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[. INTRODUCTION

Once In recent years, hybrid systems have seized highly
increased attention. A hybrid theorem can be used to
completely describe models of some systems, including
bouncing ball, ON/OFF switching systems, or systems with
conditional rules that cannot be defined by differential or
difference equations|1, 2].

Switched systems are a specific class of hybrid systems
with some subsystems and a switching law. The switching
law can determine the active subsystem at each moment [3].
The subsystems can be divided into two types: autonomous
systems and controlled (by input) systems. Autonomous
switched systems arising from nonlinear systems, large-scale
uncertain systems, and parameter-varying systems, have been
investigated by studying of internal switching features [4, 5].
There are several constructive propositions in the literature to
stabilize classes of linear switched systems without input
signals [5].
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This paper investigates the stabilization problem of an autonomous Linear Time Invariant (LT1) switched system with
interval uncertainty and unstable subsystems. It is proved that the system would be stable by using a common Lyapanov
Sfunction whose derivative is negative and bounded by a quadratic function within activation regions of each subsystem.
First, a sufficient condition for the siability of an LTI switched system with interval uncertainty, based on the convex
analysis and interval set theoretical approach, is presented and proved. Moreover, conservatism in the stabilitv robustness
bound is obtained. Then, a switching control law is designed to shift the LTI switched svstem among subsystems to ensure
the decrease of the Lvapanov function within the state space. Finally, in order to decrease the swilching frequency and to
avoid chattering, the switching law is modified. Two examples are included to demonstrate the effectiveness of the

Stability and stabilization is fundamental issue in control
systems. Consequently, One of the significant issues in the
stabilizing of switched systems is to acquire necessary and
sufficient conditions for the stabilization of the system under
an arbitrary switching law [5. 6] And  design of a stabilizing
switching law |7]. In this paper, the method used to study the
stability of switched systems utilizes a Lyapanov function
whose derivative is negative and restricted in the region in
which each subsystem is active (while can be positive outside
of the active region). In switched systems’ studies, this
stability is often known as “quadratic stability”[8].

Extensive results concerning differential inclusions and
stability problems of these systems can be found in[9-11].
The method presented by Wicks et al pointed out the
existence a stable convex combination of linear subsystems,
which denote the possibility of quadratic stabilization under a
proper switching law [12]. Some switching law strategies
have been rendered which restrain fast switching and
chattering, as demonstrated by Wicks et al [7, 12].

In practice, the precise mathematical modeling of these
systems seems to be difficult or even impossible. This is
because of some reasons like excessive complexity, lack of
enough information, the experimental errors, gradual changes
of system parameters, neglected dynamics and so on. As a



consequence, it is necessary to consider the uncertainties
inherent within the analysis and modeling of systems. These
uncertainties would be classified in different forms.

Z.Qiu et al demonstrated the conservatism in the stability
robustness bound for state space models with interval
uncertainty [13]. Y. Chen et al obtained the robust stability
check for fractional order LTI systems with interval
uncertainty [14] There are some results concerning stability
and stabilization with Polytopic uncertainty in [15, 16] and
norm-bounded uncertainty in [17]. Morcover, a switching law
based on invariant space theory and an average dwell time
(ADT ) approach from Q. Yu and B. Wu is given in[ 18, 19].

In this paper, a sufficient condition for stabilizing of the
integer order linear switched system with interval uncertainty,
based on a convex combination technique and Lyapanov
function. has been presented. We have introduced a
conservatism criteria guarantying the robust stability. Next, a
swilching law associated with stales is proposed that
stabilizes the switched system with unstable subsystems.
Finally, to prevent chattering, the stabilizing switching law
has been improved.

The remainder of the paper is organized into several
sections. Section 2 contains the problem description, and
section 3 explores the sufficient conditions for stabilizing LTI
switched systems. Then, a modified switching law is
proposed to prevent chattering in section 4. Finally, the
results are illustrated with two examples in section 5.

II. PROBLEM DESCRIPTION

Consider an LTI switched system described by a state
space equation as follows
%(t) = (Ag + Eg)x(t), (1)

Where x(t)eR" is the continuous state variable; %(t)is a
derivative of x(t) relative to time; ¢ denotes a switching
signal taking values as o = 1,2, ...,N, within afinite set of
matrices NA=:{A;: o=1, 2,. . . N } and with an E; =(ey;)
interval uncertainty matrix, such that the interval constraint
condition —BAKpij < emij < Ak, Lj=1,2,...,n, m =
1,2,..,N,where Ak,,;; are the known positive constants and
Ky = (BKy,;) is the matrix of the maximum interval
constraint of E,.

In interval model uncertainty, eigenvalues arenot fixed
points in a complex plane; instead, they are a cluster of
infinite points [14]. This paper presents sufficient conditions
for stabilization of LTI switched systems with unstable
subsystems and interval structured uncertainties. Then, a
stabilizer switching law is achieved based on the convex
analysis and interval set theoretical approach.
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H1. SUFFICIENT CONDITIONS FOR STABILIZATION
OF AN LTI SWITCHED SYSTEM

The primary target of this section is to construct a
continuous Lyapanov function for the switched system whose
derivative is negalive along cach state trajectory. These
regions cover the entire state space, and boundaries of each
region are determined by the switching law. In this section, a
sufficient condition is proposed to stabilize the case with two
subsystems, and next, the condition is generalized to the case
with N subsystems.

Theorem 1 [8]. The LTI switched system (1) without
uncertainty is stabilizable if there is a stable convex
combination of Ay, keN as follows

Ay = a4Ay + oAy + -+ agAy

= ZaiAi, (2)

a;e(0,1), X =1,i=1,2,..,N.

The switched system is stable provided that all eigenvalues
of matrix Ay are located on the left side of the jw-axis.

Theorem 2. The LTI switched system (1) with interval
parameter uncertainly and two subsystems is stabilizable if it
holds the following conditions:

a) There is a stable convex combination such as

Ap=aA;+(1—-A,, 0=Za=<1. (3)

b) For the robustness bound of subsystems with interval
structured parameters, using the interval set theoretical
approach, we can obtain the following equation:

= ) BhSmaxP)<1 . m=12, @

=1

where By = O.S(AiiTP + PAjj); the positive definite matrix

P exists as the solution of the Lyapanov equation (5); Ai;‘

is an n X n- dimensional matrix with | in the ith and jth

positions and 0 elsewhere.l is the identity matrix and
Smax( B) represents the largest singular value of matrix B.

ATP + PA, + 21 = 0. (5)

Proof.Using (3) we can rewrite (5)
PlaA; + (1 — )A,] + [aAT + (1 — a)AR]P + 21 = 0,
a[PA; + ATP + 21] + (1 — @) [PA, + ATP + 21] = 0,

xT{a|PA; + ATP + 21] + (1 — a)[PA, + ATP + (6)
21]}x = 0.

Or equivalently
xT{a[PA; + ATP + 21]}x + xT{(1 -
a)[PA, + ATP + 21]}x = 0. (7)



In (7), at least one of terms is negative or both of them are
equal to zero.

xT[PA, + ATP + 21]x < 0, (8)
Or
xT[PA, + ATP + 2I]x < 0. 9)

Q,and Q, are defined as
Q,:=PA, + AlP,
Q,:=PA, + ATP. (10)

Let v(t) =xTPx > 0 be the Lyapanov function for the
linear switched system (1), where P is given by (5)
v =%x"Px+ xTPx = x"(A, P+ Eo TP + PA, + PE, )x
< xT(—2014+Eg"P + PEg)x < 2xT(T]-1 €aijPyj — Dx. an
If (11) is negative, the system (1) will be stable, as

- (12)
Smax(z eniipii) <1
ij=1

Considering the triangular inequality of the largest singular
value norm, we have that
Smax(E?j:] eqijPy) <
E}}j:lleo‘ijlsmux(Pﬁ) <
et (Bk i Smax (P) = . U2

It is evident that, if the inequality (4) holds, then the
inequality (12) also holdsbased on the inequality (13).

Now regarding the above sufficient conditions,the
switching law can be designated
o = argmin {xTQ,x,xTQ,x }. (14)

Where argmin stands for the index which attains the
minimum index.

[V. MODIFIED SWITCHING LAW
Since the chattering through infinitely fast switching may
harm equipment in real world, to constrain the chattering
phenomenon, the switching signal must be well-defined. [8].
If (tj;1 —t;) =1 for each two successive switching times
tiys &t;, then a determinant switching signal could be
considered with dwell time 1. It is apparent that each
switching signal with positive dwell time is well-defined. By
using two matrices Q, and Q, determined in (10) the
switching signal o(t) is defined as
a(te) = argmin{ x,"Q;Xo, %o Q2Xo}- (15)

The first switching time instant is given by
t, = It >t xT () Qs %0
> ~Ta (t)XTOX(D)}. (16)
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where 1;€(0,2),i=1,2. 1If the set is empty, then let
t; = oo; otherwise define the switching index as

a(ty) = argmin{xT(tl)le(h), XT(t1)sz(t1)}- (7

Finally, we define the switching time/index sequences
recursively by
tirs = inf{t > 1 X" (0)QoX(0) > —TguyxTx},
o (tis1)
= argmin{x"(tic; 1 )Q1x(ties 1), xT (tey 1) Qax(t41)), (18)
k=1.2,..

Theorem 3. Under the above switching law, available
stable convex combination ( condition “a” in theorem (2)
and following conditions, system (1) is well-posed and
quadratic stable.

n
o= () BySp®)<1 . m=12. ()
B F

Proof. The theorem for switched systems without
uncertainty was proposed from Wicks et al in [7, 12]. This
theorem has been proven with certain variations, in
accordance with the systems’ uncertainties within this paper.
We first proved the quadratic stability of the switched system;
now, let us consider the Lyapanov function candidate
v(t) = x"Px > 0. Its derivative along the system trajectory is

v =xTPx+x"Px = xT(A;"P + E5 P + PA, + PE, )x
< XT(—FGI <+ EUTP + PEU)X < ZXT (2:]:1 eoiiPi]- =

’7") X. (20)
If (20) is negative, the system will be stable, as
n

rﬂ
Smax() €aiPi) < (). i)
ij=1
Or equivalently

n
2
(ISmax( Y. eaiPi) < 1. @)
¥ ij=1

Similar to (13), we have that
()Smax (=1 €oifPy) <
) Zi-alews [Smax(Py) <
(2) 251 (K iiSmax () = Jo- @3

Clearly, if ], <1, m=1,2. Then in terms of the
inequality (23), the inequality (21) also holds.

2 n
I = G . BhSxB)<1

ij=1

m= 1,2. (24}

To prove the well-posedness switching signal, suppose that
ty and Ly, are two consecutive switching time instants. Let



i = o(ty+) and under switching law (18) we have

X" () Qix(ty)
= min{x"(t,)Q;x(t), x" (t,)Qx(t)}, (25)
And
X’l‘(tkH)Qix(tkn) = _rixT(tk-H) X(ty41). (26)

As aQ, + (1 — a)Q, = =21, it follows from (25) that

xT(t)Qix(t) < —2 x7 (1) x(ty). (27)

Let 9 be any real number greater than 1. First consider the

case
Ix(ON < Slx(te DI, Veelty, ty ). (28)

In this case, define a function
g() = xT(OQ; + 2Dx(t),  telty, tyy]. (29)

It follows from (26) and (27) that
g(t) = xT(t)(Q; + 2Dx(t) < 0,
8tks1) = x (1) (Q; + 2Dx(tyey )

22~ ri)XT(tkn)x(tkH) = 0. (30)
And
dg
a(t) = x"(O{(A; + E)T(Q; + 21)
+ (Qi + 2D (A; + E)}x(V). 31

Denote Vi = ”(A| + Ei)T(Qi + 2]) + (Q. + 2])(A] + EI)EI
Through the inequality shown in (28), we have

dg (32)
|a“)| < 9V (b DX(tyr) ¥ LE [t by .

By plotting a line between two points g(t,) <0 and
(tyy1) =0 | the line slope will be (g(tys) — g(te))/
(tyyq — ty) . Itis apparent that the g(t)) could not reach the
g(tyyq) with the slope g(ty,,)/(tkys —t) . Therefore
dg(t)/dt must be more than the g(ty,q)/(txs; — t) in
some t e[ ty, tiy1]. Since (32) is held for all te[ t,, ty,,] we
have

B(tka1)/ (ticer — tid = (2 = 1)XT (e )X (i1 )/ (ticrn — ty)
< |dg(t")/dt|
< BzvixT(tkn)x(tkH) te] ty, tiya |-
vty — 1) 2 2 —1y),
(tesy — ) = nli_n(Z —1;)/(9%v). (33)

As E; is variable, v;will be variable too. Now suppose
that (28) does not hold, meaning that there is a t'e| ty, t,,,)

satisfying
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() > Olx (i) - (34)
From system equation (1), we have
x(t") = exp{(A; + ED(t" — i)} X(tyyq). (35)

Using (34) and the lact that
llexp{(A; + EQ(t" — ti, DI (36)
< exp{ll(A; + EDII(tyy, — t)}

It is obtained that
(tiyr — 6) = (tyy — 1) (37)
> miin{lnB/II(Ai + EDII3-

Based on the above explanation, we have
(ty41 — t) = sup min n}sin {(2 —14)

o>1 ! i
/(ﬂzw).ﬁ]- (38)
1A, + EDII

Since the switching signal has a positive dwell time, it
could be concluded that, it will be well-defined and be
equivalent 1o well-posed in linear switched systems|8]. So
under the above switching law, the chattering phenomenon
does not ocecur. If 1; is close to 2, the dwell time will
decrease, but it can raise the resistance of the system against
uncertainty.Conversely, if r; is small (close to zero), the
results will be reversed. When there are more than two
subsystems, theorem 3 can be generalized to the case of N
subsystems.

Theorem 4. System (1) under switching law (18) is
stabilizable and well-posed, if it holds two following
conditions:

a) There 1s a stable convex combination as

AO = Q-EAQ + aZAZ Frim=y (XnAN = EaiAi,
we(0,1), Yoy =1,i=1,2,..,N. (39)

b) All subsystems satisfy the equation below

—izn:Aks P)) <1 1iZisaN
]m - (]_m) ( mij m:lx( ij) mE{ L FRLT } (40)

=1

Proof. The proof of the theorem with minute modifications
in the theorem 3 is straightforward.

V. SIMULATION RESULTS

In this section, the results are illustrated using two
examples.

Example 1. Consider the system given by (1). with
following subsystems and uncertainty matrices



M=l 2=l ool
n=[y Sl =[oie o2 @

Where eigenvalues of subsystems are

AA) = AMAy) = {21} (42)
Response with a1=[-2 0,0 1};a2=[1 0,0 -2]

AR

FIG. 1. The state trajectory and  switching function between
subsystems, response of example |

It is clear that both of the subsystems are unstable. With
positive coefficients of the convex combination o, = oy =
0.5, it is apparent that A, is stable.

Ay = 4A, +apA, = [“3‘5 _“5]. “3)

With P=1,,r;, =r,=0.8 and computing of ], =
0.9875, and ], = 0.9975 the swilched system under the
proposed switching law is stabilizable. The state trajectory
and switching function between subsystems have been shown
in FIG. 1.

Example 2. Consider the system given by (1) with
following subsystems and uncertainty matrix

0 2 0 0 0 016
A1=[4 -12 2 |.,2k,=]004 o0 o.z].

6 —16 -6 02 02 0

0o 2 0 004 0 0.18
A,=|-12 0 2|.2k,=| 0 o0 o16|
10 -4 —6 02 02 0

0 2 0 0 0.15 0
A; =10 0 -10]|,2K;=]01 0 0.15]. (44)

2 —4 -—18 0.04 0 015
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FIG. 2. The state trajectory and  switching function between
subsystems, response of example 2

Where eigenvalues of subsystems are
A(Ay) = {0.6642,-9.3321 + 4.6162i,—9.3321

— 4.6162i),

A(A;) = {~5.8798,-0.0601 + 5.5937i,—0.0601
— 5.5937i}

A(A;) = {—20.0901,1.0451 + 0.9481i,1.0451  (45)
— 0.9481i)

According to the eigenvalues of the subsystems, all of the
subsystems are unstable. With positive coefficients of the
convex combination o; = 0.4434,a, = 0.1182 ,a; =
0.4384. Obviously, A, is stable.

Ay = agAy + oA, + azA;

0 2 0
=10.3552 —5.3208 —3.2608 |. (46)
2.3552 —9.3208 -11.2608

5.1789 33848 —0.9351

With P = [ 3.3848  3.0596 —0.9130] P =rp =
—0.9351 -0.9130 0.3532

r, = 1.8 andcomputing of ], =0.9713, ], = 09871

andS; = 0.9535 the switched system under the proposed
switching law is stabilizable. The state trajectory and
switching function between subsystems are shown in FIG. 2.

V1. CONCLUSION

In the present paper, we investigated the robust stability
and stabilization of integer order linear switched systems with
interval uncertainty. Firstly, we presented sufficient
conditions for stability of such uncertain switched systems
based on convex analysis and an interval set theoretical
approach. Secondly, we designed a state-feedback switching
law to ensure the decrease of the common Lyapanov function
within the state space. Next, to decrease the swilching
frequency and chattering, the switching law wasmodified.
Finally, simulation results demonstrated the main points of
the proposed theoretical results.
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