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ABSTRACT
Energy management and reduction of CO2 emission lead to many investi-
gates about energy input–output analyses especially in agricultural sector.
The main objectives of this study are to assess the energy use pattern and
to select the best method among Cobb–Douglas (CD), multiple linear
regressions (MLR), multilayer perceptron (MLP), radial basis function (RBF)
and support vector machine (SVM) models to estimate potato output
energy in Jiroft city, located in the south of Kerman province, Iran. Data
were collected with questioner method from expert farmers. Results indi-
cated that the average of total input energy is about 84309.43 MJ ha−1 and
the average of total output energy is 130217.14 MJ ha−1. Irrigation water
(36%) and fertilizers (26%) were found to be the most important energy
inputs in potato production. Unlike most literature reviews, in this study for
better and more accurate model evolutions in energy forecasting, five
different sizes of training selection (TS) were used: 50%, 60%, 70%, 80%
and 90%. Some statistical indexes (RMSE, MAPE, and R2) of the different
data selection calculated from k-fold in two training sets. The results
showed that RBF model has a great prediction performance at all different
values of training data selection. The average value of R2 was found to be
more than 0.98. Between SVM and MLP models, the test performance will
be improved by size reduction of training selection. Thus, the RBF model is
chosen as the best model for fitting and modeling the output energy of
potato production.
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Introduction

Potato (Solanum tuberosum L.) grows under a wide range of climatic and farm conditions. Potato is
not only one of the most important global food crops but also it has one of the heaviest demands for
fertilizer inputs versus other crops (Omid et al. 2011; Zangeneh, Omid, and Akram 2010). This
cultivation plays a key role in the food security of Iranian households and recent governmental
economic policies have increased attention on these agricultural products (Mardani and Salarpour
2015). In Iran, the total production of potato was about 4995327 tons in the year of 2015–2016
(Anonymous, 2015).

Nowadays, energy is an important issue in the world, especially in agriculture and industrial
production. As we know, agriculture uses energy and also supplies energy as bio-energy
(Horsfield and Williams 2007; Pahlavan, Omid, and Akram 2011). Demand for energy in
agriculture is rapidly increasing (Canakci and Akinci 2006). The major input sources for energy
are human, fertilizer, machinery, electricity, etc. They fall into two categories: renewable and
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non-renewable (Durusoy et al. 2011; Heidari and Omid 2011; Zangeneh, Omid, and Akram
2010). Energy management, reduction the negative environmental problems and also increasing
the efficiency and security of agricultural productions caused many investigates about energy
input-output analyses in agriculture (Hatirli, Ozkan, and Fert 2006; Ozkan et al. 2004). Studies
on energy-use pattern and benchmarking with data envelopment analysis (DEA) method
(Bolandnazar, Keyhani, and Omid 2014), using artificial neural network (ANN) (Khoshnevisan
et al. 2013; Taki et al. 2018a), adaptive neuro-fuzzy inference system (ANFIS) models (Landeras
et al. 2012; Shiri et al. 2013), and multi-layer adaptive neuro-fuzzy inference system
(Khoshnevisan et al. 2014) were conducted in order to determine suitable combination of
input product and optimize them.

The modeling of energy required in agricultural activity can correct the pattern of input
consumption and grow clean products. In addition, the energy resources can be saved by energy
modeling. The advanced models can give satisfactory predictions in the studied region and appear to
be a suitable tool for prediction of energy required. Many studies have conducted experiments on
energy use in agriculture (Gezer, Acaroglu, and Haciseferogullari 2003; Taki et al. 2018b; Taki and
Yildizhan 2018).

The number of scientists and engineers who are interested in modeling of energy consumption
and related environmental effects has increased sharply in recent years (Al-Ghandoor et al. 2009;
Yildizhan and Taki 2018). In energy subject, a wide range of models have been applied from
geological models in research on natural resources to modeling the future energy demand (Safa
and Samarasinghe 2011). In the past, regression analysis was the usual modeling technique that
applied in energy researches. Recently, neural networks (NN) have been increasingly applied in
energy researches (Sözen 2009). ANNs have been widely used to predict the energy consumption,
energy demand, environmental problems, etc. The relative performance of ANN over traditional
statistical methods is reported by Zhang, Patuwo, and Hu (2001). Several researches have applied
ANNs for classification, prediction, and solving problems in the field of energy. Khoshnevisan et al.
(2014) used ANN for prediction of the output energy and greenhouse gas (GHG) emissions in
potato production in Iran (Khoshnevisan et al. 2014). Pahlavan, Omid, and Akram (2012) applied
ANN model to predict greenhouse basil production. Safa and Samarasinghe (2011) applied ANN for
determination and modeling the energy consumption in wheat production. They compared ANN
with multiple linear regression (MLR) model. They found that ANN can predict energy consump-
tion better than regression models.

In this study, the models are developed based on artificial intelligence for predicting the
output energy of potato crop. One of the models employed radial basis function (RBF) as the
active function for ANN and other models used multilayer perceptron (MLP) as a class of
feedforward artificial neural network. As an alternative to ANN, support vector machine
(SVM) suggested by Vapnik (1998) is a powerful tool for nonlinear classification, regression,
and time series prediction (Wang, Men, and Lu 2008). SVMs belong to kernel-based learning
approaches and have obtained wide popularity. SVMs are a kind of supervised machine learning
system that applies a linear high-dimensional hypothesis space called feature space. The basic idea
of SVM is provided by the use of kernel functions that implicitly map the data to a higher-
dimensional space. This makes SVM as a powerful tool for modeling the nonlinear complex
environmental problems (Bhagwat and Maity 2012). Yousefi et al. (2015) applied support vector
regression (SVR) methodology for prediction the output energy in rice production. Results
showed that SVR can serve as a promising alternative for existing prediction models. In all the
above literatures, there is not any research which applied SVM for energy prediction of potato
production. Therefore, the main goal of this study is to use SVM and make a comparison with
other models such as Cobb–Douglas (CD), RBF-MLP, and MLR to show the ability of these
models for prediction of the output energy of potato production. Selecting the best model can
help the farmers and other researchers to estimate the output energy and also total yield of potato
production for every year to manage the all inputs with high efficiency.
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Materials and methods

Case study selection and data processing

This study was conducted in Kerman province, the first largest province of Iran (180,726 km2), and
specifically in the city of Jiroft in the south of the province (28º 40′ N, 57° 44′ E). The Southeast of
Kerman province with a total production of 311892 ton from 9706 ha is considered as one of the
main fertile regions in potato production (Anonymous, 2015). Accordingly, this study focused on
potato production in Jiroft. Initial data were gathered by sending questionnaires to potato producers
in the region. The questionnaires were designed to obtain information about all types of agricultural
inputs, energy carriers, and equipment and machines used. Then, collected data were used in further
steps.

Input–output energy in potato production

Energy flow assessment in a production system needs to calculate the input–output energies. To deal
with this part, energy coefficients were taken into account to convert all agricultural inputs to their
energy equivalent. The energy conversion factors presented in Table 1 were utilized to estimate the
total energy consumption in potato production in the surveyed area. In other words, each input was
converted to its energy equivalent by multiplying the application rate of agricultural inputs used
within the system by its energy coefficient.

The cultivation of potato in this region depends heavily on the water extracted from agricultural
wells because the weather is warm and relatively humid. The average depth of these wells is about
120 m, so that a high amount of energy is needed for water extraction. Energy needed for irrigation
system was calculated as follows:

DE ¼ γgHQ
εpεq

(1)

where DE presents direct energy (J ha−1), g is acceleration due to gravity (m s−2), H is total dynamic
head (m), Q is volume of required water for one cultivating season (m3 ha−1), γ is density of water
(kg m−3), εp is electrical pump efficiency (reported to be 70–90% in the literature while it was
calculated as 44% in the region) and εq is total power conversion efficiency (18–20%) (Kitani 1999).

Table 1. Energy coefficients of different inputs used and outputs in potato production.

Unit
Energy equivalent

(MJ Unit−1) References

A. Inputs
1. Human labor
Woman h 1.57 Yaldiz et al. (1993)
Man h 1.96 Yaldiz et al. (1993)
2. Diesel fuel L 56.31 Khoshnevisan et al. (2013a)
3. Machinery 64.8 Bolandnazar, Keyhani, and Omid (2014)
4. Fertilizers
Nitrogen (N) kg 66.14 Bolandnazar, Keyhani, and Omid (2014)
Phosphate (P2O5) kg 12.44 Bolandnazar, Keyhani, and Omid (2014)
Potassium (K2O) kg 11.15 Bolandnazar, Keyhani, and Omid (2014)
Microelements kg 120
5. Farmyard manure kg 0.3 Mousavi-Avval, Rafiee, and Mohammadi (2011b)
6. Chemicals
Fungicide kg 216 Ozkan, Fert, and Karadeniz (2007)
Insecticide kg 101.2 Ozkan, Fert, and Karadeniz (2007)
Herbicide kg 238 Ozkan, Fert, and Karadeniz (2007)
7. Seeds kg 3.6 Ozkan et al. (2004)
8. Water for irrigation m3 1.02 Bolandnazar, Keyhani, and Omid (2014)
B. Output
Potato kg 3.6 Esengun et al. (2007)
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Cobb–Douglas modeling (CD)

In this study, CD modeling was used for assessment the effects of all inputs energy on different
potato cultivars. The final model of CD based on the all inputs can be assumed as follows (Beigi,
Torki Harchegani, and Ebrahimi 2016):

lnyi ¼ p0 þ p1lnx1 þ p2lnx2 þ p3lnx3 þ . . .þ p8lnx8 þ εi (2)

where p0 is constant and εi is error coefficient, yi is the output energy of farm ith, and also xij shows
all the inputs used for potato production and, p1, p2,…, p8 are the coefficients of regression model
for all the energy inputs.

In this study, return to scale indicator was used to show the effects of inputs changes on output
level. This index was calculated by adding the all regression coefficients used in Equation (2)
(Ghasemi Mobtaker et al. 2012). In the next level, marginal physical productivity (MPP) was used
for evaluate the sensitivity analysis of output based on inputs level. In this method, by increasing one
unit of an input, its effect on output was evaluated when the other inputs were fixed (Soltanali et al.
2016). For MPP evaluation, the following equation was used (Royan et al. 2012):

MPPXj ¼ GM Yð Þ
GM Xj

� �� aj (3)

Multi-layer perceptron neural networks (MLPNN) model

Multilayer perception (MLP) neural network with back propagation algorithm was used to predict daily
and monthly solar radiation in some researches (Asadi, Amiri, and Mottahedi 2014). MLP neural
network is a predicted method and composed of at least three layers. The first layer is the input layer
whose size is equivalent to the number of features intended for the prediction. There is a weight
equivalent to each input (Taki, Ajabshirchi, and Mahmoudi 2012a). The hidden layer is formed by some
neurons. The present research evaluated 3, 5, …, 13 neurons in hidden layer. The output layer was
supposed to include a neuron since the objective of the present study was to predicted output energy of
potato production. The transfer function of output layer was sigmoid type. Two functions, sigmoid and
hyperbolic tangent, were evaluated as transfer function for the hidden layer:

out ¼ 1

1þ e�
PFiwijþb (4)

out ¼ 2

1þe�
P2Fiwijþb �1 (5)

where Fi, b, and wij denote ith input, bias, and weight of jth neuron, respectively (Chen, Cowan, and
Grant 1991; Taki, Ajabshirchi, and Mahmoudi 2012b). The optimum weights and biases in MLP
model were derived by training functions. In this research, two functions were used, Bayesian
regularization back-propagation (Trainbr) and Levenberg–Marquardt back-propagation (Trainlm),
for the training and optimization of network weights.

Radial basis function neural networks (RBFNN)

In this research in addition to MLP neural network model, we used the radial basis function neural
network (RBFNN) due to its superiority over the MLP model. The advantages of RBF, compared to
MLP, include high-speed learning, the lack of the local minima problems and the simple and fixed
three-layer architecture (Haykin 2009; Rohani, Abbaspour-Fard, and Abdolahpour 2011). The
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Gaussian activation function is used as the activation functions in the hidden layer. The hidden layer
transforms the input vector using activation function. The output layer plays the role of the linear
combiner. The output of the RBF network is computed as follows:

Y ¼
XL2
j¼1

wjϕ x� ckk kð Þ (6)

where wj is the connection weight from the jth hidden neuron to the output neuron, ck is prototype of
center of the jth hidden neuron, :k k is the Euclidean norm and finally L2 is the number of neurons in the
hidden layer. The Gaussian function is as follows:

ϕðrÞ ¼ e�
r2

2σ2 (7)

where r is the distance of the input vector x from center c and σ is the parameter to control the
smoothness of the interpolating function. The RBF neural network trained uses the Levenberg–
Marquardt (LM) training algorithm because the results of other studies showed that the LM has fast
convergence rate and good performance in prediction (Cao, Xin, and Yuan 2016; Iliyas et al. 2013).

Multiple linear regression (MLR) model

In this research, MLR model as specified in Equation (7) for predicting the output energy of potato
production (Suykens and Vandewalle 1999):

Y ¼ Ψ0 þ
X

Ψ ixi þ
X

Ψ ijxixj þ
X

Ψ iix
2
i þ ε (8)

where ε is the error of the model ψ0 is constant coefficient of the MLR model, and ψi, ψii and ψij are
the linear, quadratic, and interaction coefficients of the MLR model, respectively. In this study,
stepwise method was applied for selecting the best form of the MLR model. The suitable predictor
variables were selected among the six different predictors. The sum of square error (SSE) was used as
selection criteria. The t-test and F-test were used to assess the significance of regression coefficients
in the selected MLR model.

Support vector machine (SVM) model

The SVM in this study convert quadratic optimization difficulty to a linear subject. The SVM model
considers such as dataset ðx1; y1Þ; ðx2; y2; :::; ðxn; ynÞf gwith the below nonlinear function (Jung, Kim,
and Heo 2015):

f ðxÞ ¼ hw;MðxÞi þ z (9)

where M(x) is the nonlinear function that carries out a regression, z and w are bias and weight
vector, respectively. Cao, Xin, and Yuan (2016) presented an optimization SVM forum as:

min
w;b;e

Jðw; eÞ ¼ 1
2 wk k2 þ 1

2 γ
PN
k¼1

e2k

s:t:yk ¼ w;ΦðxkÞh i þ bþ ek; k ¼ 1; 2;:::; k

8<
:

9=
; (10)

where (γ � 0) is a regularization parameter and ekis the error of regression for N training. Lagrange
function was used for solving the optimization problem (Suykens and Vandewalle 1999):

Lðw; b; e; αÞ ¼ 1
2

wk k2 þ 1
2
γ
XN
k¼1

e2k �
XN
k¼1

αk w;ΦðxkÞh i þ bþ ek � ykf g (11)

where αk is the Lagrange multiplier and support vector can make the Lagrange multiplier not equal
0. More details about SVM structure can be seen in Cao, Xin, and Yuan (2016; Arabloo et al. 2015).
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k-Fold cross validation

The results of the neural network models are dependent on the data set used in the training step.
Therefore, the results of the neural network are different in each repetition and random selection of
data (Taki et al. 2018a). In this study, k-fold cross-validation method was used for better estimation
of neural network model and evaluation of stability and generalizability. The steps to implement it
are such that the data sets are randomly placed next to each other and then divided into five equal
parts (k = 5). In the following, one part of the data is allocated to test and the k - 1 remainder to
training. In the end, the performance of the model is evaluated by averaging its errors obtained from
different runs.

Evaluation the performance of the models

To evaluate the predictive capability of the models and optimization, the comparison between actual
energy values (ya) and its predicted values (yp) was used. For this purpose, the statistical analysis of
mean ya and variance yp was used. The hypothesis of null and one was defined by (Taki, Ajabshirchi,
and Mahmoudi 2012b)

H0 : ya ¼ yp
H1 : ya � yp

�
and

H0 : σ2ya ¼ σ2yp
H1 : σ2ya� σ2yp

(
(12)

Paired t-test and F-test were used to evaluate the equality of mean and variance in a 5% significant
level. The non-reject of the null hypothesis implies the ability of the neural network to produce
similar predicted data to real data. In addition, three criteria of RMSE, MAPE, and R2 were also used
to evaluate the accuracy of the final model (Taki et al. 2012c; Zarifneshat et al. 2012):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yai � ypi
� �2
n

s
(13)

MAPE ¼ 1
n

Xn
i¼1

yai � ypi
yai

����
���� (14)

R2 ¼
Pn

i¼1 yai � yað Þ ypi � yp
� �

Pn
i¼1 yai � yað ÞPn

i¼1 ypi � yp
� �

" #2

(15)

Results and discussion

An overview of energy flow in potato cultivation

An analysis of energy inputs and outputs flow in potato cultivation in the area selected for this study
revealed a high level of energy consumption, especially for energy from non-renewable sources.
Table 2 summarizes the outcomes of the energy analysis for potato cultivation. The average of energy
inputs was calculated as 84309.43 MJ ha−1 but it ranged from 67442 to 100821 MJ ha−1. This
difference is significant and it demonstrates that the energy consumed in potato cultivation in this
region is not effective. The results also revealed that under different farm management systems,
different amounts of energy were consumed. The results depicted in Table 2 show that the energy
consumption from different sources varied from farm to farm. The results of the present study are
compatible with other studies conducted in different parts of Iran in which the authors found that
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most of the farmers in Iran were not aware of better farm management methods especially in regards
to the management of agricultural inputs. Consequently, a high degree of inefficiency can be seen in
Iranian farm management system (Khoshnevisan et al. 2013a; Mousavi-Avval, Rafiee, and
Mohammadi 2011b; Nabavi-Pelesaraei et al. 2014).

An examination of specific results of the energy inputs and outputs analysis (Figure 1)
provides further details about potato cultivation in the surveyed region. Irrigation water and
fertilizers are the most important energy inputs in potato cultivation. The energy required for
irrigation is a type of direct energy because it refers to the energy consumed for extraction water
from wells. Water, which is an increasingly sensitive issue, is generally extracted from local wells
using electric pumps. The use of electric pumps means that electrical consumption is high in
irrigation systems. Irrigation water accounted for 36% of the total input energy followed by
fertilizers (26%) and seed (22%).

In the present study, unlike the previous ones, conventional methods such as CD and MLR in two
stages of training and testing are evaluated. Soft computing methods such as RBF, MLP and SVM are
also used to compare their performance in energy prediction with conventional methods.

Table 2. Energy inputs and output for potato production.

Inputs (unit) Average of energy equivalent (MJ ha−1) Standard deviation (SD)

A. Inputs
1. Human labor (h)
Woman 504.10 181.97
Man 2094.18 374.08
2. Diesel fuel (L) 7798.94 2057.63
3. Machinery (h) 897.02 243.36
4. Fertilizers (kg)
Nitrogen (N) 13625.78 2902.71
Phosphate (P2O5) 1399.50 286.73
Potassium (K2O) 1361.89 272.89
Micro 1317.43 446.75
5. Farmyard manure 4015.71 764.50
6. Water for irrigation (m3) 31509.90 6125.84
7. Chemicals (kg)
Fungicide 515.31 139.23
Insecticide 226.98 78.74
Herbicide 461.55 285.25
8. Seeds (kg) 18581.14 1263.73
The total energy input (MJ) 84309.43 7763.23
B. Output
Potato (kg) 130217.14 18804.58

Woman
1%

Man
4%

Diesel fuel 
9% Machinery

1%

Nitrogen 
16%

Phosphate 
2%

Potassium 
2%Micro

1%

Farmyard 
manure

5%

Water  for 
irrigation

36%

Fungicide
1%

Insecticide
0%

Herbicide
0%

Seed
22%

Figure 1. Contribution of inputs to the total energy consumption.
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Cobb-Douglas (CD) model

The CD model is a well-known method for energy prediction. But in most cases, all of the available
data sets are used to estimate its coefficients. However, this may cause the over fitting problem. The
results of this paper also confirmed this fact. For calibrating the CD model coefficients, 80% of the
total data were chosen randomly. Because of random selection, there may be a little difference in the
calibration results of model coefficients. The values of mean standard deviations, RMSE, MAPE, and
R2 of model support this idea. Therefore, for better evaluation the k-fold cross-validation method,
which explained in the materials and methods, is applied. The average results of the RMSE, MAPE,
and R2 of the CD models are presented in Table 3.

It is necessary to repeat that the CDmodel has been used linearly inmost cases. However, the results
show that in addition to model linear form, the other forms can also be used. As shown in the results,
the quadratic form of the CD model has more capability for energy prediction. This subject has been
dissolved by many researchers. The main reason for choosing the quadratic model was its low error
average in both of calibration (training) and test levels compared to other models. As shown in Table 3,
the type of model calibration data set (training) has an effect on the values of the CDmodel coefficients
and consequently affects its performance of training and testing levels. Therefore, 50–90% of entire
randomized data sets were evaluated and surveyed for training and calibrating the CDmodel (Table 4).
As the results show, by decreasing the size of data set, the CD model performance improves at the
training level, while the performance of test level decreases. This is due to the fact that the model
coefficients fit better for less data. In the opposite side, because of not using the entire data in
coefficient estimations, the prediction performance weakens in the test level.

MLR model

The MLR model is another option for energy modeling. Compared to the CD model, the MLR
model has been less used in energy estimates. In Table 5, four different forms of the MLR model
such as linear, interactions, reduced quadratic, and quadratic are considered. The results indicated
that reduced quadratic model is the best model for the MLR. A comparison between the perfor-
mance of both CD and MLR models shows that the MLR model is much better than the CD model
at the training level, in the way that the MLR quadratic model has an error of almost zero at the
training level. It shows that the MLR model is more subjected to over fitting than CD model, because
the results of the test level were very frustrating compared to the training level. Red quadratic model
is the only model which has acceptable results at training and testing levels.

Table 3. The evaluation results of different forms of CD model.

Train Test

Model RMSE MAPE R2 RMSE MAPE R2

Linear 11.18 ± 0.76 7.04 ± 0.50 0.68 ± 0.03 13.13 ± 1.99 8.29 ± 1.33 0.59 ± 0.13
2FI 9.51 ± 0.44 6.04 ± 0.74 0.74 ± 0.02 11.89 ± 2.67 7.92 ± 1.40 0.64 ± 0.16
Red. quadratic 9.04 ± 0.55 5.53 ± 0.36 0.77 ± 0.03 12.04 ± 1.66 7.89 ± 1.02 0.64 ± 0.13
Quadratic 8.85 ± 0.45 5.42 ± 0.28 0.78 ± 0.03 11.65 ± 1.55 7.31 ± 1.00 0.72 ± 0.12

Table 4. Evaluation the CD quadratic model vs. the size of training data set.

Train Test

RMSE MAPE R2 RMSE MAPE R2

90 8.94 ± 0.80 5.53 ± 0.12 0.77 ± 0.03 10.51 ± 2.87 7.30 ± 1.97 0.73 ± 0.12
80 8.85 ± 0.45 5.42 ± 0.28 0.78 ± 0.03 11.65 ± 1.55 7.31 ± 1.00 0.72 ± 0.12
70 8.84 ± 0.75 5.32 ± 0.48 0.78 ± 0.02 12.25 ± 0.94 7.82 ± 0.52 0.69 ± 0.05
60 8.73 ± 1.30 5.12 ± 0.74 0.79 ± 0.05 12.56 ± 1.30 7.97 ± 0.95 0.66 ± 0.08
50 7.66 ± 1.84 4.64 ± 1.01 0.83 ± 0.07 15.82 ± 0.82 8.65 ± 1.88 0.52 ± 0.28
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Table 6 shows the evaluation results of training data sets on the performance of the MLR model
are presented at training and testing levels. The results are similar to ones of the CD model. It means
that by size reduction of the training or calibration data set, the performance of the training level has
an ascending trend while the performance of the test level has a descending trend. Thus, the MLR
model has a weak generalizability capability.

Soft computing models

Nowadays, most researchers interested in using soft computing techniques for estimating the energy
flow. However, in most studies, MLP has been used. In this paper, the RBF neural network and SVM
techniques are used as alternative soft computing methods. It has been tried to compare the
performance of these methods with conventional ones such as CD and MLR.

Optimizing the RBF parameters
The number of neurons in the hidden layer, the spread parameter (S), and the type of training
algorithm are the most important parameters that affect the performance of the RBF model.
Figure 2 shows the effect of these parameters on R2 index between real and predicted values in
training, testing, and total levels. Different values of S (0.1 to 10) were evaluated and the best
result for all possible status was 0.1. As can be seen, with increasing the number of neurons, the
performance of the RBF neural network improves during the training level. Although this fact is
totally different during the test level, particularly for the Trainlm training algorithm.
Comparison of the prediction performance of the RBF model with supporting of two training
algorithms indicates that Trainbr can have the best prediction performance for energy flow.
Because for the number of neurons greater than or equal to 5, the values of R2 were very close to
each other at training and testing levels, and also its value is pretty close to one. As a result, the
RBF model is used to predict potato energy flow with hidden sizes = 5, S = 0.1, and Trainbr
training algorithm for obtaining the best results.

Optimizing the MLP parameters
The parameters that most affected the prediction function of MLP neural network are consisted of
the number of neurons in hidden layer, the type of training algorithm, and the type of activating
function in the neurons of hidden layer. In designing neural network, only one hidden layer is used,
because MLP neural network with sufficient neuron in hidden layer can estimate every continuous

Table 5. The results of MLR model.

Train Test

Model RMSE MAPE R2 RMSE MAPE R2

Linear 9.03 ± 0.40 5.64 ± 0.29 0.77 ± 0.02 10.78 ± 1.36 6.92 ± 1.00 0.66 ± 0.12
2FI 1.15 ± 1.59 0.66 ± 0.89 0.99 ± 0.03 208.90 ± 120 121 ± 140 0.17 ± 0.15
Red. quadratic 7.76 ± 0.68 4.66 ± 0.44 0.83 ± 0.03 11.90 ± 1.98 1.36 ± 0.50 0.66 ± 0.13
Quadratic 0.00 ± 0.00 0.00 ± 0.00 0.99 ± 0.00 85.25 ± 56.22 52.60 ± 35.33 0.15 ± 0.16

Table 6. The evaluation results of MLR quadratic model vs. the size of training data set.

Train Test

Data RMSE MAPE R2 RMSE MAPE R2

90% 7.79 ± 0.42 4.63 ± 0.26 0.83 ± 0.02 11.32 ± 2.79 7.20 ± 1.90 0.72 ± 0.16
80% 7.76 ± 0.68 4.66 ± 0.44 0.83 ± 0.03 11.90 ± 1.98 7.36 ± 0.50 0.66 ± 0.13
70% 7.46 ± 0.88 4.48 ± 0.54 0.83 ± 0.04 12.80 ± 2.37 7.92 ± 1.48 0.61 ± 0.08
60% 6.99 ± 1.18 4.21 ± 0.64 0.86 ± 0.04 13.82 ± 3.37 8.61 ± 2.24 0.56 ± 0.12
50% 5.28 ± 1.49 3.22 ± 0.89 0.92 ± 0.04 21.14 ± 8.75 12.17 ± 4.95 0.38 ± 0.19
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function with any complexity degree. (Rohani, Abbaspour-Fard, and Abdolahpour 2011). Figure 3
illustrates the R2 value changes of MLP neural network in two levels of test and train for different
values of parameters.

As it is confirmed by the results, with increasing the number of neurons, R2 value has almost an
increasing trend at the test level. It means that the neural network can better discover the relation
between input and output variables with increasing the number of neurons. However, for having the
appropriate model without confronting to any over fitting problem, the test level function must be
considered as well. With considering all aspects, we used MLP neural network with nine neurons in
hidden layer, activating function of tangent sigmoid (Tansig) with training algorithm of Trainbr
(Bayesian regulation) for prediction of energy flow of potato. However, in previous studies, only the
training algorithm of Trainlm was used and there is not any functional comparison between Trainlm
and Trainbr training algorithms.

Optimizing the SVM parameters
In present study, SVM is also used as an alternative method for soft computing. The type of Kernel
function has much influence on prediction performance of SVM model. In this paper, four types of
Kernel function are evaluated: linear, second-order polynomials (Poly2), third-order polynomial
(Ploy3), and Gaussian (rbf). The results of applying these kernel functions at three levels of training,
test, and total are shown in Figure 4. The best results will be obtained only by considering the results
of training level of Poly3 Kernel function. The test level of linear and second-order polynomial
Kernel functions has almost similar R2 values, but according to total result, the -order polynomial
Kernel function is selected as the best function.
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Figure 2. R2 changes of RBF model with Trainlm (a) and Trainbr (b).
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Comparison of soft computing models performance

In the previous section, the optimized parameters of soft computing methods including RBF, MLP
and SVM were found. Unlike most of studies in literature review, for better and more accurate
model evolutions in estimating energy flow, the different sizes of training selection (TS) are used in
current paper. Hence, 50, 60, 70, 80, and 90% of all data are selected randomly. The results of RMSE,
MAPE, and R2 of the different data selection obtained from k-fold in two levels of training and test
are displayed in Table 7.
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The results show that RBF model at all different values of training data selection has a great
prediction performance, as the average value of R2 is more than 0.98. Even in smaller sizes, the
performance of RBF model is better than others. In SVM and MLP models, the test performance will
be improved by size reduction of training selection, while the test performance will be weakened.
Thus, in comparison with RBF, both MLP and SVM can be more subjected to over fitting problem.
Therefore, by comparing the results of three above methods and also CD and MLR, the RBF neural
network is chosen as the best model for fitting and estimating the energy flow of potato.

Conclusions

Thus, based on this study, the following conclusions can be drawn:

(1) Energy consumption in potato production calculated about 84309.43 MJ ha−1 and average of
total output energy was 130217.14 MJ ha−1.

(2) About 80% of total input energy in this cultivation was consumed in irrigation system
(36%), fertilizer (26%) and seeds (22%).

(3) Comparing the results of CD, MLR, RBF, MLP, and SVM models indicated that the RBF is
the best model for output energy prediction.

(4) The results of RMSE, MAPE, and R2 of the different randomized data set (50, 60, 70, 80, and
90%) obtained from k-fold in train and test phases showed that RBF model, at all different
values of training data set has a better prediction performance (R2 = 0.98).

(5) MLP and SVM in comparison with RBF can be more applied to solve the over fitting
problem.
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