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Abstract
For a locally compact group G and two closed subgroups H , K of G let N be the
normalizer group of K in G and K\G/H be the double coset spaces of G by H
and K , respectively. The N -relatively invariant and N -invariant measures are defined
for the double coset space K\G/H and a necessary and sufficient condition for the
existence of N -relatively invariant measure is given. Among other things, conditions
under which there is an N -invariant measure are investigated.

Keywords Doble coset space · Rho-function · N -invariant measure · N -relatively
invariant measure

Mathematics Subject Classification Primary 47A55; Secondary 39B52

1 Introduction and Preliminaries

LetG be a locally compact group and H , K be two closed subgroups ofG. The double
coset space of G by H and K , respectively, is

K\G/H = {KxH ; x ∈ G}.
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When K is the trivial group, the double coset space K\G/H is actually the
homogeneous space G/H . The existence of strongly quasi-invariant measures on
homogeneous spacesG/H was first proved byMackey [12] under the assumption that
G is second countable. Bruhat [3] and Loomis [11] showed how to obtain strongly
quasi-invariant measures with no countability hypotheses. Also, the existence of a
homomorphism rho-function causes the existence of a relatively invariant measure
on G/H is in [13]. One may refer to [2,4,5,7,8,13] to find more informations about
homogeneous space G/H . When K = H , a double coset space K\G/H changes to a
hypergroup G//H in which the homogeneous space G/H is a semi hypergroup (see
more details [9]). It is worthwhile to note that the hypergroup plays important role
in physics. In [6] the authors have constructed N -strongly quasi invariants measure
on K\G/H . It is worth mentioning that in [1,10] the conditions for the existence of
N -relatively invariant measures and N -invariant measures are investigated, when K
is a compact subgroup.

In this paper,we investigate the conditions for the existence of N -relatively invariant
measure and N -invariant measure for K\G/H , when K is an I N -group. Note that
any compact group is an I N -group but not vice versa. Also, we will investigate the
existence of a homomorphism rho-function ρ on G for triple (K ,G, H), is necessary
and sufficient for the existence of N -relatively invariant measure on K\G/H . Some
preliminaries and notations about coset space K\G/H and related measures on it are
stated in Sect. 2. In Sects. 3 and 4, we introduce conditions of existence of N -relatively
invariant measure and N -invariant measure on K\G/H , where some relation between
N -relatively invariant and N -strongly quasi invariant measures are considered.

2 Notations and Preliminary Results

Let G be a locally compact group and H , K be closed subgroups of G. Throughout
this paper, we denote the left Haar measures of G, H and K , respectively, by dx , dh,
dk, and their modular functions by �G , �H and �K , respectively. We recall if S is a
non-empty locally compact Hausdorff space, an (left) action of G on S is a continuous
map (x, s) �→ xs from G × S to S such that s → xs is a homeomorphism of S for
each x ∈ G, and x(ys) = (xy)s for all x, y ∈ G and s ∈ S. A space S equipped
with an action of G is called a G-space. A G-space S is called transitive if for every
s, t ∈ S there exists x ∈ G such that xs = t .

The notion of double coset space is a natural generalization of that coset space
arising by two subgroups, simultaneously. Recall that if K\G/H is a double coset
space of G by H and K , then elements of K\G/H are given by {KxH ; x ∈ G}. The
canonical mapping q : G → K\G/H , defined by q(x) = KxH , abbreviated by ẍ ,
is surjective. The double coset space K\G/H equipped with the quotient topology,
the largest topology that makes q continuous, is a locally compact Hausdorff space.
In this topology, q is also an open mapping and proper—that is for each compact set
F ⊆ K\G/H there is a compact set E ⊆ G with q(E) = F . Let N be the normalizer
of K in G, i.e.,

N = {g ∈ G; gK = Kg}.
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Then, there is a naturally defined mapping

ϕ : N × K\G/H → K\G/H ,

given by

ϕ
(
n, q(x)

) = n.q(x) := q(nx),

one can verify that ϕ is a well-defined, continuous, transitive action of N on K\G/H .
We define the mapping Q from Cc(G) onto Cc(K\G/H) by

Q( f )(KxH) =
∫

K

∫

H
f (k−1xh)dhdk,

then Q is a well-defined continuous linear map, as well as supp
(
Q( f )

) ⊆ q(supp f ).
We recall that a locally compact group G is called an I N -group if there is a compact
unit neighbourhood U in G which is invariant under inner automorphisms, that is,
xUx−1 = U for all x ∈ G. It is known that I N -groups are unimodular. In [6], it
is shown that when K is an I N -group then Q(Ln f ) = LnQ( f ) for all n ∈ N and
f ∈ Cc(G).
Suppose that μ is a positive Radon measure on K\G/H . The measure μ is called

N -relatively invariant measure if there is a positive real character χ on N such that

∫

K\G/H
Q( f )(nẍ)dμ(ẍ) = χ(n)

∫

K\G/H
Q( f )(ẍ)dμ(ẍ),

for all n ∈ N and f ∈ Cc(G). Ameasureμ is said to be an N - invariant measure if χ is
identically 1. For a positive Radonmeasureμ letμn denote its translate by n ∈ N , that
isμn(E) = μ(n.E) for any Borel set E in K\G/H . Ameasureμ is called N -strongly
quasi invariant measure if there exists a positive continuous function λ associate to
μ from N × K\G/H such that dμn(ÿ) = λ(n, ÿ)dμ(ÿ). A rho-function for triple
(K ,G, H) is a positive locally integrable function ρ on G such that

ρ(kxh) = �H (h)�K (k)

�G(h)
ρ(x),

for all x ∈ G, h ∈ H , k ∈ K .
In [6] it is shown that for each triple (K ,G, H) there exists a rho-function ρ which
construct N -strongly quasi invariant measure μ that satisfies:

∫

K\G/H
Q( f )(ẍ)dμ(ẍ) =

∫

G
f (x)ρ(x)dx,

for each f ∈ Cc(G). In this case, we have

λ(n, ÿ) = ρ(ny)

ρ(y)
, (n ∈ N , ÿ ∈ K\G/H .) (2.1)
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Furthermore, λ satisfying:

(i) λ(k, ẍ) · λ(k−1, ẍ) = 1 for all k ∈ K
(ii) λ(n, Kn−1H) · λ(n−1, K H) = 1 for all n ∈ N .
(iii) If for each n ∈ N , λn : K\G/H → (0,+∞) is constant function then λmn =

λm · λn, for all m ∈ N .

At this point, we recall the following theorem which has been proved in [6] and for
completeness and readers’ convenience, we include a proof.

Theorem 2.1 With the assumptions as above, if μ is a positive Radon measure on
K\G/H, then the positive Radon measure μ̃ on G defined by

∫

G
f (x)dμ̃(x) =

∫

K\G/H
Q( f )(ẍ)dμ(ẍ), (2.2)

satisfying ∫

G
f (kxh−1)dμ̃(x) = �K (k)�H (h)

∫

G
f (x)dμ̃(x). (2.3)

Conversely, if a positive Radon measure μ̃ on G satisfying (2.3), then Eq. (2.2) defines
a positive Radon measure μ on K\G/H.

Proof Suppose that μ is a positive Radon measure on K\G/H , then μ̃ defined by
(2.2) is clearly a positive Radon measure on G. Also, for each h0 ∈ H , k0 ∈ K and
f ∈ Cc(G), we have

∫

G
f (k0xh

−1
0 )dμ̃(x) =

∫

K\G/H

∫

K

∫

H
Lk−1

0
◦ Rh−1

0
f (k−1xh)dhdkdμ̃(x)

=
∫

K\G/H

∫

K

∫

H
f (k0k

−1xhh−1
0 )dhdkdμ(ẍ)

= �H (h0)�K (k0)
∫

K\G/H
Q( f )(ẍ)dμ(ẍ)

= �H (h0)�K (k0)
∫

G
f (x)dμ̃(x).

Conversely, suppose that the positive Radon measure μ̃ on G satisfying (2.3). Then
for ϕ ∈ Cc(K\G/H), define

μ : Cc(K\G/H) → (0,+∞),

by

μ(ϕ) =
∫

G
f (x)dμ̃,

in which f ∈ Cc(G) such that ϕ = Q( f ). Now, μ is well-defined. Indeed, if f ∈
Cc(G) such that Q( f ) = 0. It can be seen, there is g in Cc(G) such that Q(g) ≡ 1
on Q(supp f ). Using the Fubini’s Theorem, we have
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∫

G
f (x)dμ̃ =

∫

G
f (x)Q

(
g)(q(x)

)
dμ̃(x)

=
∫

G
f (x)

∫

K

∫

H
g(k−1xh)dhdkdμ̃(x)

=
∫

K

∫

H

∫

G
f (kxh−1)g(x)�K (k)�H (h)dμ̃(x)dhdk

=
∫

G
g(x)

∫

H

∫

K
f (k−1xh)dkdhdμ̃(x)

=
∫

G
g(x)Q( f )

(
q(x)

)
dμ̃(x) = 0.

It is easy to check that μ is a positive linear functional, therefore, it induces a positive
Radon measure μ on K\G/H such that,

∫

G
f (x)dμ̃(x) =

∫

K\G/H
Q( f )(ẍ)dμ(ẍ).

	


3 N-Relatively Invariant Measure on K\G/H
In this section, we give some results concerning N -relatively invariant measure for
the double coset space K\G/H , when K is an I N -group. From now on we consider
K as an I N -group. Recall that a positive Radon measure μ on K\G/H is called
N -relatively invariant measure if μ is not identically zero and there is a positive real
character χ on N such that

∫

K\G/H
Q( f )(nẍ)dμ(ẍ) = χ(n)

∫

K\G/H
Q( f )(ẍ)dμ(ẍ),

for all n ∈ N and f ∈ Cc(G). Such a χ is called the modular function of μ. An
N -relatively invariant measure μ is said to be N -invariant if its modular function is
identically 1.
In the next proposition it is shown that there exists an N -relatively invariant measure
on double coset space under some reasonable assumptions.

Proposition 3.1 If ξ is a real character on G such that �G(h) = �H (h)ξ(h) for all
h ∈ H and ξ

∣∣
K = �K , then there is an N-relatively invariant measure μ on K\G/H

such that supp μ = K\G/H and ξ
∣∣
N is the modular function of μ.

Proof Assume that dμ̃(x) = ξ−1(x)dx . According to (2.3), we have

∫

G
f (kxh−1)dμ̃(x) =

∫

G
f (kxh−1)ξ−1(x)dx

=
∫

G
f (xh−1)ξ−1(k−1x)dx
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=
∫

G
f (x)ξ−1(k−1xh)�G(h)dx

= ξ−1(k−1)ξ−1(h)�G(h)

∫

G
f (x)ξ−1(x)dx

= ξ(k)�H (h)

∫

G
f (x)dμ̃(x)

= �K (k)�H (h)

∫

G
f (x)dμ̃(x),

where f ∈ Cc(G) and h ∈ H and k ∈ K . Now Theorem 2.1 guarantee the existence
of a positive Radon measureμ on K\G/H . Also, the measureμ is relatively invariant
with modular function ξ

∣
∣
N . Indeed,

∫

K\G/H
Q( f )(nẍ)dμ(ẍ) =

∫

K\G/H
Q(Ln−1 f )(ẍ)dμ(ẍ)

=
∫

G
(Ln−1 f )(x)ξ−1(x)dx

=
∫

G
f (nx)ξ−1(x)dx

=
∫

G
f (x)ξ−1(n−1x)dx

= ξ(n)

∫

G
f (x)ξ−1(x)dx

= ξ(n)

∫

G
Q( f )(ẍ)dμ(ẍ),

and since the support of left Haar measure on G is G, therefore, supp μ = K\G/H .
	


Corollary 3.2 If�H can be extended to a real character ξ on G such that
�G

ξ |K = �K ,

then there exists an N-relatively measure μ on K\G/H with supp μ = K\G/H.

Proof If ξ is a real character on G such that ξ
∣∣
H = �H then

�G

ξ
is a real character

on G and �G(h) = (
�G
ξ

(h))�H (h) for all h ∈ H . The conclusion then follows from
Theorem 3.1. 	


Proposition 3.3 Let μ be an N-strongly quasi invariant measure on K\G/H with
function λ : N × K\G/H → (0,+∞) such that the function λ is constant on double
cosets. Then μ is N-relatively invariant measure.

Proof Suppose that n ∈ N and f ∈ Cc(G). Then since for each n ∈ N , λn(ẍ) = cn is
constant, then we may define χ : N → (0,+∞) by χ(n) = cn . Therefore, we have
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∫

K\G/H
Q( f )(nẍ)dμ(ẍ) =

∫

K\G/H
Q( f )(ẍ)cndμ(ẍ)

= cn

∫

K\G/H
Q( f )(ẍ)dμ(ẍ)

= χ(n)

∫

K\G/H
Q( f )(ẍ)dμ(ẍ).

	


In the next theorem, we show that there is a rho function homomorphism on G if and
only if the measure μ is N -relatively invariant measure on double coset space.

Theorem 3.4 The existence of a homomorphism rho-function ρ : G → (0,+∞), for
the triple (G, H , K ) is necessary and sufficient for the existence of an N-relatively
invariant measure on K\G/H.

Proof Let μ be the N -strongly quasi invariant measure which arises from a rho-
function ρ ([6]). If ρ is a homomorphism then by (2.1) we get dμn = ρ(n)dμ, for
all n ∈ N . That is μ is N -relatively invariant. Conversely, if μ is an N -relatively
invariant measure, then there is a continuous homomorphism χ : G → (0,+∞) such
that dμn = χ(n)dμ for all n ∈ N . So for all n ∈ N and f ∈ Cc(G) we can write

∫

G
f (y)ρ(ny)dy =

∫

G
f (n−1y)ρ(y)dy

=
∫

K\G/H
Q( f )(Kn−1yH)dμ(ÿ)

=
∫

K\G/H
Q( f )(KyH)dμn(ÿ)

=
∫

K\G/H
Q( f )(ÿ)χ(n)dμ(ÿ)

= χ(n)

∫

K\G/H
Q( f )(ÿ)dμ(ÿ)

= χ(n)

∫

G
f (y)ρ(y)dy.

Thus for a fixed n ∈ N we have

∫

G
f (y)(ρ(ny) − χ(n)ρ(y))dy = 0,

for all f ∈ Cc(G). This leads to

ρ(ny)

ρ(y)
= χ(n) (n ∈ N , y ∈ G).
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Now define ρ0 : G → (0,∞) by ρ0(x) = ρ(x)
ρ(e) . Then ρ0 is a homomorphism rho-

function for (G, K , H) since

ρ0(kxh) = ρ(kxh)

ρ(e)
= �H (h)�K (k)

�G(h)

ρ(x)

ρ(e)

= �H (h)�K (k)

�G(h)
ρ0(x),

and

ρ0(xy) = ρ(xy)

ρ(e)

= ρ(xy)

ρ(y)

ρ(y)

ρ(e)

= ρ0(x)ρ0(y).

	

It is worthwhile to mention that if μ is the N -relatively invariant Radon measure

which arises from a rho-function ρ, then using (2.1) we get

ρ(xy) = ρ(x)ρ(y)

ρ(e)
(x, y ∈ G). (3.1)

In [10], the following Theorems 3.5, 3.6 are proven when K is a compact subgroup of
G. Here, the compactness of K is replaced as an I N -group but the proofs are almost
the same, so we omit the proofs.

Theorem 3.5 Suppose that N is an open subgroup of G. If μ is the N-relatively
invariant measure on K\G/H with modular function χ such that supp μ∩q(N ) �= ∅,
then supp μ ⊃ q(N ) and �G(t) = χ(t)�H (t) for all t ∈ N ∩ H.

Theorem 3.6 Let H ⊆ N and μ be the N-relatively invariant measure on K\G/H
with modular function χ such that μ

∣∣
q(N )

�= 0. Then �N (h) = χ(h)�H (h) for all
h ∈ H. Conversely if χ is a real character on N such that �N (h) = χ(h)�H (h) for
all h ∈ H, then there exists an N-relatively invariant measure μ on K\G/H with χ

as its modular function such that μ
∣∣
q(N )

�= 0.

4 N-Invariant Measure on K\G/H
In this section, we give some results about N -invariant measure on K \G/H . Note that
if μ is an N -strongly quasi invariant measure on K\G/H with the associate function
λ ≡ 1 on N × K\G/H , then it is clear that μ is N -invariant measure.
In the following, we investigate that a necessary and sufficient condition for the exis-
tence of the N -invariant measure on double coset space K\G/H .
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Theorem 4.1 With the notations as above, μ is N-invariant measure on K\G/H if
and only if μ̃ has the following property.

∫

G
f (nxh−1)dμ̃(x) = �H (h)

∫

G
f (x)dμ̃(x) for all f ∈ Cc(G) (4.1)

Proof Since K is an I N -group so�K = 1. Considerμ as N -invariant measure. Hence
χ ≡ 1. We claim μ̃ defined by

∫

G
f (x)dμ̃(x) =

∫

K\G/H
Q( f )(ẍ)dμ(ẍ),

is a positive Radon measure on G satisfying (4.1). Using Theorem 2.1 we get,

∫

G
f (nxh−1)dμ̃(x) = �H (h)

∫

G
f (nx)dμ̃(x)

= �H (h)

∫

G
Ln−1 f (x)dμ̃(x)

= �H (h)

∫

K\G/H
Q(Ln−1 f )(ẍ)dμ(ẍ)

= �H (h)

∫

K\G/H
Ln−1Q( f )(ẍ)dμ(ẍ)

= �H (h)

∫

G
Q( f )(nẍ)dμ(ẍ)

= �H (h)

∫

G
Q( f )(ẍ)dμ(ẍ)

= �H (h)

∫

G
f (x)dμ̃(x).

Conversely, suppose that μ̃ satisfying (4.1). Using Theorem 2.1 and the fact �K = 1,
there is positive Radon measure μ on K\G/H . Moreover, μ is N -invariant. In fact
we have,

∫

K\G/H
Q( f )(nẍ)dμ(ẍ) =

∫

K\G/H
Ln−1Q( f )(ẍ)dμ(ẍ)

=
∫

K\G/H
Q(Ln−1 f )(ẍ)dμ(ẍ)

=
∫

G
Ln−1 f (x)dμ̃(x)

=
∫

G
f (nx)dμ̃(x)

=
∫

G
f (x)μ̃(x)
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=
∫

K\G/H
Q( f )(ẍ)dμ(ẍ).

	

In the following theorem, it is shown that there is an N -invariantmeasureμ on K\G/H
if and only if �G |H = �H .

Theorem 4.2 With the above notation, �G(h) = �H (h), for all h ∈ H if and only if
there exists an N-invariant measure μ on K\G/H with supp μ = K\G/H.

Proof If �G(h) = �H (h) for all h ∈ H then the left Haar measure dx on G satisfies
(4.1) in Theorem 4.1. That is,

∫

G
f (nxh−1)dx = �H (h)

∫

G
f (x)dx .

Therefore, μ defined by
∫
K\G/H Q( f )(ẍ)dμ(ẍ) = ∫

G f (x)dx is an N -invariant
measure on K\G/H . Conversely, if K\G/H has N -invariant measure then we have,

�H (h)

∫

G
f (x)dμ̃(x) =

∫

G
f (xh−1)dμ̃(x)

= �G(h)

∫

G
f (x)dμ̃(x).

Therefore, �G(h) = �H (h) for all h ∈ H . 	

Corollary 4.3 If G is unimodular and H is an I N-group then, there exists an N-
invariant measure μ on K\G/H with supp μ = K\G/H.

Corollary 4.4 If K = {e} and if �H (h) = �G(h) for all h ∈ H. Then there exists a
G-invariant measure μ on G/H with supp μ = G/H.

Remark 4.5 Suppose that H and K are subgroups of locally compact group G. If H is
compact or normal or open in G, then there is an N -invariant measure μ on K\G/H
with supp μ = K\G/H .
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