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In nondestructive evaluation (NDE) of heat-treated steels, different variables of the heat treating process
have complex effects on outputs of NDE methods, and hence, the effect of one desired variable on NDE
outputs should be evaluated to help interpreting the changes. In the present paper, the potential of the
magnetic hysteresis method was evaluated for simultaneous detection of the austenitizing and tempering
temperatures of AISI D2 samples parts subjected to different heat treatment conditions. To produce the
microstructural changes, five groups of the samples were austenitized at 1025-1130 °C, quenched in oil and
finally each group was tempered in the range 200-650 °C. SEM and x-ray diffractometry techniques were
used to characterize different produced microstructures. For accurate and simultaneous prediction of
tempering and austenitizing temperatures, an artificial neural network (ANN) was implemented for
magnetic hysteresis outputs including magnetic saturation, coercivity and maximum differential perme-
ability. The study revealed that the magnetic NDE system coupled to ANN has the ability to be adopted as
an effective expert NDE tool to predict heat treatment effects on D2 tool steels.

Keywords AISI D2 steel, artificial neural network, austenitizing
temperature, nondestructive testing, tempering tem-
perature

1. Introduction

AISI D2 cold work tool steel is a high-carbon high-
chromium tool steel alloyed with molybdenum and vanadium
which is characterized by its superior mechanical and tribo-
logical properties such as high stability in hardening, high
compressive strength, good through-hardening properties, good
resistance to tempering back and high wear resistance. There
are many industrial applications of D2 steel such as manufac-
turing of piercing and blanking dies, shear blades, wood milling
cutters, as well as tools for punching, clipping, fine-blanking
and spinning (Ref 1). Its desired properties are normally gained
by obtaining a controlled microstructure through proper design
of the heat treatment process.

Gaining proper mechanical properties needs performing a
set of recommended heat treating steps including annealing (at
800 °C), stress relieving (at 650-700 °C), hardening (austen-
itizing at 1000-1080 °C and quenching in air or oil) and

tempering (200-550 °C) (Ref 2). The most important factors of
the heat treating process are austenitizing and tempering
temperatures which significantly affect the final mechanical
properties. Increasing austenitizing temperature normally alters
retained austenite percentage in the resultant microstructure due
to more dissolving of alloying elements in austenitic matrix
(Ref 3). In addition, five stages take place during tempering of
these steels depending on the tempering temperature: ɛ carbides
precipitates (Ref 4) and cementite forms (Ref 5) at lower
tempering temperatures (200 to 300 °C) while decomposition
of produced retained austenite (Ref 6) and secondary hardening
phenomena (Ref 7) occur in higher tempering temperatures
(400 to 500 °C), and at very high tempering temperatures (600
to 650 °C) spheroidized carbides (Ref 8) can be developed in
the microstructure. Therefore, determination of desirable tem-
peratures for austenitizing and tempering treatments as an
accurate design for the process has a great influence on the final
microstructure and mechanical properties.

Over the last decade, various electromagnetic NDE methods
with different potentials have been introduced to characterize
the material’s features. For instance, magnetic Barkhausen
noise (MBN) method for measuring residual stress/applied
stress (Ref 9-11) and determining microstructural characteris-
tics (Ref 12, 13), pulsed magnetic reluctance/pulsed magnetic
flux leakage (PMFL/PMR) sensors for characterizing surface
and subsurface defects (Ref 14) and hysteresis loop technique
for assessing the microstructural variations in the bulk (Ref 15)
are conventional methodologies used for nondestructive char-
acterization of ferromagnetic materials. Besides, pulsed/con-
ventional eddy current (PEC/EC) methods have been utilized to
detect thickness (Ref 16) subsurface cracks (Ref 17) and
microstructural changes (Ref 18, 19) at a certain depth below
the surface of conductive materials.
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In magnetic nondestructive characterization of the heat-
treated steels, microstructural changes are evaluated by apply-
ing one effective parameter. This is because different param-
eters have various effects on output of NDE methods, which
makes establishing a relation between heat treating parameters
and the outputs difficult. For example, surface carbon content in
carburized steels subjected to different carbon potentials of the
furnace but in a same carburizing process (for 8 h in 900 °C)
was characterized by the EC method (Ref 20). Microstructural
changes resulted from tempering treatment at different temper-
atures, for SAE 5140 and AISI D2 steels at constant
austenitizing temperatures, have been assessed by MBN
technology (Ref 21, 22). EC method has been utilized to
assess development of tempered martensite embrittlement in
hardened 4340 steels (which have been austenitized at a
constant temperature of 1050 °C) after tempering in the range
of 240-550 °C (Ref 23). The microstructural features of M250
maraging steel have also been studied during various thermal
aging times (3-10 h) at a constant temperature of 482 °C using
MBN and EC methods (Ref 24, 25). Determination of
martensite percentage in dual-phase (DP) steel parts subjected
to different intercritical annealing temperatures at a fixed time
and chemical composition has been assessed by EC method
(Ref 26). Ferrite grain size in DP steels due to different primary
austenitizing processes with a constant martensite fraction has
been determined using EC and MBN technologies (Ref 27),
and the microstructural changes during employing different
tempering temperatures for these kinds of steels intercritically
annealed at a fixed temperature (832 °C) have been charac-
terized by MBN method (Ref 28).

In the present paper, applying wide ranges of austenitizing
(1000-1130 °C) and tempering (200-650 °C) temperatures, the
application of magnetic hysteresis method for simultaneous
detection of the austenitizing and tempering temperatures of
AISI D2 parts with unknown heat treatment conditions has
been evaluated.

Among different available computational methods to deal
with such complex and nonlinear calculations, artificial neural
networks (ANNs) have a proven record for highly accurate
prediction of various material properties (Ref 29-32). As a
powerful statistical tool, ANNs act such as the human nervous
systems by implementing a logical model based on parallel
interconnections of simple processing units (neurons) con-
nected in a computing network to solve some kinds of
elaborated modeling challenges like function estimation, clas-
sification and recognition of patterns (Ref 33, 34).

Recently, ANNs have also received increasing attention in
some nondestructive applications. Implementing ANNs to
predict failure strength of glass/epoxy composite laminates
(Ref 34) and identification of the bond between concrete layers
from acoustic emission parameters (Ref 35) are some of the
new applications of artificial intelligence in the field of
nondestructive evaluations.

ANNs were also used to determine the percentage of fibers
embedded in a matrix of composite material using a vibration-
based nondestructive test (Ref 36), automatic density prediction
assuming lack of data on material composition by gamma-ray
attenuation (Ref 37), efficient flaws detection in steel-welded
joints combinedwith ultrasound testing (Ref 38), aswell as active
thermography for nonmetallic coating thickness prediction (Ref
39) and evaluation of weld joints to observe micro-gap by
implementing magneto-optical imaging (Ref 40). Besides, in our
recent work (Ref 41), we introduce an expert magnetic NDE

system using fuzzy logic approach for online characterization of
DP steel microstructures with different martensite phase per-
centages. The results indicated that, even with the lack of data on
applied frequency, simultaneously implementing multiple out-
puts enabled the NDE system to provide the accurate results only
utilizing the specific Barkhausen noise outputs (position, width
and height of the peaks).

The aim of this paper was to study the reliability of
implementing the artificial intelligence approach in the simul-
taneous prediction of austenitizing and tempering temperatures
of D2 tool steels. The experimental data derived from magnetic
hysteresis loop outputs have been used for training and
verifying the proposed ANN algorithm. Then, the efficiency
of this new approach is examined in order to measure the ability
of predicting more accurate results without prior knowledge
about heat treating conditions.

2. Materials and Methods

D2 steel samples containing 1.5% C, 0.27% Mn, 0.2% Ni,
11.6% Cr, 0.32% Si, 0.63% Mo and 0.91% V (in weight
percent) with dimensions of 100 mm921 mm94 mm were
prepared for this work. Austenitizing treatment was done at five
different temperatures for 30 min. Oil quenching and subse-
quent tempering was carried at six various temperatures for 2 h
as indicated in Fig. 1. After polishing and etching of the heat-
treated samples, the microstructures of the specimens were
observed using SEM VP 1450. Besides, quantitative measure-
ments of the retained austenite fraction were performed using x-
ray diffractometry with monochromated Cu Ka radiation.

Figure 2 presents the block scheme of the magnetic
hysteresis measurement setup. To measure magnetic saturation
(Bs), coercivity (Hc) and magnetic differential permeability
(μdiff), a U-shaped magnetizing coil made of Fe-Si-laminated
core was used to apply a triangular waveform having a
frequency of 5 Hz. It obtains a time-varying applied voltage,
V1(t), in the driving coil which converts to the excitation field
(H). To plot B–H curves (hysteresis loops), the induced
voltages recorded by a surrounding pick up coil of 500 turns,
V2(t), were converted to density of magnetic flux (B) using
Faraday’s law of induction (Ref 42):

V2ðtÞ ¼ �NS
dB

dt
ðEq 1Þ

where S and N are, respectively, the cross section of the sam-
ple and the number of pickup coil’s turns. Plotting B–H
curve, differential permeability curve has been obtained using
Eq 2:

ldiff ¼
1

l0

dB

dH
ðEq 2Þ

where l0 is 4π910−7 Henry/m. Plotting the μdiff changes ver-
sus H, one can consider the changes in maximum μdiff as one
of the measured magnetic outputs. The information extracted
from the B–H loops was then acquired using a digital oscillo-
scope and stored in a computer for further data processing.
Finally, a MATLAB script was used for processing data.

The B–H information was put into the ANN structure in
terms of Bs, Hc and maximum μdiff, bearing in mind the effect
of different austenitizing and tempering temperatures as the
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system outputs. Figure 3 shows the used framework of the
ANN consisting of four different layers. Having some nodes,
every layer generates outputs as the inputs for the next layer. A
multiple layer network with feed-forward back-propagation

(FFBPN) algorithm was used in the present paper as the most
popular training algorithm in supervised networks. Feed-
forward neural network usually consists of some hidden layers
and their nodes to allow them dealing with nonlinear and
complex tasks. The most significant affecting parameter in the
performance of the used network is to find suitable numbers of
the hidden layers and their nodes. There is not any specific
trend or rule for the selection of suitable numbers of them, but
these selections significantly depend upon the analyzer’s
experience and the problem’s nature (Ref 43). In FFBPN
algorithm, the initial weights are randomly chosen; then, inputs
pass through the neural network and eventually outputs are
compared with desired values considering errors (Ref 34, 43,
44).

Fig. 1 Heat treatment procedures

Fig. 2 Schematic illustrations for B–H measurement system

Fig. 3 The proposed ANN structure used for nondestructive model-
ing
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3. Results and Discussion

Figure 4(a), (b), and (c) corresponds to micrographs of the
as-quenched state obtained by austenitizing at 1025, 1080 and
1130 °C, respectively. Martensite (M), undissolved carbides (C)
and retained austenite (A) are phases that observe in the
microstructures. As indicated in Fig. 4, increase in austenitizing
temperature makes the microstructure coarser and the marten-
site plates surrounded by the austenite phase are more apparent.
Besides, a lower fraction of undissolved carbides is observed in
the matrix of the sample austenitized at higher temperatures.
The main change is attributed to the retained austenite fraction
that has increased with increasing austenitizing temperature.
Qualitatively, a higher fraction of bright and smooth surfaces,
which represents the retained austenite phase, is seen in Fig. 4
(c) compared to Fig. 4(a). The main reason for retained
austenite enhancement is due to the higher solubility of alloy
carbides (chrome, molybdenum and vanadium carbides) at
higher temperatures. Table 1 shows the amounts of alloying
elements dissolved in austenite phase at various temperatures
calculated by Thermo-Calc software TCFE0 steels/Fe alloys

database version. As the table presented, dissolution of carbon
and alloy elements into the austenitic lattice (at high temeper-
ature) increases with austenitizing temperature. Increase in
austenitizing temperature from 1025 to 1130 °C increases the
weight percentage of carbon, chrome, molybdenum and
vanadium dissolved in austenite from 0.530 to 0.815, 6.250
to 8.050, 0.435 to 0.535, and 0.160 to 0.320, respectively.
These significant changes in dissolution lead to a noticeable
reduction in martensite start temperature [from 220 °C to 90 °C
with the austenitizing temperature of 1025 to 1130 °C,
respectively (Ref 45)] and, consequently, increase the amount
of retained austenite. Thus, the amounts of dissolved carbides
as well as subsequent retained austenite are strongly dependent
on the austenetizing temperature (Ref 22).

Figure 4(d), (e), and (f) shows representative micrographs
for the samples tempered at 200, 580, and 650 °C (with
austenitizing temperature of 1080 °C). Figure 4(d) illustrates
the tempered microstructure at 200 °C, which has transition
carbides formed from the martensite plates. In the sample
tempered at 580 °C (Fig. 4e), carbides are precipitated all over
the matrix, implying the disintegration of the retained
austenite. In this case, the microstructure has revealed the

Fig. 4 SEM images of the austenitized steels at (a) 1025 °C, (b) 1080 °C and (c) 1130 °C which were quenched in oil and the steels austeni-
tized at 1080 °C/quenched and tempered at (d) 200 °C, (e) 580 °C, and (f) 650 °C. Etched with Villela

Table 1 Quantitative values of alloying elements dissolved in austenite phase at various temperatures obtained using
Thermo-Calc software

Austenitizing temperature, °C 1000 1025 1055 1080 1105 1130

Amount of alloying elements dissolved in austenite phase, wt.%
C 0.500 0.530 0.610 0.670 0.740 0.815
Cr 6.100 6.250 6.750 7.200 7.650 8.050
Mo 0.410 0.435 0.470 0.495 0.515 0.535
V 0.115 0.160 0.210 0.245 0.290 0.320
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carbide particles distributed in the ferrite matrix. Figure 4(f)
indicates that with an increase in the tempering temperature
up to 650 °C, the precipitated carbides are changed to
spheroidized form. By comparing the integrated intensity (area
under the peak above the background) of x-ray diffraction
peaks of the austenite phase with martensite one, the
percentage of retained austenite is assessed quantitatively.
This is due to the fact that the total integrated intensity of all
diffraction peaks for austenite or martensite phase is propor-
tional to the volume fraction (Ref 46). The details of
calculations can be found elsewhere (Ref 8, 22). Calculated
results of the retained austenite for quenched samples

presented in Table 2 indicate the significant variations of the
retained austenite percentage from 20.55 to 42.0% with the
rise in the austenitizing temperature from 1025 to 1130 °C,
respectively.

The retained austenite percentages in the samples austeni-
tized at 1080 °C and tempered in the range 200-650 °C are also
presented in Table 2. The amount of the retained austenite is
constant at the initial temperatures (up to 300 °C), decreases
slightly at 400 °C, followed by a significant decrease at 500 °C,
and finally, disappears at samples tempered at 580 °C and 650 °
C. This means that the retained austenite decomposition during
the tempering starts at about 400 °C and ends at 580 °C.

Table 2 Quantitative XRD measurements of retained austenite percentage for the samples with different austenitizing
and tempering treatments

Quenched samples

Austenitizing temperature 1025 1055 1080 1105 1130
Retained austenite % 20.55 24.18 33.00 39.82 42.00

Austenitized at
1080 °C/quenched/tempered
samples

Tempering temperature 200 300 400 500 580 650
Retained austenite % 32.70 32.20 28.24 16.35 4.35 3.50

Table 3 Conditions of heat treatments and the corresponding nondestructive test results used for constructing ANN mod-
el

Test run Austenitizing temperature, °C Tempering temperature, °C Bs Hc Maximum μdiff

1 1025 25 0.525 1637 1215
2 1025 200 0.540 1612 1236
3 1025 300 0.545 1608 1240
4 1025 400 0.585 1579 1282
5 1025 500 0.615 1568 1305
6 1025 580 0.930 1445 2295
7 1025 650 1.450 1268 3080
8 1055 25 0.390 1784 1049
9 1055 200 0.415 1773 1054
10 1055 300 0.420 1770 1065
11 1055 400 0.480 1726 1170
12 1055 500 0.495 1718 1167
13 1055 580 0.831 1507 2290
14 1055 650 1.414 1277 3050
15 1080 25 0.338 1841 936
16 1080 200 0.375 1820 953
17 1080 300 0.385 1818 976
18 1080 400 0.460 1764 1110
19 1080 500 0.480 1752 1101
20 1080 580 0.772 1560 2095
21 1080 650 1.378 1315 3039
22 1105 25 0.285 1914 694
23 1105 200 0.320 1870 810
24 1105 300 0.330 1862 820
25 1105 400 0.390 1830 893
26 1105 500 0.420 1833 926
27 1105 580 0.556 1740 1580
28 1105 650 1.306 1348 2950
29 1130 25 0.194 2057 567
30 1130 200 0.240 2012 594
31 1130 300 0.245 2007 610
32 1130 400 0.310 1972 720
33 1130 500 0.320 1955 758
34 1130 580 0.430 1900 1350
35 1130 650 1.260 1380 2850
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Applying the hysteresis loop method, magnetic saturation
(Bs), maximum differential permeability (µdiff) and coercivity
(Hc) are measured for samples tabulated in Table 3 and the
results are presented in Fig. 5. Figure 5(a) and (b) show that Bs

and maximum µdiff decrease with the rise in the austenitizing
temperature for as-quenched samples. This can be due to the
increasing of paramagnetic retained austenite (from 20.55 to
42.00%) as a result of increasing in austenitizing temperature.
On the other hand, as Fig. 5(c) shows, Hc exhibits an opposite
increasing trend with austenitizing temperature. This is
attributed to the presence of higher retained austenite fraction
at elevated austenitizing temperatures which provide more
pinning sites against the domain wall motion in the magnetizing
process. The reduction in magnetic saturation and increase in
coercivity as a result of the retained austenite formation is
consistent with the results reported for the formation of reverted
austenite phase during aging of maraging 350 steel (Ref 47).

In the case of tempering treatment, for various austenitizing
temperatures, the variation trends of Bs, maximum µdiff and
coercivity with tempering temperatures are similar. The Bs and
maximum μdiff values increase while Hc values decrease
slightly with tempering at 200 °C and 300 °C as a result of
reduction in tetragonality of martensite and formation of
transition carbides (ε-carbides) (Ref 8). Afterward, there is an
upward tendency for Bs and maximum μdiff and a small
downward trend for Hc at 400 °C, which is due to further
reduction in dislocation density as well as decomposition of
retained austenite initiated at 300-400 °C (Fig. 5).

In the following, the nearly constant values are observed for
all the outputs in the range 400-500 °C. This is related to
manifestation of two completely different effects [decomposi-
tion of retained austenite (Table 2) versus precipitation of
secondary carbides (Ref 7, 8)] on the domain walls motion in
the magnetization process. Finally, a continuous sharp increase
for Bs and maximum μdiff and a decrease for Hc can be seen
with increasing temperature (Fig. 5). As the disintegration of
retained austenite completes, the clear changes in the output
values are due to the formation of ferrite from austenite
decomposition which has a fast and high-grade reflex under the
excited field in comparison with nonmagnetic retained austenite
and the hard magnetically martensite phases. Since the
decomposition of retained austenite completes at around
580 °C, spheroidization of carbides (as shown in Fig. 4f) has
a dominant effect on the magnetic parameters (Ref 8). Indeed,
the change in carbide morphology, from coarse lamellar to
disperse spherical, increases mean free path of the domain walls
displacement and facilitates the magnetization process (Ref 48).

For samples austenitized at other temperatures (1025, 1050,
1105 and 1130 °C), variations of Bs, maximum μdiff and Hc

versus tempering temperature, demonstrate a similar pattern.
The higher values of retained austenite fraction at higher
austenitizing temperatures are an only reason to explain the
difference between the B–H outputs in Fig. 5.

Considering the relationships between magnetic parameters
and tempering temperatures for different austenitizing temper-
atures (Fig. 5), traditionally, the austenitizing temperature

Fig. 5 Variations of (a) Bs, (b) maximum µdiff, and (c) Hc, for the austenitized samples at 1025-1130 °C and tempered at 200-650 °C
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should be considered constant to determine tempering temper-
ature. In other words, if the austenitizing temperature is not
given, nondestructive determination of tempering temperature
could not be possible. To overcome this limitation here, the
ANN was applied on all the magnetic parameters to detect the
austenitizing and tempering temperatures of AISI D2 parts with
unknown heat treatment conditions.

Modeling the biological neural system of human beings,
ANN is capable of implementing the ability to learn as the most
important feature of the brain. For this purpose, the database
presented in Table 3 is divided into three sets. Training,
validation and testing sets are, respectively, used for adjusting
the errors and weights in a network, editing ANN structure and
evaluating the network’s performance while facing new data
(Ref 49, 50). Numbers of 30 and 28 test results are fed into the
network for training and validation processes to predict the
austenitizing and tempering temperatures, respectively.

Prior to calculation, all input data are normalized to improve
the sensitivity and accuracy of the network but at the outputs of
the calculations are denormalized to achieve actual output and
error values (Ref 43, 51). In the present study, X(N) can be

calculated as the normalized input value for introducing into the
ANN structure using the formula X(N)=[X(Actl)−X(M)]/X(SD)
(where X(Actl) is the actual value and, X(M) and X(SD) are,
respectively, the mean and standard deviation of all actual
parameters). Using the above equation, X(N) can be calculated
as the normalized input value for introducing into the ANN
structure.

Using learning database to train the networks, some ANN
structures were evaluated while their number of hidden layers
and constituent neurons were changed. According to prelim-
inary finding the mean square error (MSE) with the lowest
value (Fig. 6), network structure consisting of two hidden
layers (four nodes for layer one and seven nodes for layer two)
is implemented as previously shown in Fig. 3.

Unwanted problems such as overfitting, overtraining and
memorization take place as the results of potent pattern-
recognition capabilities of ANN during calibration of neural
networks. This difficulty happens when the network has large
architecture as it starts to memorize data instead of trend
recognition. On the other hand, poor accuracy of the neural
network predictions may occur as a result of smaller architec-
ture and database (Ref 52). Also, there is a risk of poor training
performance in the case of ANNs implementing too few
neurons in each of the layers (Ref 50). Offsetting this unwanted
problem, two measures were used: cross-validation and choos-
ing a reasonable enough number of layers and neurons.

ANN training parameters used ultimately for this study are
presented in Table 4. To attain the least error surface, a
supervised feed-forward learning framework based on Leven-
berg–Marquardt back-propagation algorithm is used, and then,
across plots of the testing predictions is utilized to assess
network performance by the highest possible prediction
accuracy. In the used back-propagation algorithm, the nonde-
structive data are fed into the input layer, then pass through the
hidden layers, and finally they reach the output layer (Fig. 3). If
there is difference between the expected and actual values in the
output layer, the error passes backwards to the input layer
through the hidden layers during the learning and training.
Consequently, the error signal spreads to all input neurons and

Fig. 6 Finding the best numbers of the nodes in the first and second hidden layers

Table 4 ANN training parameters

Neural network settings Value/type

Network type FFBPN
Training algorithm Levenberg–Marquardt
First hidden layer 4 neurons (Tansig transfer functions)
Second hidden layer 7 neurons (Tansig transfer functions)
Final layer 1 neuron (Purelin transfer function)
Achievement function MSE
Epoch No. 150
Max fail 45
Min grad 1910−10

Mu 0.005
Mu inc 10
Mu dec 0.1
Mu max 191010
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acts as a weight modification for each input. Adjusting the
weights, a new cycle starts passing forward the nondestructive
data from input layer to output layer. This procedure continues
until reaching an acceptable level of error or it can be
terminated after completion of a specified number of learning
cycles (Ref 53-56). In both hidden layers, tan-sigmoid transfer
functions are used. Implementing this function for hidden
layers is due to obtaining an effective improvement in the
input–output relation when a small variation in updated weights
takes place. In the output layer, finally, a linear purlin transfer
function was utilized to produce output of network in the
specific range of −1 to 1.

Training of the network lasts until the specified mean square
error and epochs are reached. Finally, a testing data set is
introduced to the proposed ANN model for testing the

performance and efficiency of the training procedures. For
tempering temperatures prediction, unseen test runs: 4, 9, 14,
17, 22, 26, and 34 were introduced to the neural network. Also
for austenitizing temperatures prediction, test runs: 7, 14, 21,
28, and 35 were evaluated. Testing databases are used to
estimate the performance of the network and its potential to
predict both temperatures when facing unobserved situations as
well. To assess the achievements of network in prediction of the
results, both normalized error of root mean square (NRMSE)
and determination’s coefficient (R2) are calculated. Figure 7
represents regression graphs for prediction of austenitizing and
tempering temperatures of D2 steels using the proposed model.
As can be clearly seen, the act of modeling is acceptable for
unseen test data on the whole (Fig. 7). Evaluating the task of
modeling, ANN revealed the best prediction results, namely the
lowest NRMSE and the highest R2 values. The predicted and
experimental values are quite the same for R2=1.0; on the other
hand, small values for NRMSE indicate how close the
predicted and experimental data are.

Based on the findings, the used back-propagation algorithm
was able to model the nonlinear and complex relationships
between the inputs and outputs to provide the nonlinear
mapping. To study the sensitivity of the proposed ANN’s
responses to the variations of the inputs, the sensitivity analysis
was conducted. The sensitivity analysis can measure the
significance and impact of each of the nondestructive testing
outputs on the tempering and austenitizing temperature mod-
eling. Monitoring the sensitivity of the ANN’s responses, each
inputs varied by the rates of 5 and 10 and the resulting output
changes (provided by the proposed ANN model) are calculated
using Eq 3 (Ref 52).

Sensivity of input parameter %ð Þ ¼ 1

n

Xn

k¼1

Variation of output %ð Þ
Variation of input %ð Þ

� �

ðEq 3Þ
where n is the number of data points.

Figure 8 shows the results of the sensitivity analysis. All
axes were gridded from 0 to 10 in steps of 2%. According to the
results, the Bs output has comparatively less influence on
detection of austenitizing/tempering temperatures compared to
maximum μdiff and Hc outputs.

Fig. 7 ANN-predicted data vs. experimental data for testing data sets: (a) austenitizing temperature and (b) tempering temperature

Fig. 8 Impact of the ANN’s inputs (nondestructive testing outputs)
on detection of austenitizing/tempering temperatures
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The proposed ANN model obviously reveals the successful
introducing of the artificial intelligence to a magnetic nonde-
structive evaluation system for D2 steel parts. It is able to
accurately predict austenitizing and tempering temperatures as
a function of BH testing outputs. The successful performance
of the ANN applied on all the magnetic outputs data is
attributed to detect the austenitizing/tempering temperatures of
AISI D2 parts with unknown heat treatment conditions,
simultaneously.

Based on the relations established in the literature (Ref 57),
the hardness values of D2 steel can be obtained using
austenitizing and tempering temperatures. The hardness values
were determined for five random samples of the present study
and are tabulated in Table 5, which show an excellent
agreement between the actual and predicted results. This
comparison highlights the benefits of implementing the ANN to
predict the heat treatment conditions which have a great impact
on the mechanical properties of this type of steel.

4. Conclusion

In this study, an advanced application of artificial intelli-
gence for simultaneous nondestructive evaluation of austeni-
tizing and tempering temperatures of D2 tool steels is evaluated
based on magnetic hysteresis method.

Based on the results, magnetic hysteresis method reveals
great sensitivity to microstructural changes of the AISI D2 tool
steel during heat treating process. Variations of austenitizing
temperatures affect phase fraction of retained austenite, which,
in turn, results in changing the magnetic response of the steel.
As a result of tempering, microstructural changes lead to
variations of electromagnetic parameters. Ɛ carbides and
cementite precipitations, decomposition of retained austenite,
the exhibition of secondary hardening, as well as carbide
spheroidization are effective changes which alter Bs, maximum
μdiff and Hc.

To simultaneously accurate predictions of tempering and
austenitizing temperatures, present paper implements the ben-
efits of ANN modeling for reliable processing of BH outputs.
Feeding multiple BH outputs, it is possible for the artificial
neural network to make an advance in providing the most
accurate outcomes using only Bs, maximum μdiff and Hc.

Taking into account unseen data sets, high calculated R2 and
low NRMSE values confirm the successful application of ANN
to predict both austenitizing and tempering temperatures. The
modeled austenitizing temperatures are obtained without
knowing the values of tempering temperatures, and vice versa.
The results of the BH nondestructive testing coupled to
artificial intelligence modeling can be a key consideration for
choosing this reliable expert NDE technique to predict heat
treatment conditions for the industrial assessment of D2 tool
steels.
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