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Abstract
In this paper, we define the wavelet multiplier and Landau–Pollak–Slepian (L.P.S)
operators on theHilbert space L2(G), whereG is a locally compact abelian topological
group and investigate some of their properties. In particular, we show that they are
bounded linear operators, and are in Schatten p-class spaces, 1 ≤ p ≤ ∞, and we
determine their trace class.

Keywords Locally compact abelian group · Dual group · Wavelet multiplier
operator · Landau–Pollak–Slepian operator · Admissible wavelets · Unitary
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1 Introduction

In applied mathematics, it is true to say that nowadays wavelet theory is an essential
area. From 30 years ago, wavelets have established themselves as a key methodol-
ogy for efficiently representing signals or operators with applications ranging from
more theoretical tasks such as adaptive schemes for solving elliptic partial differential
equations to more practical tasks such as data compression.
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Throughout this paper, G denotes a locally compact abelian topological group with
the Haar measure [3,4,10] dx and Ĝ is the dual group of G with the Haar measure dξ

such that dξ is the dualmeasure of dx , the elements ofG are denoted by x, y and so on,
while the elements of Ĝ are denoted by ξ, ω and so forth. For σ ∈ L∞(Ĝ) we define
the linear operator Tσ : L2(G) → L2(G) by Tσu = F−1σFu, u ∈ L2(G) where F
and F−1 are the Plancherel and inverse Plancherel transforms, respectively. We recall
that Fourier transform of f defined by F( f )(ω) = f̂ (ω) = ∫

G ω(x) f (x)dx and the

inverse Fourier transform is defined by F−1( f )(x) = f̌ (x) = ∫
Ĝ ω(x) f (ω)dω for f

(if exist) [5]. The Fourier transform on L1(G) ∩ L2(G) can be extended uniquely to a
unitary isomorphism from L2(G) to L2(Ĝ) known as Plancherel Theorem [3,4]. The
translation operator Ly is defined by Ly f (x) = f (y−1x) for any function f . The con-
volution [3,5] of f and g is the function defined by ( f ∗ g)(x) = ∫

G f (y)g(y−1x)dy.
In 1999, He and Wong [7] discussed wavelet multipliers and L.P.S. operators on

R
n . Our aim in this paper is to give a generalization of wavelet multiplier and L.P.S.

operators on L2(G) where G is a locally compact abelian topological group. For this,
we will define a unitary representation on the Hilbert space L2(G) by using properties
of dual groups [3–5], andwefind, among other things, the set of all admissiblewavelets
[1,6,8,10] for this unitary representation.

This paper is organized as follows: Sect. 2, starts with the definition of a unitary
representation. Then we calculate the admissible wavelet for this unitary representa-
tion, then we show the operator Pσ,ϕ : L2(G) → L2(G) , is unitarily equivalent to the
wavelet operator ϕTσ ϕ : L2(G) → L2(G) and state some preliminaries and related
notations of these operators. In Sect. 3, we will discuss the boundedness of wavelet
operator on two stages, first for σ ∈ L1(Ĝ) , and second for σ ∈ L p(Ĝ), 1 < p ≤ ∞
by using The Riesz–Thorn Theorem [10]. This section also shows that the wavelet
multiplier operators are in the Schatten p-class spaces [10,11] and then we will find
the trace of these operators. In the end, in Sect. 4, we will give the definition of L.P.S.
operator QC P�QC : L2(G) → L2(G) , investigate some of its properties including
the relationship between wavelet multiplier and L.P.S operators in special case, and
finally evaluate the trace of this operator.

2 Wavelet multiplier operator on L2(G)

In this section we introduce the wavelet multiplier operator ϕTσ ϕ where Tσ ∈
B(L2(G)) is defined by Tσ = F−1σF and ϕ ∈ L p(G), 1 ≤ p ≤ ∞ and estab-
lish some of its properties. Let π : Ĝ → U (L2(G)) be the unitary representation of
the group Ĝ on the Hilbert space L2(G) , denoted by {π, L2(G)} , defined by

(π(ω)u)(x) = 〈x, ω〉u(x), ω ∈ Ĝ, x ∈ G.

The nonzero element ϕ ∈ L2(G) is called an admissible wavelet for the unitary
representation {π, L2(G)} if

∫

Ĝ
|〈ϕ, π(ω)ϕ〉|2dω < ∞.

Author's personal copy
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In this case the value of the above integral is called the wavelet constant associated
with the admissible ϕ and denoted by cϕ , and {π, L2(G)} is called square integrable
representation [1,6,9,10].

The following facts will be used frequently.

(π(η) f )∧(ξ) = Lη f̂ (ξ) (2.1)

〈u, π(ξ)ϕ〉 = (û ∗ ˆ̄ϕ)(ξ) = (uϕ̄)∧(ξ). (2.2)

The following proposition characterizes the admissible vectors for the unitary repre-
sentation {π, L2(G)}.
Proposition 2.1 The admissible wavelet for the unitary representation {π, L2(G)}
defined on Ĝ consists of all function ϕ ∈ L2(G) ∩ L4(G) ∩ L∞(G) for which
‖ϕ‖2 = 1.

Proof Using Plancherel Theorem and (2.1), (2.2) we have

cϕ =
∫

Ĝ
|〈ϕ, π(ξ)ϕ〉|2dξ

=
∫

Ĝ
|(ϕ̂ ∗ ˆ̄ϕ)(ξ)|2dξ

=
∫

Ĝ
|(ϕϕ̄)∧(ξ)|2dξ = ‖(ϕϕ̄)∧‖22

= ‖ϕϕ̄‖22 = ‖|ϕ|2‖22 = ‖ϕ‖44.

�
Now by using (2.1), (2.2) and Plancherel Theorem we can prove the following

proposition.

Proposition 2.2 Let ϕ ∈ L2(G) ∩ L∞(G), then for any u, v ∈ L2(G),

∫

Ĝ
〈u, π(ξ)ϕ〉L2(G)〈π(ξ)ϕ, ν〉L2(G)dξ = 〈ϕu, ϕν〉L2(G).

Proof By Plancherel Theorem, and (2.1), (2.2) we get

∫

Ĝ
〈u,π(ξ)ϕ〉L2(G)〈π(ξ)ϕ, ν〉L2(G) dξ

=
∫

Ĝ
(û ∗ ˆ̄ϕ)(ξ)(ν ∗ ˆ̄ϕ)(ξ) dξ

=
∫

Ĝ
(uϕ̄)∧(ξ)(νϕ̄)∧(ξ) dξ

=
∫

G
(uϕ̄)(x)(νϕ̄)(x) dx
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=
∫

G
(ϕu)(x)(ϕν)(x) dx

= 〈ϕu, ϕν〉L2(G).

�
Now for σ ∈ L∞(Ĝ) and ϕ ∈ L2(G)∩L∞(G), we define Pσ,ϕ : L2(G) → L2(G)

by

〈Pσ,ϕu, ν〉 =
∫

Ĝ
σ(ξ)〈u, π(ξ)ϕ〉L2(G)〈π(ξ)ϕ, ν〉L2(G)dξ. (2.3)

With the above notations we have 〈Pσ,ϕu, ν〉 = 〈ϕTσ ϕ̄u, ν〉, for all u, ν ∈ L2(G).
Indeed

〈Pσ,ϕu, ν〉 =
∫

Ĝ
σ(ξ)〈u, π(ξ)ϕ〉L2(G)〈π(ξ)ϕ, ν〉L2(G)dξ

=
∫

Ĝ
σ(ξ)〈û, π̂(ξ)ϕ〉L2(G)〈π̂(ξ)ϕ, ν̂〉L2(G)dξ

=
∫

Ĝ
σ(ξ)(û ∗ ˆ̄ϕ)(ξ)(ν̂ ∗ ˆ̄ϕ)(ξ)dξ

=
∫

Ĝ
σ(ξ)(ϕ̄u)∧(ξ)(ϕ̄ν)∧(ξ)dξ =

∫

Ĝ
(σ (ϕ̄u)∧)(ξ)(ϕ̄ν)∧(ξ)dξ

=
∫

G
(σ (ϕ̄u)∧)∨(x)(ϕ̄ν)(x)dx =

∫

G
ϕ(σ(ϕ̄u)∧)∨(x)ν(x)dx

= 〈ϕTσ ϕ̄u, ν〉.

Now,we aim to show that the linear operators Pσ,ϕ : L2(G) → L2(G) for σ ∈ L p(Ĝ),
1 ≤ p ≤ ∞ are bounded linear operators [2,11]. For the case σ ∈ L1(Ĝ), this is shown
in the following proposition.

Proposition 2.3 Let σ ∈ L1(Ĝ) and let ϕ ∈ L2(G) ∩ L∞(G) such that ‖ϕ‖2 = 1.
Then Pσ,ϕ : L2(G) → L2(G) is a bounded linear operator and ‖Pσ,ϕ‖B(L2(G)) ≤
‖σ‖L1(Ĝ)

.

Proof Let σ ∈ L1(Ĝ), ϕ ∈ L2(G) ∩ L∞(G) with ‖ϕ‖2 = 1; Then

|〈Pσ,ϕu, ν〉| = ∣
∣
∫

Ĝ
σ
(
ξ
)〈u, π(ξ)ϕ〉L2(G)〈π(ξ)ϕ, ν〉L2(G)dξ

∣
∣

≤
∫

Ĝ

∣
∣σ

(
ξ
)∣
∣
∣
∣〈u, π(ξ)ϕ〉L2(G)

∣
∣
∣
∣〈π(ξ)ϕ, ν〉L2(G)

∣
∣dξ

≤
∫

Ĝ

∣
∣σ

(
ξ
)∣∣‖u‖2‖π(ξ)ϕ‖22‖ν‖2dξ

=
∫

Ĝ

∣
∣σ

(
ξ
)∣∣‖u‖2‖ϕ‖22‖ν‖2dξ
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= ‖u‖2‖ν‖2
∫

Ĝ

∣
∣σ(ξ)

∣
∣dξ

= ‖u‖2‖ν‖2‖σ‖L1(Ĝ)
.

So that ‖Pσ,ϕ‖B(L2(G)) ≤ ‖σ‖L1(Ĝ)
. �

To prove the boundedness of Pσ,ϕ : L2(G) → L2(G) for σ ∈ L p(Ĝ), 1 < p ≤ ∞,
we use the Riesz–Thorn Theorem, which for readers’ convenience, we shall include
the version we shall use [10].

Let (X , μ) be a measure space and (Y , ν) be a σ -finite measure space. Let T be a
linear transformation with domain D consisting of all simple functions f on X such
that

μ({s ∈ X : f (s) �= 0}) < ∞,

and such that the range of T is contained in the set of all measurable functions on
Y . Suppose that α1, α2, β1 and β2 are numbers in the interval [0, 1] and there exist
positive constants M1 and M2 such that

‖T f ‖
L

1
β j (Y )

≤ Mj‖ f ‖
L

1
α j (Y )

, f ∈ D, j = 1, 2.

Then 0 < θ < 1, α = (1 − θ)α1 + θα2 and β = (1 − θ)β1 + θβ2, we have

‖T f ‖
L

1
β (Y )

≤ M1−θ
1 Mθ

2 ‖ f ‖
L

1
α (Y )

, f ∈ D.

Theorem 2.4 Let σ ∈ L p(Ĝ), 1 < p ≤ ∞ and let ϕ ∈ L2(G) ∩ L∞(G) be such
that ‖ϕ‖2 = 1. Then there exists a unique bounded linear operator Pσ,ϕ : L2(G) →
L2(G) such that ‖Pσ,ϕ‖B(L2(G)) ≤ ‖ϕ‖

2
q

L∞(G)‖σ‖L p(Ĝ)
and for all u, ν ∈ L2(G),

〈Pσ,ϕu, ν〉L2(G) is given in (2.3) for all simple functions σ on Ĝ for which the Haar

measure of the set {ξ ∈ Ĝ : σ(ξ) �= 0} is finite.
Proof For σ ∈ L∞(Ĝ), we get

∣
∣〈Pσ,ϕu, ν〉L2(G)

∣
∣ = ∣

∣
∫

Ĝ
σ
(
ξ
)〈u, π(ξ)ϕ〉L2(G)〈π(ξ)ϕ, ν〉L2(G)dξ

∣
∣

≤
∫

Ĝ

∣
∣σ

(
ξ
)∣∣

∣
∣〈u, π(ξ)ϕ〉L2(G)

∣
∣
∣
∣〈π(ξ)ϕ, ν〉L2(G)

∣
∣dξ

≤ ‖σ‖L∞(Ĝ)

[
∫

Ĝ

∣
∣〈u, π(ξ)ϕ〉L2(G)

∣
∣2dξ

] 1
2
[
∫

Ĝ
〈π(ξ)ϕ, ν〉L2(G)

∣
∣2dξ

] 1
2

= ‖σ‖L∞(Ĝ)

[
∫

Ĝ

∣
∣(û ∗ ˆ̄ϕ)

(
ξ
)∣∣2dξ

] 1
2
[
∫

Ĝ

∣
∣(ν ∗ ˆ̄ϕ)(

ξ
)∣∣2dξ

] 1
2

= ‖σ‖L∞(Ĝ)
‖û ∗ ˆ̄ϕ‖2‖û ∗ ˆ̄ϕ‖2 = ‖σ‖L∞(Ĝ)

‖(ϕ̄u)∧‖2‖(ϕ̄ν)∧‖2
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= ‖σ‖L∞(G)‖ϕ̄u‖2‖ϕ̄ν‖2 ≤ ‖σ‖L∞(Ĝ)
‖ϕ̄‖2L∞(G)‖u‖2‖ν‖2

= ‖σ‖L∞(Ĝ)
‖ϕ‖2L∞(G)‖u‖2‖ν‖2,

thus

‖Pσ,ϕ‖B(L2(G) ≤ ‖σ‖L∞(Ĝ)
‖ϕ‖2L∞(G).

For 1 < p < ∞, the Riesz–Thorn Theorem completes the proof. �
Now Proposition 2.3 and Theorem 2.4 allow us to define the wavelet multiplier

operator ϕTσ ϕ̄ : L2(G) → L2(G) for all σ ∈ L p(Ĝ), 1 ≤ p ≤ ∞ and all ϕ ∈
L2(G) ∩ L∞(G) with ‖ϕ‖2 = 1 which is the same as the bounded linear operator
Pσ,ϕ : L2(G) → L2(G) .

Remark 2.5 Let ϕ be an admissible wavelet for the square integralable representa-
tion {π, L2(G)}, then the linear operator Lσ,ϕ : L2(G) → L2(G) which is defined

as 〈Lσ,ϕu, ν〉 = 1

cϕ

∫
Ĝ σ

(
ξ
)〈u, π(ξ)ϕ〉L2(G)〈π(ξ)ϕ, ν〉L2(G)dξ is called localization

operator associated to the symbol σ and admissible wavelet ϕ , hence from Propo-
sition 2.1, we have cϕ = ‖ϕ‖44 and from (2.3) we get that Pσ,ϕ = ‖ϕ‖44Lσ,ϕ also
Lσ,ϕ ∈ S1 with ‖Lσ,ϕ‖S1 ≤ 1

cϕ
‖σ‖L1(Ĝ)

for more details see [8,9].

3 The Schatten–von Neumann property

Werecall that an operator T on aHilbert spaceH is called a compact operator [2,4,9,11]
(or completely continuous operator) if, for every bounded sequence {xn} in H, the
sequence {T xn} contains a convergent subsequence. Now if T is a compact operator
on a separable Hilbert space H, then there exist orthonormal sets {en} and {σn} in H
such that

T (x) =
∑

n

λn〈x, en〉σn, x ∈ H,

where λn is the n-th singular value of T [2,9,11]. Given 0 < p < ∞, we define
the Schatten p-class of H, denoted by Sp(H) or simply Sp, to be the space of all
compact operators T onH such that its singular value sequence {λn} belonging to �p
(the p-summable sequence space) [9,11]. We will be mainly concerned with the range
1 ≤ p < ∞. In this case, Sp is a Banach space with the norm ‖T ‖p defined by

‖T ‖p = [ ∑

n

|λn|p
] 1
p ,

S1 is also called the trace class, and S2 is usually called the Hilbert- Schmidt class.
The following theorem contains sufficiently conditions for the wavelet multiplier

operator is in trace class.
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Theorem 3.1 Let σ ∈ L1(Ĝ) and ϕ ∈ L2(G)∩ L4(G)∩ L∞(G) such that ‖ϕ‖2 = 1.
Then the wavelet multiplier operator ϕTσ ϕ̄ : L2(G) → L2(G) is in S1 and
‖ϕTσ ϕ̄‖S1 ≤ ‖σ‖L1(Ĝ)

.

Proof By Remark 2.5 the proof is clear. �

Now we are going to show that the wavelets multipliers operators ϕTσ ϕ̄ is in Sp

for 1 ≤ p ≤ ∞, where σ ∈ L p(Ĝ). To do this, we need to recall some notations and
terminologies.

Let B0 and B1 be two complex Banach spaces, we called B0 and B1 compatible if
we have Bk ⊆ V , k = 0, 1 for some complex vector space V . Suppose that S = {z ∈
C : 0 ≤ Re(z) ≤ 1} and let B be any complex Banach space, a function f : S → B
is called analytic on S if for every g (bounded linear functional on B ) we have the
decomposition g ◦ f : S → C analytic on S. Now let F(B0, B1) (B0 and B1 are
compatible Banach spaces), be the set of all bounded and continuous functions f
from S into B0 + B1 such that f is analytic on S and the mappings

R � y → f (k + iy) ∈ Bk, k = 0, 1,

are continuous from R into Bk , k = 0, 1. Now one can show that F(B0, B1) is a
complex Banach space with the norm ‖ ‖F defined as

‖ f ‖F = max
k=0,1

sup
y∈R

‖ f (k + iy)‖Bk′ , f ∈ F(B0, B1).

For any θ in the interval [0, 1], Bθ is the subspace of B0 + B1 consisting of all
elements b in B0 + B1 such that b = f (θ) for some f in F(B0, B1), then Bθ is a
complex Banach space with respect to the norm ‖ ‖θ defined as

‖b‖θ = inf
b= f (θ)

‖ f ‖F , b ∈ Bθ ,

and the interpolation space between the spaces B0 and B1 is Bθ , which denoted by
[B0, B1].

Suppose that we have two pairs of compatible Banach spaces, like B0, B1 and
B̃0, B̃1, and let T be any bounded linear operator from B0 + B1 into B̃0 + B̃1, so as,
T is a bounded linear operator from Bk into B̃k with norm less than or equal to Mk ,
k = 0, 1. Then for any real number θ in the interval (0, 1), T is a bounded linear
operator from [B0, B1]θ into [B̃0, B̃1]θ with norm not bigger than M1−θ

0 Mθ
1 .

In particular for 1 ≤ p ≤ ∞,

[L1(X , μ), L∞(X , μ)] 1
q

= L p(X , μ),
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and

[S1,S∞] 1
q

= Sp,

where (X , μ) is a measure space and q is the conjugate index of p. See [10,11] for
more details.

Theorem 3.2 Let σ ∈ L p(Ĝ), 1 ≤ p ≤ ∞ and ϕ ∈ L2(G) ∩ L4(G) ∩ L∞(G) with
‖ϕ‖2 = 1. Then the wavelet multiplier operator ϕTσ ϕ̄ : L2(G) → L2(G) is in Sp

and ‖ϕTσ ϕ̄‖Sp ≤ ‖ϕ‖
2
q

L∞(G)‖σ‖L p(Ĝ)
.

Proof For p = 1 the proof follows fromTheorem3.1; and for p = ∞ the proof follows
fromTheorem2.4, thus for 1 < p < ∞ the interpolation Theorem asmentioned above
complete the proof. �

In the following theorem, we investigate the trace of the wavelet multiplier operator.

Theorem 3.3 Letσ ∈ L1(Ĝ)andϕ ∈ L2(G)∩L4(G)∩L∞(G)be such that‖ϕ‖2 = 1.
Then tr(ϕTσ ϕ̄) = ∫

Ĝ σ(ξ)dξ .

Proof Let {ϕk}∞k=1 be an orthonormal basis for L2(G). We get

tr(ϕTσ ϕ̄) = tr(Pσ,ϕ) =
∞∑

k=1

〈Pσ,ϕϕk, ϕk〉 =
∞∑

k=1

∫

Ĝ
σ(ξ)|〈ϕk, π(ξ)ϕ〉|2dξ

=
∫

Ĝ
σ(ξ)

∞∑

k=1

|〈ϕk, π(ξ)ϕ〉|2dξ = ‖π(ξ)ϕ‖22
∫

Ĝ
σ(ξ)dξ

= ‖ϕ‖22
∫

Ĝ
σ(ξ)dξ =

∫

Ĝ
σ(ξ)dξ.

�

4 The Landau–Pollak–Slepian opearator

Here we will give the Landau–Pollak–Slepian (L.P.S) operator QC P�QC : L2(G) →
L2(G) where C and � are a compact neighborhoods of identity elements of G and Ĝ,
respectively, and investigate some important properties of L.P.S operator and finally
we consider the trace of this operator.

At first, let us define the linear operators P� : L2(G) → L2(G) andQC : L2(G) →
L2(G)by (P� f )∧(ξ) = (χ̌�∗ f )∧(ξ) and (QC f )(x) = (χC f )(x), for all f ∈ L2(G),
which are in fact orthogonal projections, as the following proposition shows.

Proposition 4.1 With the notations as above, P� : L2(G) → L2(G) and QC :
L2(G) → L2(G) are orthogonal projections.
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Proof Note that

〈P� f , g〉 = 〈(P� f )∧, ĝ〉 =
∫

Ĝ
(χ̌� ∗ f )∧(ξ)ĝ(ξ)dξ =

∫

Ĝ
f̂ (ξ)χ�(ξ)ĝ(ξ)dξ

=
∫

Ĝ
f̂ (ξ)(χ̌� ∗ g)∧(ξ)dξ =

∫

Ĝ
f̂ (ξ)(P�g)∧(ξ)dξ

= 〈 f̂ , (P�g)
∧(ξ)〉 = 〈 f , P�g〉.

Therefore P� : L2(G) → L2(G) is self-adjoint. Also

〈QC f , g〉 =
∫

G
(QC f )(x)g(x)dx =

∫

C
f (x)g(x)dx

=
∫

G
f (x)(QCg)(x)dx = 〈 f , QCg〉.

Therefore QC : L2(G) → L2(G) is self-adjoint. On the other hand, we have

〈P2
� f , g〉 = 〈P� f , P�g〉 = 〈(P� f )∧, (P�g)

∧〉 =
∫

Ĝ
(P� f )∧(ξ)(P�g)∧(ξ)dξ

=
∫

Ĝ
(χ̌� ∗ f )∧(ξ)(χ̌� ∗ g)∧(ξ)dξ =

∫

Ĝ
f̂ (ξ)χ�(ξ)ĝ(ξ)χ�(ξ)dξ

=
∫

Ĝ
(χ̌� ∗ f )∧(ξ)ĝ(ξ)dξ =

∫

Ĝ
(P� f )∧(ξ)ĝ(ξ)dξ

= 〈(P� f )∧, ĝ〉 = 〈P� f , g〉.

Thus P2
� = P� and hence P� : L2(G) → L2(G) is an orthogonal projection. Also

〈Q2
C f , g〉 = 〈QC f , QCg〉 =

∫

G
(QC f )(x)(QCg)(x)dx =

∫

C
f (x)g(x)dx

=
∫

G
(QC f )(x)g(x)dx = 〈QC f , g〉.

Thus Q2
C = QC and hence QC : L2(G) → L2(G) is an orthogonal projection. �

Using the fact that P� and QC are orthogonal projections, we get

sup

{
‖P�QC f ‖22

‖ f ‖22
: f ∈ L2(G), ‖ f ‖2 �= 0

}

= sup

{
〈P�QC f , P�QC f 〉

‖ f ‖22
: f ∈ L2(G), ‖ f ‖2 �= 0

}

= sup

{
〈P2

�QC f , QC f 〉
‖ f ‖22

: f ∈ L2(G), ‖ f ‖2 �= 0

}
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= sup

{
〈P�QC f , QC f 〉

‖ f ‖22
: f ∈ L2(G), ‖ f ‖2 �= 0

}

= sup

{
〈QC P�QC f , f 〉

‖ f ‖22
: f ∈ L2(G), ‖ f ‖2 �= 0

}

= sup{〈QC P�QC f , f 〉 : f ∈ L2(G), ‖ f ‖2 = 1}.

Since QC P�QC : L2(G) → L2(G) is self-adjoint, it follows from the above that

sup

{
‖P�QC f ‖22

‖ f ‖22
: f ∈ L2(G), ‖ f ‖2 �= 0

}

= ‖QC P�QC‖B(L2(G)).

Theorem 4.2 Let ϕ be the function on G defined by ϕ(x) = 1

|C | 12
χC (x), where

|C | denotes the Haar measure of C, and let σ be the function on Ĝ defined by
σ(ξ) = χ�(ξ). Then the operator QC P�QC : L2(G) → L2(G) is unitarily equiv-
alent to scalar multiple of the wavelet multiplier ϕTσ ϕ : L2(G) → L2(G). In fact
QC P�QC = |C |(ϕTσ ϕ).

Proof From the definition of ϕ, we get that ϕ ∈ L2(G) ∩ L∞(G) with ‖ϕ‖22 =∫
G |ϕ(x)|2dx = 1

|C|
∫
C dx = 1, so by Proposition 2.3 we have,

〈ϕTσ ϕu, ν〉 =
∫

Ĝ
σ(ξ)〈u, π(ξ)ϕ〉〈π(ξ)ϕ, ν〉dξ, u, ν ∈ CC (G),

and

〈u, π(ξ)ϕ〉 =
∫

G
u(x)π(ξ)ϕ(x)dx

=
∫

G
u(x)〈x, ξ 〉ϕ(x)dx

=
∫

G
u(x)〈x, ξ 〉ϕ(x)dx

= 1

|C | 12
∫

G
(χCu)(x)〈x, ξ 〉dx

= 1

|C | 12
∫

G
(QCu)(x)〈x, ξ 〉dx

= 1

|C | 12
(QCu)∧(ξ).

So

〈u, π(ξ)ϕ〉 = 1

|C | 12
(QCu)∧(ξ) and 〈π(ξ)ϕ, ν〉 = 1

|C | 12
(QCν)∧(ξ).
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Now

〈ϕTσ ϕu, ν〉 =
∫

Ĝ
σ(ξ)〈u, π(ξ)ϕ〉〈π(ξ)ϕ, ν〉dξ

= 1

|C |
∫

Ĝ
σ(ξ)(QCu)∧(ξ)(QCν)∧(ξ)dξ

= 1

|C |
∫

Ĝ
χ�(ξ)(QCu)∧(ξ)(QCν)∧(ξ)dξ

= 1

|C |
∫

Ĝ
(χ�(QCu)∧)(ξ)(QCν)∧(ξ)dξ

= 1

|C |
∫

Ĝ
(χ̌� ∗ (QCu))∧(ξ)(QCν)∧(ξ)dξ

= 1

|C |
∫

C
(P�(QCu))∧(ξ)(QCν)∧(ξ)dξ

= 1

|C | 〈(P�(QCu))∧, (QCν)∧〉 = 1

|C | 〈P�QCu, QCν〉

= 1

|C | 〈QC P�QCu, ν〉 for all functions u, v ∈ CC (G).

So

QC P�QC = |C |(ϕTσ ϕ).

�
Theorem 4.3 With the above notations tr(QC P�QC ) = |C ||�|.
Proof Theorem 4.3 is an immediate consequence of Theorems 4.2 and 3.3. �

References

1. Arefijamal, A.A., Kamyabi Gol, R.A.: A characterization of square integrable representations associatd
with CWT. J. Sci. Islam. Repub. Iran 18, 159–166 (2007)

2. Debnath, L., Mikusinski, P.: Introduction to Hilbert Spaces with Applications, 3rd edn. Elsevier Aca-
demic Press, Amsterdam (2005)

3. Deitmar, A.: A First Course in Harmonic Analysis, 2nd edn. Springer, Berlin (2000)
4. Deitmar, A., Echterhoff, S.: Principles of Harmonic Analysis. Springer, Berlin (2009)
5. Folland, G.B.: A Course in Abstract Harmonic Analysis, 2nd edn. CRC Press, Boca Raton (2015)
6. Führ, H.: Abstract Harmonic Analysis of Continuous Wavelet Transform. Springer Lecture Notes in

Mathematics, Nr. 1863. Springer, Berlin (2005)
7. He, Z., Wong, M.W.: Wavelet multipliers and signals. J. Aust. Math. Soc. Ser. B 40, 437–446 (1999)
8. Kamyabi Gol, R.A., Esmaeelzadeh, F., Raisi Tousi, R.: Localization operator on homogeneous spaces.

Bull. Iran. Math. Sci. 39(3), 455–467 (2013)
9. Li, J., Wong, M.W.: Localization operators for ridgelet transforms. Math. Model. Nat. Phenom. 9(5),

194–203 (2014)
10. Wong, M.W.: Wavelet Transform and Localization Operators. Birkhauser Verlag, Basel (2002)
11. Zhu, K.: Operator Theory in Function Spaces. Marcel Dekker, New York (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Author's personal copy


	On wavelet multipliers and Landau–Pollak–Slepian operators on locally compact abelian topological groups
	Abstract
	1 Introduction
	2 Wavelet multiplier operator on L2(G) 
	3 The Schatten–von Neumann property
	4 The Landau–Pollak–Slepian opearator
	References




