5

(9)
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T c ¼ 4
Yc

S

� �2

(10)

X c ¼ qCT c

Y c
(11)

Determining the scaling factors, the short-term scaled kine-
matic wave equation will become

∂q�

∂x�
þ ∂y�

∂t�
þ t��0:5 ¼ 0 (12a)

q� ¼ y�5=3 (12b)

And scaled initial and boundary conditions will become

t� ¼ 0 : q� x�; 0ð Þ ¼ 0; y� x�; 0ð Þ ¼ 0 (12c)

0 < t�≤t�co : q
� 0; t�ð Þ ¼ 1; y� 0; t�ð Þ ¼ 1 (12d)

t� > t�co : q
� 0; t�ð Þ ¼ 0 (12e)

2 Long-term branch: continuity Equation (4) in scaled
form is as follows:

qcTcl

X clY c

∂q�

∂x�
þ ∂y�

∂t�
þ f 0Tcl

Y c
¼ 0 (13)

where scale factors of distance and time are determined by

TCl ¼ Yc

f 0
(14)

X cl ¼ qCT cl

Y c
(15)

where qc and Yc are determined as described before. Having
long-term scaled factors, the conservation equation becomes
as follows, while the rest of equations are the same as Equa-
tions (12b)–(e):

∂q�

∂x�
þ ∂y�

∂t�
þ 1 ¼ 0 (16)

Advance and recession curves are determined by putting
initial and boundary conditions (Equations (12c)–(e)) into
Equations (10)a and b and Equation (13).

Surface irrigation equations were solved numerically for
short- and long-term branches, using Walker and
Humpherys’s (1983) approach. In this approach, a control
volume is defined and water flow is divided into smaller
squares of length δx. Inflow and outflow rates of each square
as well as the cross section at the beginning and end of the
border are different in each time step, δt (here 2 min). The
cross section and advance distance (δx) of each time step
are calculated using the Newton–Raphson method in Matlab
software. Surface irrigation equations were solved for

different sets of input parameters (i.e. flow rate, slope,
border length, cutoff time and parameters of the Philip infil-
tration equation including S and f0), and scaled curves were
plotted for short- and long-term branches.

The uniqueness of the scaled solutions (Equations
12(a)–(e) and 16) also creates the possibility for the deri-
vation of empirical models to approximate the advance
and recession features by fitting to the scaled results. Ac-
cording to National Engineering Handbook (1974), a
power advance function (Equation (17)) was fitted to
long- and short-term scaled advance curves. A binomial
equation (Equation (18)) was also fitted to long- and
short-term scaled recession curves:

t�Ax� ¼ A1x�
A2 (17)

t�Rx� ¼ B1x�
2 þ B2x� (18)

where t�Ax� and t�Rx� are advance and recession times of
point x* and A1, A2,B1and B2 are fitting parameters.

De-scaling

Parameters should be de-scaled to be useful in practical
applications. De-scaled forms of Equations (17) and (18)
are as follows:

tx ¼ a1xa2 (19)

tx ¼ b1x2 þ b2x (20)

where

a1 ¼ Tc:A1

XA2
c

; a2 ¼ A2 (21)

a1 ¼ B1Tc

X 2
c

; a2 ¼ B2Tc

X c
(22)

Corresponding coefficients of each short- and long-term
branch were used to de-scale the equations. Then,
advance and recession curves were determined using input
parameters of each border (parameters of flow and
infiltration).

Model performance assessment

Typical assessment indices for surface irrigation systems
consist of application efficiency (Ea), deep percolation ratio
(DPR), tail water ratio (TWR) and water requirement effi-
ciency (Er). Results of the proposed model were compared
with in situmeasurements (or simulated with the zero-inertia
model). Performance assessment indices can be defined as
follows (Adamala et al., 2014):

1 Full irrigation or over-irrigation situation:
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Ea ¼ ZreqL
tcoq0

�100 (23)

DPR ¼ Vz � ZreqL
tcoq0

�100 (24)

TWR ¼ 100� Ea � DPR (25)

Er ¼ 100 (26)

2 Deficit irrigation situation:

Ea ¼ Zreqxd þ V zi

tcoq0
�100 (27)

DPR ¼ V za � Zreqxd
tcoq0

�100 (28)

TWR ¼ 100� Ea � DPR (29)

Er ¼ Zreqxd þ V zi

ZreqL
�100 (30)

where Zreq (m) is the depth of water which was needed in the
root zone, L (m) the total length of the border, Vz (m

2) the

total volume of infiltrated water to the root zone per unit
width, xd (m) the length of the border where irrigation was
sufficient and Vzi (m

2) the volume of water in insufficient ir-
rigated area per unit width.

Data

Twenty-five data sets which were provided by Ram and Lal
(1971), Ram and Singh (1985), Atchison (1973), and Roth
(1974) were used to assess the application of the scaling
method on border irrigation equations. Ram and Lal
(1971) and Ram and Singh (1985) provided data of 18
closed-end borders, 9 of which were non-vegetated (Rj, j = 1,
2, ..., 9) and the others had wheat growing on them (Rj,
j = 10, 11,..., 18). Atchison (1973) provided data of 6
open-ended borders of 5.98 m width, of which At-1, At-2,
At-3, At-4 and At-5 had vegetation and At-17 was non-
vegetation on the borders. Roth (1974) also provided one
open-ended unplanted border (Roth-8). Parameters of the
Philip (1957) equation (i.e. S and f0) were determined using
a two-point approach (Ebrahimian et al., 2010). In order to
improve the goodness of fit of the ordinary advance function
(i.e. x = pt0.5), the power was taken as unknown (i.e. x = ptr).

Table I. Specifications of borders

Data seta q0 (m
3m�1m�1) S0 (m m�1) n Length (m) S (mm min�0.5) f0 (mm/ min) tb (min)

R-1 0.16 0.005 0.059 100 4.46 1.036 4.6
R-2 0.12 0.005 0.066 100 5.56 0.437 40.4
R-3 0.08 0.005 0.048 100 5.62 0.151 345.6
R-4 0.16 0.003 0.077 100 6.36 0.681 21.8
R-5 0.12 0.003 0.092 100 6.25 0.283 121.8
R-6 0.08 0.003 0.1 100 4.30 0.284 57.1
R-7 0.16 0.001 0.08 100 6.58 0.804 16.8
R-8 0.12 0.001 0.071 100 6.26 0.364 73.7
R-9 0.08 0.001 0.073 100 5.79 0.132 481.8
R-10 0.16 0.005 0.114 100 7.37 0.518 50.38
R-11 0.12 0.005 0.132 100 5.74 0.435 43.5
R-12 0.08 0.005 0.154 100 4.44 0.244 82.6
R-13 0.16 0.003 0.117 100 7.16 0.834 18.4
R-14 0.12 0.003 0.145 100 3.75 0.845 4.9
R-15 0.08 0.003 0.188 100 5.66 0.092 929.7
R-16 0.16 0.001 0.146 100 8.20 0.194 448.5
R-17 0.12 0.001 0.116 100 4.63 0.569 16.6
R-18 0.08 0.001 0.130 100 2.10 0.138 344.1
At-17 0.141 0.0011 0.06 91.4 4.05 0.363 36.3
At-1 0.141 0.0011 0.211 91.4 0.78 1.141 0.1
At-2 0.14 0.0011 0.107 91.4 1.74 1.012 0.7
At-3 0.113 0.0011 0.098 91.4 1.71 0.645 1.8
At-4 0.141 0.0011 0.119 91.4 0.611 0.132 0.1
At-5 0.085 0.0011 0.092 91.4 1.35 0.485 2.0
Roth-8 0.105 0.001 0.017 91.4 7.56 0.127 879.6

aRj, j = 1, 2,..., 9 and Rj, j = 10, 11,..., 18: Ram and Lal (1971); Ram and Singh (1985).
At-17, At-1, At-2, At-3, At-4 and At-5: Atchison (1973).
Roth-8: Roth (1974).
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Having the data of advance time and distance for two points
along the border, one can determine the infiltration parame-
ters (for more information about the two-point method, see
Ebrahimian et al., 2010). Specifications of borders are avail-
able in Table I.

RESULTS AND DISCUSSION

Scaling of advance and recession phases

Figure 1 shows the measured curves of the advance
(Figure 1(a)) and recession (Figure 1(b)) phases for 25

Figure 2. Scaled advance curves for (a) the short term and (b) the long term

Table II. Statistical indices of the scaling factors

Statistical indicators qc (m
3 m‾¹ min‾¹) Yc (m) Tc (min) Xc (m) Tcl (min) Xcl (m) tb (min)

Max. 0.16 0.080 42 900 85 900 426 826 929
Min. 0.08 0.015 16.4 113 25 107 0.704
Average 0.121 0.039 3 670 3 670 126 341 159
S.dva 0.031 0.014 10 700 22 100 108 426 267
C.vb 0.16 0.368 2.9 2.8 0.86 0.62 1.67

aS.dv: Standard deviation.
bC.v: Coefficient of variation.

Figure 1. (a) Advance curves, and (b) recession curves of different borders [Colour figure can be viewed at wileyonlinelibrary.com]
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borders in Table I. Figure 1 was plotted by considering
measured data for advance phases and measured and zero-
inertial estimated (for closed-end borders) data for recession
phases for 25 borders. Based on Figure 1(a), R-1 and R-18
with 22.5 and 105 min had the shortest and the longest
advance times, respectively, for 100-m borders. R-1 and
At-17 with 40.3 and 244 min had the shortest and the
longest advance times, respectively. The length of At-17
was 91.4 m. Different advance and recession times represent
a pronounced variability in input flow parameters (boundary
conditions) and infiltration parameters (soil type).

Each curve in Figure 1 was divided into long- and short-
term sections using tb from Table I. Then, the scaling factor
of each curve was calculated using Equations (5), (10) and
(11) for the short-term section, and Equations (5), (14)
and (15) for the long-term section. Table II shows statistical
indices, including minimum, maximum, mean, standard er-
ror and coefficient of variation for scaling factors and tb.
According to Equation (8), the amount of Tc has a positive
correlation with normal depth (Yc, which is dependent on
S0, n and q0 according to Equation (9)), and a negative cor-
relation with intake coefficient (S, which is related to soil
texture and Tc). Roth-8 had the least Tc (16.4 min) which
was in accordance with its small normal depth (0.015 m)
and relatively large intake coefficient (0.00756 m/m0.5).
Based on Equation (11), there is a positive correlation
between Tc and Xc which makes the parameters of Tc also ef-
fective on Xc. Regarding Table II, short-term curves have
higher scaling factors (16.4 < Tcs < 42 900, and

113 < Xcs < 85 900) than that of long-term curves
(24.7 < Tcl < 426, and 107 < Xcl < 826), which might be
due to the narrower range of variation in the final infiltration
rate (0.000092–0.001010 m min‾¹) than in intake
coefficient (0.000611–0.0082 m min�0.5). In addition, the
shape of the scaling equation of the short-term section
(Equation (10)) is different from the long-term section.
The amount of tb was considerably different among the bor-
ders (ranging from 0.7 min for At-2 to 929 min for R-15),
which shows its high variability in different soil textures.

Figures 2(a) and (b) show the scaled representation of
Figure 1(a) for the short and long term, respectively. As
can be seen, different scaling factors for the short and long
term resulted in different counterpart figures. A scaled
advance curve was plotted with respect to branching time
(t�b ) using the short-term advance curve (Figure 2(a)) for
t* < = t�b , and the long-term advance curve (Figure 3(b))
for t* > t�b. It should be noted that scaled branching time
(t�b ) moves vertically in Figure 2 based on soil type (see
Equations (2) and (5)). Figures 3(a) and (b) also show
the scaled representation of Figure 1(b) for the short- and
long term, respectively. Figures 2 and 3 show that each ad-
vance and recession curve (for both the short and long

Figure 4. Comparison between observed and predict advance times [Colour
figure can be viewed at wileyonlinelibrary.com]

Table III. Fitted parameters A1, A2, B1 and B2

Timescale Coefficients

Advance Short A1 = 4.02,A2 = 1.46
Long A1 = 1.41,A2 = 1.13

Recession Short B1 = � 3.15,B2 = 2.82
Long B1 = � 8.77,B2 = 3.21

Figure 3. Scaled recession curves for (a) the short term and (b) the long term
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term) approach a certain equation, and scaling factors can
be suitably determined and the scaling method was suc-
cessful in modelling the advance phase in border irrigation.

General advance and recession equation

Equations (17) and (18) were fitted to scaled advance
(Figures 2(a) and (b)) and recession (Figures 3(a) and (b))
curves, respectively. Results were significant at a level of
1% and are provided in Table III. De-scaled advance and re-
cession curves were obtained using Equations (19) and (20),
coefficients in Table III and input data of each border.

Advance phase

In order to evaluate the scaling results, estimated advance
times (time to reach the end of the border) were plotted
against measured values (Figure 4). Comparing the scattered
points with the 1 : 1 line shows the accuracy of the scaling
method in modelling the advance phase of border irrigation.

Katopodes and Strelkoff (1977) plotted the advance
curves corresponding to different α values (from 0.1 to
0.9) using the zero-inertia model, where α is the power of
the Kostiakov infiltration function. Having input parameters,
including flow rate, slope, roughness and parameters of the
Kostiakov infiltration function, one can determine the scal-
ing factors of a border and as a result determine the scaled

Figure 6. Comparison of observed and estimated recession times for (a) short term and (b) long term and (c) overall sections [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 5. Advance curve in border R-10 using observed data, Alazba, Katopodes and Strelkoff and power models [Colour figure can be viewed at
wileyonlinelibrary.com]
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advance curve. For a different α-value from those mentioned
before (i.e. 0.1–0.9), the scaled advanced curve can be esti-
mated by interpolating the available curves. Alazba (1999)
obtained scaled advance curves of 14 infiltration curve num-
bers which covers most soil types (i.e. from 0.1 to 4), using a
scaled form of the volumetric water balance equation (Hart
model). A corresponding set of parameters of the Kostiakov
equation to each infiltration curve number were determined
and the advance curve was calculated from that. As with
Katopodes and Strelkoff (1977), Alazba (1999) estimated
the advance curves of different α-values by interpolating
the available curves. Figure 5 shows measured and
estimated advance curves using the power model, and
Alazba (1999) and Katopodes and Strelkoff (1977) models
for R-10. Alazba, power and Katopodes and Strelkoff
models had progressively better results because of using
the Hart water balance equation, kinematic wave model
and zero-inertia model, respectively. In Figure 6, however,
we had weaker results by obtaining distance from the begin-
ning of the border in the Alazba and Katopodes and
Strelkoff models. α-value of border R-10 was 0.35, and
was not available in scaled graphs. Therefore, the advance
curve of this border was estimated by interpolation and of
course might introduce some errors. Calculated scaled fac-
tors of time (min) and length (m) for border R-10 were
Tc = 446.1, Xc = 1917.5 using the Katopodes and Strelkoff
model, and Tc = 235.7, Xc = 1266.9 using the Alazba model.
Since calculated scaling factors are relatively high, a small
error in calculations or interpolations can cause a big error
in real conditions due to multiplication of the scale factor
by a dimensionless value. It may be concluded that the pro-
posed equation in this paper is superior to other methods of
estimating advance curves due to its simple form, having the
accuracy of the kinematic wave model, and finally eliminat-
ing the need for graphical interpolation.

Recession phase

Measured recession times (or estimated by the zero-inertia
model for closed-ended borders) were plotted against

estimated recession times (using Equation (20)) for 25 bor-
ders whose specifications are provided in Table I for the
short term (borders R-3, R-5, R-9, R-15, R-16, R-18 and
Roth-8), long term and total borders (Figure 6). As can be
seen in Figure 7, the proposed equation for the long-term
branch had better results in modelling the recession phase
in comparison with the short-term equation, which may be
due to using a linear infiltration function ( Z ¼ St0:5b þ
f 0 t � tbð Þ) for the long-term branch. Clemmens (1981) also

Table IV. Irrigation efficiencies on the basis of calculated and
observed advance and recession time (min) for depth of water
need in root zone 0.1 m

Data
set

Observed Predicted

Ea DPR TWR Er Ea DPR TWR Er

R-1 86.3 0 13.7 31.1 83.1 0 16.9 29.9
R-2 79.8 0 20.2 35.5 77.7 0 22.2 34.5
R-3 84.9 0 15.1 40.1 87.9 0 12.1 41.5
R-4 76.2 0 23.8 43.3 75.5 0 24.4 42.9
R-5 78.2 0 21.8 46.9 76.4 0 23.6 45.8
R-6 65.5 0 34.9 38.5 66.2 0 33.8 39.2
R-7 76.2 0 23.8 61.0 73.2 0 26.8 58.5
R-8 74.6 0 25.4 52.8 72.7 0 27.3 51.5
R-9 75.1 0 24.9 57.1 77.6 0 22.3 59.1
R-10 77.7 0 22.3 50.1 80.2 0 19.7 52.6
R-11 73.2 0 26.8 44.8 72.3 0 27.7 44.5
R-12 67.5 0 32.5 40.5 68.4 0 31.6 41.1
R-13 75.2 0 24.8 60.1 76.1 0 23.9 60.8
R-14 80.0 0 20.0 57.6 76.6 0 23.4 54.7
R-15 75.9 0 24.1 58.3 78.1 0 21.9 60.0
R-16 78.2 0 21.8 75.1 76.1 0 23.9 73.3
R-17 65.1 0 34.9 60.2 65.2 0 34.8 60.2
R-18 69.2 0 30.7 58.2 67.1 0 32.9 56.3
At-17 27.8 0 72.1 81.7 27.9 0 72.1 81.6
At-1 44.1 38.7 17.2 100 44.1 29.7 26.2 100
At-2 50.2 22.9 26.9 100 50.2 18.6 31.2 100
At-3 57.4 1.8 40.8 99.8 56.5 0.4 43.0 97.8
At-4 46.0 43 11.0 100 47.8 40.0 12.2 100
At-5 59.8 0 40.1 77.8 56.7 0 43.3 73.7
Roth-8 47.3 52.1 0.6 98.7 47.7 51.8 0.50 99.6

Figure 7. Observed and estimated recession curves for borders R-1, R-3, R-12 and Roth-8 (dots are observed and line is modelled recession) [Colour figure can
be viewed at wileyonlinelibrary.com]

9ASSESSMENT OF BORDER IRRIGATION

© 2019 John Wiley & Sons, Ltd. Irrig. and Drain. (2019)

http://wileyonlinelibrary.com


used a branching approach for evaluating border irrigation
systems and reported similar results. Based on the literature
(Ram and Lal, 1971; Strelkoff, 1977), the flow regime of the
recession phase is generally laminar or transition, which
makes the use of linear infiltration functions more logical.

In order to visualize the results, recession curves of a few
borders were plotted in Figure 7, representing short-term
borders (R-3 and Roth-8) and long-term borders (R-1 and
R-12). Figure 7 shows the relative success of the scaling ap-
proach (Equation (20)) in modelling recession curves of
open-ended recession curves.

Performance assessment of the proposed method

Performance indices (application efficiency (Ea), deep per-
colation ratio (DPR), tail water ratio (TWR) and water re-
quirement (storage) efficiency (Er)) for a 0.1 m irrigation

depth of measured (or estimated by the zero-inertia model)
and modelled by the proposed scaling method are provided
in Table IV. According to Table IV, the maximum differ-
ence between measured and estimated Ea, DPR and Er was
4, 9 and 4% in R-14, At-1 and At-5, respectively. Based
on the results, it can be concluded that the proposed rela-
tions had a good performance in modelling the advance
and recession phases of border irrigation.

[Table IV. Irrigation efficiencies on the basis of calculated
and observed advance and recession times (min) for depth of
water need in root zoon 0.1 m.]

Effects of vegetation cover on advance and recession
equations

Figure 8 shows the observed and predicted advance (a) and
recession (b) times as calculated by Equations (19) and (20)

Figure 9. Frequency distribution of scaling factors and tb as measured (bar chart) and lognormal-calculated (line chart) for the short and long term [Colour figure
can be viewed at wileyonlinelibrary.com]

Figure 8. Comparison of observed and predicted (a) advance times and (b) recession times for planted and unplanted borders [Colour figure can be viewed at
wileyonlinelibrary.com]
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for non-vegetated and vegetated borders. Mean absolute

errors ( Observed�predicted
Observed

�� ���100 ) of advance times in non-
vegetated and vegetated borders were 7.8 and 18.4%, re-
spectively. These values in the recession phase were 6.78
and 8.08% for unplanted and planted borders, respectively.
Results show that advance and recession equations have bet-
ter estimates in non-vegetated borders, although in general
one can say that soil type and vegetation cover did not have
a significant impact on the results and the power function
was valid in most irrigation conditions.

The probability density functions (pdf) of scaling
factors

The probability density functions (pdfs) of space and time
scaling factors were also evaluated. Figure 9 shows the fre-
quencies of measured (bar chart) and lognormal estimated
(line chart) scale factors for two short and long terms as well
as tb. As can be seen in Figure 9, space and time scaling fac-
tors have a similar shape for both the short and long term
and follow a lognormal distribution. There are no previous
studies on the probability distribution of scale factors of
surface irrigation, but lognormal distribution functions are
reported for scale factors for soil hydraulic parameters
(Kosugi and Hopmans, 1998).

CONCLUSION

Previous studies on scaling the advance phase of surface
irrigation were dependent on soil type and were in graphical
form (Katopodes and Strelkoff, 1977; Yitayew and
Fangemeier, 1984; Strelkoff and Clemmens, 1994; Alazba,
1999). The proposed method in this study consisted of using
a scaling method and the Philip infiltration step function in a
way that eliminates graphical interpolations and soil type
dependencies. Since the recession phase of border irrigation
is of great importance and equations that model this phase
are very limited, a new method for estimating the recession
curve of open-ended borders was introduced based on the
scaling method. Advance and recession curves of short
and long term were determined using space and time scaling
factors. Space and time scaling factors followed a lognormal
distribution function in both the short and long term, in
accordance with other scale factors in soil physics. Simple
shape and independence from soil type are among the
advantages of using the proposed functions. Application
results of the proposed method on 25 vegetated and non-
vegetated borders were evaluated by performance
indices, including application efficiency (Ea), deep percola-
tion ratio (DPR), tail water ratio (TWR) and water require-
ment efficiency (Er). The results of the evaluations showed
the accuracy of the proposed equations by the scaling
method. Except for restrictions on the use of the

kinematic wave model, it can be concluded that the
proposed method can be used in all other cases and makes
computations easier and shorter in the process of evaluation
of border irrigation.
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