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We examine the proposal that the dimensional reduction of the effective action of perturbative string
theory on a circle should be invariant under T-duality transformations. The T-duality transformations are
the standard Buscher rules plus some higher covariant derivatives. By explicit calculations at order α0 for
metric, dilaton, and B-field, we show that the T-duality constraint can fix both the effective action and
the higher derivative corrections to the Buscher rules up to an overall factor. The corrections depend
on the scheme that one uses for the effective action. We have found the effective action and its
corresponding T-duality transformations in an arbitrary scheme.
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I. INTRODUCTION

One of the most exciting discoveries in perturbative
string theory is T-duality [1,2]. This duality may be used to
construct the D-dimensional effective field theory at any
order of α0. One approach for constructing this effective
action is the double field theory (DFT) [3–7] in which the
effective action in 2D-space is invariant under T-duality
and a gauge transformation. The T-duality is the standard
OðD;DÞ transformation, whereas the gauge transformation
is nonstandard and receives α0 corrections [7–10]. Another
proposal for constructing the D-dimensional effective
action is to use the T-duality constraint on the reduction
of the effective action on a circle [11]. In this approach one
reduces the standard gauge invariance effective action on a
circle to produce the corresponding (D − 1)-dimensional
effective action. Up to some boundary terms, this action
should be invariant under the T-duality transformations
which are the standard Buscher rules [12,13] plus some α0
corrections [14–16]. Using this proposal, the known gravity
and dilaton couplings in the effective actions at orders α0,
α02; α03 have been found up to some overall factors [17,18].
The corrections to the Buscher rules, however, could not be
fixed in the case that B-field is zero. For the effective action
at order α0 that has been found in [19], the form of α0
corrections to the Buscher rules have been found in [16] for
the case that B-field is nonzero.

In this paper we speculate that in the presence of B-field,
the T-duality constraint may fix both the effective action
and the α0 corrections to the Buscher rules. We have done
this calculation explicitly at order α0. Using the Bianchi
identities and the field redefinition freedom, one can write
the most general D-dimensional covariant action at the
four-derivative level in a specific scheme which has eight
parameters [20]. We then reduce it on a circle to find its
corresponding (D − 1)-dimensional action which should be
invariant under the T-duality transformations up to some
boundary terms. Constraining this action to be invariant
under the Buscher rules makes all parameters to be zero
unless one adds some corrections to the Buscher rules.
We then write the most general covariant corrections
at the two-derivative level to the Buscher rules and impose
the (D − 1)-dimensional action to be invariant under
this deformed T-duality transformations. Interestingly, the
T-duality constraint fixes all parameters in the effective
actions and in the deformed T-duality transformations, up
to an overall factor. The effective action is exactly the
standard action that has been found by the S-matrix
calculation [20]. The T-duality transformations, however,
are not the same as the T-duality transformations that have
been found in [16] because the effective action that we have
found and the effective action that has been used in [16] are
in different schemes.
Since the T-duality transformations depend on the

scheme that one uses for the effective action, it would
be desirable to find the T-duality transformations for the
effective action in an arbitrary scheme. We will show that
the T-duality constraint can fix the effective action even if
one does not use the field redefinition. If fact, using the
Bianchi identity and removing total derivative terms, one
finds that the most general D-dimensional effective action
at order α0 has 20 parameters [20]. Three of them are
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unambiguous as they are not changed under field redefi-
nitions, and the other 17 parameters which are ambiguous
are changed under the field redefinitions. However, there are
five combinations of these parameters that remain invariant
under the field redefinitions. To have the minimum number
of couplings, one should keep five parameters which are
called essential parameters and remove all other parameters
[20]. In general, one may keep all ambiguous parameters. In
this case, the S-matrix calculations should fix the three
unambiguous and the five essential parameters. The other
12 parameters should remain arbitrary.Wewill show that the
T-duality constraint on the most general effective action
with the 20 parameters fixes the effective action up to 12
arbitrary parameters; one of them is an unambiguous
parameter and all other 11 parameters are ambiguous
parameters. The T-duality transformations are also found
in terms of these parameters. Any choice for these 11
parameters gives the effective action and its corresponding
T-duality transformations in a specific scheme. We will
show that the effective action for a specific choice for these
parameters becomes the action that has been found in [19]
and the corresponding T-duality transformations are exactly
the one that has been found in [16].
The outline of the paper is as follows: In Sec. II, we

perform the calculations at order α00. In particular, we write
the most generalD-dimensional effective action at the two-
derivative level which has three parameters. We then reduce
it on a circle to find its corresponding (D − 1)-dimensional
effective action. Constraining it to be invariant under the
Buscher rules up to some boundary terms, the three
parameters are fixed up to an overall factor.
In Sec. III, we perform the calculations at order α0. In

Sec. III. A, we consider the eight-parameter effective action
in the specific field variables studied in [20]. We show that
the reduction of this action on a circle is invariant under the
Buscher rules when all parameters in the effective action
are zero. To have nonzero effective action at order α0, we
then deform the Buscher rules by some terms at order α0
with arbitrary parameters. Some relations between these
parameters are found by the constraint that the T-duality
transformations must form a Z2-group. Constraining the
reduction of the effective actions at orders α00 and α0 to be
invariant under the deformed T-duality transformations
fixes all independent parameters in the deformed T-duality
transformations and in the effective action. Up to an overall
factor, the effective action is the one that has been found
in [20] by the S-matrix method. In Sec. III. B, we consider
the 20-parameter effective action in which the field rede-
finitions are not used. We then impose the T-duality
constraint on this action. We find the effective action
and the corresponding T-duality transformations in terms
of one unambiguous parameter and 11 ambiguous param-
eters. A specific choice for these 11 parameters, gives the
effective action and the T-duality transformations found in
[16,19]. In this subsection, we have also shown that the

Chern-Simons couplings in the heterotic theory which
results from the nonstandard gauge transformation of
B-field is also invariant under the T-duality and we found
its corresponding T-duality transformations.

II. EFFECTIVE ACTION AT ORDER α00

We now construct the most generalD-dimensional action
at the two-derivative level which is invariant under the
coordinate transformations and under the standard gauge
transformation of B-field, i.e., Bab → Bab þ ∂ ½aλb�. Up to
total derivative terms, it has the following three terms:

S0 ¼ −
2

κ2

Z
dDxe−2Φ

ffiffiffiffiffiffiffi
−G

p
ðc1Rþ c2∇aΦ∇aΦþ c3H2Þ;

ð1Þ
where the three-form H is field strength of the two-form B,
i.e., Habc ¼ ∂aBbc þ ∂cBab þ ∂bBca, and c1, c2, c3 are
three constants.
To impose Abelian T-duality constraint on this action,

we have to consider a background with Uð1Þ isometry. It is
convenient to use the following background for metric and
Kalb-Ramond field,

Gab ¼

0
B@

ḡμν þ eφgμgν eφgμ

eφgν eφ

1
CA;

Bab ¼

0
B@

b̄μν þ 1
2
bμgν − 1

2
bνgμ bμ

−bν 0

1
CA; ð2Þ

where ḡμν; b̄μν are the metric and the B-field and gμ, bμ are
two vectors in the (D − 1)-dimensional base space. The
inverse of the above D-dimensional metric is

Gab ¼
�

ḡμν −gμ

−gν e−φ þ gαgα

�
; ð3Þ

where ḡμν is the inverse of the (D − 1)-dimensional metric
which raises the index of the vectors. In this parametriza-
tion, the (D − 1)-dimensional dilaton is ϕ̄ ¼ Φ − φ=4. The
Buscher rules [12,13] in this parametrization are the
following linear transformations:

φ0 ¼ −φ; g0μ ¼ bμ; b0μ ¼ gμ;

ḡαβ0 ¼ ḡαβ; b̄αβ0 ¼ b̄αβ; ϕ̄0 ¼ ϕ̄: ð4Þ

They form a Z2-group, i.e., ðx0Þ0 ¼ x where x is any field in
the base space.
To simplify the calculations, we assume that the base

space is flat, i.e., ḡμν ¼ ημν. As long as the T-duality
constraint fixes all coefficients in the effective action in this
case, we do not need to consider the general case of the
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curved base space. If the effective action contains terms
with at most second derivative, i.e., R;∇∇Φ;∇H, the
covariant derivatives in the (D − 1)-dimensional base space
can be written as ordinary derivatives in the local frame in
which Γμν

α ¼ 0. However, the curvature terms in the base
space are not zero in the local frame. One expects the
coefficients of these terms appear in many other terms such
as ∇∇φ which might be fixed by the T-duality constraint
when the base space is flat.
In order to reduce R, one should write the curvature in

terms of metric Gab and then use the reductions (2) and (3).
When the base space is flat, it becomes

R ¼ −∂μ∂μφ −
1

2
∂μφ∂μφ −

1

4
eφV2; ð5Þ

where Vμν is the field strength of the Uð1Þ gauge field gμ,
i.e., Vμν ¼ ∂μgν − ∂νgμ. For curved base space, the ordi-
nary derivatives in (5) become covariant derivatives and
there is also the scalar curvature of the base space. The
reduction of the overall factor and the second term in (1)
when the base space is flat are

e−2Φ
ffiffiffiffiffiffiffi
−G

p
¼ e−2ϕ̄;

∇aΦ∇aΦ ¼ ∂μϕ̄∂μϕ̄þ 1

2
∂μϕ̄∂μφþ 1

16
∂μφ∂μφ: ð6Þ

For the curved base space, there is a factor of
ffiffiffiffiffiffi
−ḡ

p
in the

right-hand side of the first equation. The reduction of the
third term in (1) is

H2 ¼ H̄μναH̄μνα þ 3e−φW2; ð7Þ
where Wμν is the field strength of the Uð1Þ gauge field bμ,
i.e., Wμν ¼ ∂μbν − ∂νbμ. The three-form H̄ is defined as
H̄μνα ¼ H̃μνα − gμWνα − gαWμν − gνWαμ where the three-
form H̃ is the field strength of the two-form b̄μν þ 1

2
bμgν −

1
2
bνgν in (2). The three-form H̄ is not the field strength of a

two-form. It satisfies the following Bianchi identity [16]:

∂ ½μH̄ναβ� ¼ −
3

2
V ½μνWαβ�: ð8Þ

To find the T-duality transformation of the three-form H̄,
one can rewrite it as

H̄μνα ¼ Ĥμνα −
1

2
gμWνα −

1

2
gαWμν −

1

2
gνWαμ

−
1

2
bμVνα −

1

2
bαVμν −

1

2
bνVαμ; ð9Þ

where Ĥ is the field strength of the T-duality invariance
two-form b̄μν. It is evident that H̄ is invariant under the T-
duality transformations (4). Using the above relation, one
may rewrite H2 in (7) in terms of Ĥ which satisfies the
standard Bianchi identity dĤ ¼ 0, and some other terms

that are not Uð1Þ × Uð1Þ gauge invariance. However, it is
more convenient to write H2 in terms of H̄ which satisfies
the anomalous Bianchi identity (8), and some gauge
invariant terms as in (7).
The reduction of (1) when the base space is flat then

becomes

S0 ¼ −
2

κ2

Z
dD−1xe−2ϕ̄

��
−
1

2
c1 þ

1

16
c2

�
∂μφ∂μφ

þ c2∂μϕ̄∂μϕ̄þ c3H̄2 − c1∂μ∂μφþ 1

2
c2∂μϕ̄∂μφ

−
1

4
c1eφV2 þ 3c3e−φW2

�
: ð10Þ

For the curved base space, there is the factor
ffiffiffiffiffiffi
−ḡ

p
and the

scalar curvature term c1R̄, and the partial derivatives
become covariant derivatives. The terms in the first line
are invariant under the Buscher rules.
The T-duality constraint is that the reduced action (10)

must be invariant under T-duality up to some boundary
terms, i.e.,

δS0 ≡ S0 − S00

¼ −
2

κ2

Z
dD−1xe−2ϕ̄

�
−2c1∂μ∂μφþ c2∂μϕ̄∂μφ

þ
�
1

4
c1 þ 3c3

�
ðe−φW2 − eφV2Þ

�
ð11Þ

must be a boundary term. Note that δS0 is odd under the
T-duality transformations and is invariant under theUð1Þ ×
Uð1Þ gauge transformations. One can easily observe that
δS0 is a boundary term when

c3 ¼ −
1

12
c1; c2 ¼ 4c1: ð12Þ

This fixes the D-dimensional effective action to be

S0 ¼ −
2c1
κ2

Z
dxe−2Φ

ffiffiffiffiffiffiffi
−G

p �
Rþ 4∇aΦ∇aΦ−

1

12
H2

�
;

ð13Þ
which is the standard effective action at order α00, up to an
overall factor. The overall factor must be c1 ¼ 1 to be the
effective action of string theory. In the next section, we
extend these calculations to the order α0.

III. EFFECTIVE ACTION AT ORDER α0

The most generalD-dimensional effective action at order
α0 which is invariant under the coordinate transformation
and under theB-field gauge transformation has three classes.
One class contains terms that are zero by Bianchi identities,
one class contains terms that are total derivative terms,
and all other terms belong to the third class. There are 20
such terms in which the field variables are arbitrary [20].
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Using the field redefinition freedom, however, onemaywrite
the effective action in specific field variables. In this case
there are eight independent couplings [20]. The T-duality
constraint may be used for both specific field variables and
for arbitrary field variables. In the next subsection we use the
T-duality constraint for specific field variables.

A. Effective action in a specific scheme

Using the field redefinition freedom, one canwrite the 20-
parameter effective action at orderα0 in terms of independent
couplings. There are also choices for these minimal cou-
plings. One may choose the couplings to be [20]

S1 ¼
−2
κ2

α0
Z

dDxe−2Φ
ffiffiffiffiffiffiffi
−G

p
½b1RabcdRabcd þ b2RabcdHabeHcd

e þ b3HfghHf
a
bHg

b
cHh

c
a þ b4Hf

abHgabHfchHg
ch

þ b5HacdHb
cd∂aΦ∂bΦþ b6ðH2Þ2 þ b7H2∂aΦ∂aΦþ b8ð∂aΦ∂aΦÞ2�; ð14Þ

where b1; b2;…; b8 are eight parameters. The field redefinition freedom allows us to choose the eight arbitrary couplings in
many different schemes. The above is one particular scheme. The above parameters have been found in [20] by the S-matrix
method. We are going to show that the proposed T-duality constraint can fix these parameters up to an overall factor.
To impose the T-duality constraint on the couplings in (14), one should reduce it on the background with the Uð1Þ

isometry as in the previous section. The reduction of the terms in the last line can easily be read from the reductions of the
corresponding terms in (6) and (7). When the base space is flat, the reduction of the first, the second, the third, the fourth,
and the fifth terms in (14) are

first ¼ ∂μ∂vφð∂μ∂vφþ ∂μφ∂νφÞ 1
4
ð∂μφ∂μφÞ2 þ e2φ

�
5

8
Vμ

νVμαVα
βVνβ þ

3

8
ðV2Þ2

�

þ eφ
�
∂μVναð∂μVνα þ 3∂μφVναÞ − ð∂μ∂νφ − ∂μφ∂νφÞVμαVν

α þ
3

2
∂μφ∂μφV2

�
;

second ¼ −e−φð2∂μ∂νφþ ∂μφ∂νφÞWμαWν
α −

1

2
eφðH̄μα

γH̄νβγ þ H̄μν
γH̄αβγÞVμνVαβ

þ 2H̄ναβð∂μVναWμβ þ ∂μφVναWμβ þ ∂νφVμαWμ
βÞ − 1

2
VμνVαβðWμαWνβ þWμνWαβÞ þ VμαVμβWβ

νWα
ν;

third ¼ H̄μ
βγH̄μναH̄νβ

λH̄αγλ þ 3e−2φWμ
αWμνWν

βWαβ þ 6e−φH̄μα
γH̄νβγWμνWαβ;

fourth ¼ H̄μν
λH̄μαγH̄γ

αβH̄λαβ þ 2e−φ½H̄μν
γH̄αβγWμνWαβ þ 2H̄γ

μνH̄βμνWα
βWαγ� þ e−2φ½4Wμ

βWμνWν
αWβα þ ðW2Þ2�;

fifth ¼
�
∂μϕ̄∂νϕ̄þ 1

2
∂μϕ̄∂νφþ 1

16
∂μφ∂νφ

�
ðH̄μαβH̄ν

αβ þ 2e−φWμαWν
αÞ: ð15Þ

As expected, all terms on the right-hand side are invariant underUð1Þ ×Uð1Þ gauge transformations. Under parity H̄ andW
are odd and all other fields are even. All above terms are even under the parity because the original terms in (14) are even.
Note that each V has a factor of eφ=2 and each W has a factor of e−φ=2.
The T-duality constraint is that the reduction of the effective action (14) must be invariant under T-duality transformation

up to some boundary terms. If the T-duality transformations at order α0 are only the Buscher rules (4), then one finds

δS1≡S1−S10 ¼−
2

κ2

Z
dD−1xe−2ϕ̄

��
b1∂μ∂νφ∂μφ∂νφþb8∂μϕ̄∂μϕ̄∂νϕ̄∂νφþ 1

16
b8∂μφ∂μφ∂νφ∂νϕ̄

þ1

2
b7∂μϕ̄∂μφH̄2þ1

2
b5∂μϕ̄∂νφH̄μαβH̄ν

αβþb1eφ∂μVνα∂μVνα−2b2∂μWναH̄ναβVμ
β

−6b6eφH̄2V2−4b4eφH̄αβγH̄ν
βγVμ

νVμαþ3b1eφ∂μVνα∂μφVναþeφ
�
ð−b1−2b2Þ∂μ∂νφ−2b5∂μϕ̄∂νϕ̄þb5∂μϕ̄∂νφ

þ
�
b1þb2−

b5
8

�
∂μφ∂νφ

�
VμαVν

αþeφ
�
−3b7∂μϕ̄∂μϕ̄þ3

2
b7∂μϕ̄∂μφþ 3

16
ð8b1−b7Þ∂μφ∂νφ

�
V2

þ2b2∂μφH̄αβνVαβWμνþe2φ
��

5

8
b1−3b3−4b4

�
Vμ

βVμνVν
αVβαþ

�
3

8
b1−9b6−b4

�
ðV2Þ2

�

−eφ
��

b2
2
þ6b3

�
H̄μα

γH̄νβγþ
�
b2
2
þ2b4

�
H̄μν

γH̄αβγ

�
VμνVαβ

�
− ½φ→−φ;V↔W�

�
: ð16Þ
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Note that δS1 is odd under the Buscher rules. One observes
that constraining the integrand to be a total derivative term
would constrain all coefficients in (14) to be zero. To clarify
this point, we note that the total derivative terms in (D − 1)-
spacetime must have the following structure:

J ¼
Z

dD−1x∂μðe−2ϕ̄JμÞ; ð17Þ

where the vector Jμ should be a parity invariance, it
should be odd under the Buscher rules, and it should be
invariant under the Uð1Þ ×Uð1Þ gauge transformations.
This vector, which is at three-derivative order, is made
of ∂φ; ∂ϕ̄; H̄; eφ=2V; e−φ=2W, and their derivatives. Hence,
the four-derivative terms in (16), which contain only
H̄; eφ=2V; e−φ=2W, have no contribution from the total
derivative terms. The coefficients of these terms must be
zero. Moreover, since there is no term with the derivative of
H̄ in (16), the total derivative terms cannot produce the
terms with H̄; hence, the coefficients of the term in (16)
which have H̄ must be zero. These two constraints force the
coefficients b1;…; b7 to be zero. Removing these coef-
ficients from (16), there remains two terms with coefficient
b8 which contains only first derivatives ∂φ and ∂ϕ̄. They
cannot be written as a total derivative term because total
derivative terms must include at least one term with a
second derivative. Hence, b8 is also zero.
Therefore, to have nonzero effective action, one has to

assume the T-duality transformations (4) to receive higher-
derivative corrections [14–16]. At order α0, the T-duality
transformations should be

φ0 ¼ −φþ α0Δφ; g0μ ¼ bμ þ α0eφ=2Δgμ;

b0μ ¼ gμ þ α0e−φ=2Δbμ; ḡαβ0 ¼ ḡαβ þ α0Δḡαβ;

H̄αβγ
0 ¼ H̄αβγ þ α0ΔH̄αβγ; ϕ̄0 ¼ ϕ̄þ α0Δϕ̄; ð18Þ

where Δφ;…;Δϕ̄ contains some contractions of
∂φ; ∂ϕ̄; eφ=2V; e−φ=2W; H̄, and their derivatives at order
α0. We have multiplied the factors of eφ=2 and e−φ=2 to Δgμ
and Δbμ, respectively. As we will see, this makes it explicit
to have a factor of eφ=2 in front of eachV and a factor of e−φ=2

in front of each W in the T-duality transformation of (10).

Since H̄ is not the field strength of a two-form, it is
convenient to consider the T-duality transformation of the
three-form H̄. The deformation ΔH̄μνα, however, is not
independent of the deformations Δgμ and Δbμ [16]. The T-
dual field H̄0must satisfy the sameBianchi identity as H̄, i.e.,

∂ ½μH̄0
ναβ� ¼ −

3

2
V 0
½μνW

0
αβ�: ð19Þ

Using the T-duality transformations (18), one finds at order
α0 the corrections ΔH̄;Δg;Δb satisfy the following differ-
ential equation:

∂ ½μΔH̄ναβ� ¼ −3∂ ½μðVναeφ=2Δgβ�Þ − 3∂ ½μðWναe−φ=2Δbβ�Þ;
ð20Þ

where we have used the fact that the exterior derivative of V
andW is zero. This leads to the following relation between
ΔH̄ and Δg;Δb:

ΔH̄μνα ¼ α19∂ ½μðWν
βVαβ�Þ − 3eφ=2V ½μνΔgα�

− 3e−φ=2W½μνΔbα�; ð21Þ

where α19 is an arbitrary parameter.
The T-duality transformations (18) should form

a Z2-group [17]. This indicates that the corrections
Δφ;Δϕ̄;Δḡ;Δg;Δb;ΔH̄ must satisfy the following con-
straints:

Δφ − Δφjφ→−φ;V→W;W→V ¼ 0;

Δϕ̄þ Δϕ̄jφ→−φ;V→W;W→V ¼ 0;

Δḡþ Δḡjφ→−φ;V→W;W→V ¼ 0;

Δbþ Δgjφ→−φ;V→W;W→V ¼ 0;

Δgþ Δbjφ→−φ;V→W;W→V ¼ 0;

ΔH̄ þ ΔH̄jφ→−φ;V→W;W→V ¼ 0: ð22Þ

Now, we consider the T-duality constraint on the
effective actions (1) and (14) using the T-duality trans-
formations (18). The T-duality transformation of action (1)
is now

δS0 ≡ S0 − S00 ¼ −
2α0

κ2

Z
dD−1xe−2ϕ̄

�
−
�
−2∂μ∂νϕ̄þ 1

4
∂μφ∂νφþ 1

4
H̄μαβH̄ν

αβ þ
1

2
eφVμαVν

α þ
1

2
e−φWμαWν

α

�
Δḡμν

−
�
2∂α∂αϕ̄ − 2∂αϕ̄∂αϕ̄ −

1

8
∂αφ∂αφ −

1

24
H̄2 −

1

8
eφV2 −

1

8
e−φW2

�
ðημνΔḡμν − 4Δϕ̄Þ

þ
�
1

2
∂μ∂μφ − ∂μϕ̄∂μφ −

1

4
eφV2 þ 1

4
e−φW2

�
Δφ − e−φ=2ð−∂νWμν þ 2∂νϕ̄Wμν þ ∂νφWμνÞΔgμ

− eφ=2ð−∂νVμν þ 2∂νϕ̄Vμν − ∂νφVμνÞΔbμ þ
1

6
H̄μναΔH̄μνα

�
; ð23Þ
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where we have used the relations (22), removed
some total derivative terms, and used the leading
order T-duality constraint (12). We have also absorbed
the overall coefficient c1 in the arbitrary parameters in
Δφ;Δϕ̄;Δḡ;Δg;Δb;ΔH̄. In finding the above result for
Δḡμν we assumed the metric of the base space is ḡμν and
then use the T-duality transformations (18). At the end we
set ḡμν ¼ ημν. Note that the extra factors of eφ=2 and e−φ=2 in

(18) make it possible to have a factor of eφ=2 in front of each
V and a factor of e−φ=2 in front of each W. Note that δS0 is
odd under the Buscher rules.
Since the terms in (16) are all invariant under

the parity, the most general forms of the corrections
Δφ;Δϕ̄;Δḡ;Δg;Δb satisfying the constraints (22) and
making the terms in (23) to be even under the parity are

Δφ ¼ α1∂μ∂μϕ̄þ α2∂μϕ̄∂μϕ̄þ α3∂μφ∂μφþ α4H̄2 þ α5ðeφV2 þ e−φW2Þ;
Δϕ̄ ¼ α6∂μ∂μφþ α7∂μφ∂μϕ̄þ α8ðeφV2 þ e−φW2Þ;

Δḡμν ¼ α9∂μ∂νφþ α10ð∂μφ∂νϕ̄þ ∂νφ∂μϕ̄Þ þ α11ðeφVμ
αVνα − e−φWμ

αWναÞ þ ημν½α12∂α∂αφþ α13∂αφ∂αϕ̄

þ α14ðeφV2 − e−φW2Þ�;
Δgμ ¼ α15e−φ=2∂νWμν þ α16eφ=2H̄μναVνα þ α17e−φ=2∂νϕ̄Wμν þ α18e−φ=2∂νφWμν;

Δbμ ¼ −α15eφ=2∂νVμν − α16e−φ=2H̄μναWνα − α17eφ=2∂νϕ̄Vμν þ α18eφ=2∂νφVμν; ð24Þ

where α1;…;α18 are arbitrary parameters. If δS1 were odd under the parity, then the correctionsΔφ;Δϕ̄;Δḡ;Δg;Δb would
contain terms that have opposite parity.
When one replaces (24) into (23), one would find that for some specific relations between the parameters, δS0 becomes

zero. That indicates that not all the parameters in (24) produce nonzero δS0. We are not going to write (24) in terms of the
parameters that produce nonzero δS0 and then impose the T-duality constraint. Instead, we first impose the T-duality
constraint on all parameters and then remove the terms that produce zero δS0.
The T-duality transformation of action (14) under (18) produce the same terms as in (16) plus some terms at a higher

order of α0 in which we are not interested. Hence, the T-duality constraint at order α0 requires δS0 þ δS1, where δS0 is given
in (23) and δS1 is given in (16), to be a boundary term. This constraint produces some algebraic equations that their solution
fixes the coefficients of both the effective action (14) and the corrections to the Buscher rules. We have found that for the
following parameters:

b2 ¼ −
b1
2
; b3 ¼

b1
24

; b4 ¼ −
b1
8
; b5 ¼ b6 ¼ b7 ¼ b8 ¼ 0;

α2 ¼ 8α14 − α1; α3 ¼ 2b1 þ
−α14
2

−
α1
16

; α4 ¼ −
5α14
6

−
α1
48

; α5 ¼ 2b1 −
3α14
2

−
α1
16

;

α6 ¼ −12α14 −
α1
16

; α7 ¼ 24α14 þ
α1
8
; α8 ¼

b1
2
þ 6α14 þ

α1
32

;

α9 ¼ 0; α10 ¼ 0; α11 ¼ 2b1; α12 ¼ −2α14; α13 ¼ 4α14;

α15 ¼ 2b1; α16 ¼ b1; α17 ¼ −4b1; α18 ¼ 0; α19 ¼ −12b1; ð25Þ

the T-duality transformation δS0 þ δS1 is a total derivative (17) with the following vector:

Jμ ¼ −b1∂μφ∂νφ∂νφþ b1eφð2∂αVαβVμβ − 2∂αVμβVαβ − 4∂αϕ̄VμβVαβ − ∂μφV2Þ
þ b1e−φð−2∂αWαβWμβ þ 2∂αWμβWαβ þ 4∂αϕ̄WμβWαβ − ∂μφW2Þ; ð26Þ

which is odd under the Buscher rules and is even under the parity, as expected because δS0 þ δS1 is also odd under the
Buscher rules and is even under the parity.
The most important part of the results (25) is that they fix uniquely all eight parameters in the D-dimensional action (14)

in terms of b1, i.e.,

S1¼
−2b1
κ2

α0
Z

dDxe−2Φ
ffiffiffiffiffiffiffi
−G

p �
RabcdRabcd−

1

2
RabcdHabeHcd

eþ
1

24
HfhgHf

a
bHh

b
cHg

c
a−

1

8
Hf

abHhabHfcgHh
cg

�
: ð27Þ
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Up to the overall factor b1, the above couplings
are the standard effective action of the bosonic string
theory which has been found in [20] by the S-matrix
calculations. This action now is invariant under
T-duality.
When replacing the relations (25) into (18), one finds the

following corrections to the Buscher rules:

Δḡμν¼2b1ðeφVμ
αVνα−e−φWμ

αWναÞ;

Δϕ̄¼b1
2
ðeφV2−e−φW2Þ;

Δφ¼2b1ð∂μφ∂μφþeφV2þe−φW2Þ;
Δgμ¼b1ð2e−φ=2∂νWμνþeφ=2H̄μναVνα−4e−φ=2∂νϕ̄WμνÞ;
Δbμ¼−b1ð2eφ=2∂νVμνþe−φ=2H̄μναWνα−4eφ=2∂νϕ̄VμνÞ;

ΔH̄μνα¼12b1∂ ½μðWν
βVαβ�Þ

−3eφ=2V ½μνΔgα�−3e−φ=2W½μνΔbα�: ð28Þ

The corrections Δḡμν;Δϕ̄;Δφ have also some terms that
depend on α1, α14. They are

Δ̃ḡμν ¼ α14ð−2∂α∂αφþ 4∂αϕ̄∂αφþ eφV2 − e−φW2Þημν;

Δ̃ ϕ̄ ¼
�
6α14 þ

1

32
α1

�
ð−2∂μ∂μφþ 4∂μϕ̄∂μφ

þ eφV2 − e−φW2Þ;

Δ̃φ ¼ α14

�
8∂μϕ̄∂μϕ̄ −

1

2
∂μφ∂μφ −

5

6
H̄2

−
3

2
eφV2 −

3

2
e−φW2

�
þ α1

�
∂μ∂μϕ̄ − ∂μϕ̄∂μϕ̄

−
1

16
∂μφ∂μφ −

1

48
H̄2 −

1

16
eφV2 −

1

16
e−φW2

�
:

ð29Þ

However, replacing Δ̃ḡμν; Δ̃ ϕ̄; Δ̃φ into (23), one would
find δS0 becomes zero. That is the reflection of the fact that
the parameters α1;…; α18 in (23) do not all produce
nonzero δS0. To consider the parameters that produce
nonzero δS0, one has to set these two parameters to zero.
Hence,

Δ̃ḡμν ¼ Δ̃ ϕ̄ ¼ Δ̃φ ¼ 0: ð30Þ

This ends our illustration that the T-duality constraint on
the effective action (14) can fix both the effective action and
the corresponding corrections to the Buscher rules up to the
overall factor of b1.
A similar T-duality constraint has been used in [21] by

reducing the effective action (14) to one dimension.
In that approach, however, not all parameters in (14)
are fixed up to an overall factor because some of the
terms in (14) become zero when reducing them to one
dimension [21].

B. Effective action in arbitrary scheme

The corrections to the Buscher rules depend on the
scheme that one uses for the effective action. The
corrections (28) correspond to the effective action
(27). If we had started with the effective action (14)
in a different scheme, then the T-duality constraint would
fix the eight arbitrary parameters in the action and the
corresponding corrections to the Buscher rules up to an
overall factor.
The field redefinitions have been used to write the

effective action (14) in terms of only eight parameters. If
one does not use the field redefinition to reduce the
independent couplings, then the effective action would
have the following 20 terms [20]:

S1 ¼
−2α0

κ2

Z
dDxe−2Φ

ffiffiffiffiffiffiffi
−G

p
½a1RabcdRabcd þ a2ðH2Þ2 þ a3HfghHf

a
bHg

b
cHh

c
a þ a4RabHacdHb

cd

þ a5RabRab þ a6RH2 þ a7R2 þ a8RabcdHabeHcd
e þ a9HacdHb

cd∂aΦ∂bΦþ a10Rab∂aΦ∂bΦ

þ a11R∂aΦ∂aΦþ a12H2∂aΦ∂aΦþ a13∇a∇aΦ∂bΦ∂bΦþ a14ð∂aΦ∂aΦÞ2 þ a15H2∇a∇aΦ

þ a16Habc∇dHdab∂cΦþ a17∇aHabc∇dHbcd þ a18R∇a∇aΦþ a19HacdHb
cd∇a∇bΦ

þ a20Hf
abHgabHfchHg

ch�: ð31Þ

Apart from the unambiguous coefficients a1, a3, a8 which are not changed under field redefinitions, all other
coefficients are ambiguous because they are changed under field redefinitions. There are five parameters in the
ambiguous parameters which are essential and all others are arbitrary parameters. If one does not use the field
redefinitions, one would not be able to distinguish between the essential and the arbitrary parameters. This
distinction, however, can be found by imposing the T-duality constraint on (31). We find that the T-duality constraint
can fix the three unambiguous parameters in terms of one of them, and the 17 ambiguous parameters in terms of 11
arbitrary parameters.
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Using the same steps as in the previous subsection, one finds that the T-duality constraint on the above action produces
the following relations:

a17 ¼ −
a16
4

; a3 ¼
a1
24

; a4 ¼ −
a10
16

þ 3a12
4

þ 3a13
32

þ 5a14
64

þ 9a15
10

þ 36a2
5

−
24a20
5

−
3a1
5

−
a19
10

;

a5 ¼
a10
4

− 3a12 þ
2a19
5

þ 16a20
5

−
18a15
5

−
144a2
5

þ 2a1
5

−
3a13
8

−
5a14
16

;

a6 ¼ −
a10
48

þ a12
4

þ a13
12

þ 5a14
96

þ a15
2

−
a18
8

−
5a11
48

; a7 ¼
a11
4

þ a18
2

−
a13
8

−
a14
16

;

a8 ¼ −
a1
2
; a9 ¼ −3a12 − a16 þ

2a19
5

þ 16a20
5

−
18a15
5

−
144a2
5

þ 2a1
5

−
3a13
8

−
5a14
16

;

α15 ¼
a10
8

þ a16
2

þ a19
5

þ 8a20
5

−
3a12
2

−
9a15
5

−
72a2
5

þ 11a1
5

−
3a13
16

−
5a14
32

;

α16 ¼ −
a16
4

− 4a20 þ
a1
2
; α17 ¼ −a16 þ 2a19 þ 16a20 − 2a1;

α18 ¼ −
3a10
16

þ 9a12
4

þ 9a13
32

þ 15a14
64

þ 27a15
10

þ 108a2
5

−
a16
2

−
4a19
5

−
32a20
5

−
4a1
5

;

α11 ¼
a10
8

þ a19
5

−
3a12
2

−
9a15
5

−
72a2
5

−
32a20
5

þ 6a1
5

−
3a13
16

−
5a14
32

;

α9 ¼
a10
4

− 3a12 þ
12a19
5

þ 96a20
5

−
18a15
5

−
144a2
5

þ 12a1
5

−
3a13
8

−
5a14
16

;

α12 ¼
5a10
16

þ 5a11
4

þ 5a18
4

þ 2a19
5

þ 16a20
5

−
15a12
4

−
324a2
5

þ 2a1
5

−
51a15
10

−
35a13
32

−
45a14
64

;

α10 ¼ −6a12 þ
4a19
5

þ 32a20
5

−
3a13
4

−
36a15
5

−
288a2
5

þ 4a1
5

−
5a14
8

;

α13 ¼ −
a10
8

þ 15a12
2

þ 11a13
16

þ 13a14
32

þ 51a15
5

þ 648a2
5

−
a11
2

−
a18
2

−
4a19
5

−
32a20
5

−
4a1
5

;

α6 ¼
15a10
8

þ 15a11
2

þ 31a18
4

þ 12a19
5

þ 96a20
5

−
45a12
2

−
153a15

5
−
1944a2

5

þ 12a1
5

−
105a13
16

−
135a14
32

; α7 ¼ −
3a10
4

− 3a11 þ
81a12
2

þ 55a13
16

þ 63a14
32

þ 279a15
5

− 3a18 þ
3672a2

5
−
16a19
5

−
128a20

5
−
16a1
5

;

α2 ¼ −
a10
4

− a11 − 9a12 þ
3a13
8

þ 5a14
16

− a18 þ
8a19
5

þ 144a2
5

þ 64a20
5

−
42a15
5

þ 8a1
5

;

α3 ¼ −
15a10
64

þ 33a12
16

þ 69a13
128

þ 99a14
256

þ 93a15
40

þ 63a2
5

−
52a20
5

−
13a19
10

þ 7a1
10

−
7a11
16

−
7a18
16

;

α4 ¼
5a10
192

þ 5a11
48

þ 5a18
48

−
123a2
5

−
4a20
15

−
5a12
16

−
a19
30

−
a1
30

−
33a15
40

−
15a14
256

−
35a13
384

;

α5 ¼
5a10
64

þ a11
16

þ a18
16

− 45a2 − 4a20 þ
3a1
2

−
15a15
8

−
15a12
16

−
19a13
128

−
29a14
256

;

α8 ¼
3a10
128

þ 3a15
80

þ a18
32

þ a19
10

−
6a20
5

−
27a2
10

þ 7a1
20

−
9a12
32

−
9a13
256

−
15a14
512

; α19 ¼ −12a1; ð32Þ

where the unambiguous parameters a1 are not fixed, and the 11 ambiguous parameters a2, a10, a11, a12, a13, a14, a15, a16,
a18, a19, a20 remain arbitrary. Any specific value for these parameters, gives the effective action in one particular scheme.
For the special case that the parameters are

MOHAMMAD R. GAROUSI PHYS. REV. D 99, 126005 (2019)

126005-8



a2 ¼
a1
144

; a10 ¼ −16a1; a11 ¼ 8a1; a12 ¼
2a1
3

; a13 ¼ 16a1; a14 ¼ −16a1;

a15 ¼ −
2a1
3

; a16 ¼ 0; a18 ¼ 0; a19 ¼ 2a1; a20 ¼ −
a1
8
; ð33Þ

one finds the effective action (31) becomes

S1 ¼
2α0a1
κ2

Z
dDxe−2ϕ

ffiffiffiffiffiffiffi
−G

p �
−R2

GB þ 16

�
Rab −

1

2
gabR

�
∂aϕ∂bϕ − 16∇2ϕð∂ϕÞ2 þ 16ð∂ϕÞ4

þ 1

2

�
RabcdHabeHcd

e − 2RabH2
ab þ

1

3
RH2

�
− 2

�
∇a∂bϕH2

ab −
1

3
∇2ϕH2

�
−
2

3
ð∂ϕÞ2H2

−
1

24
HfghHf

a
bHg

b
cHh

c
a þ 1

8
H2

abH
2ab −

1

144
ðH2Þ2

�
; ð34Þ

where R2
GB ¼ RabcdRabcd − 4RabRab þ R2 and H2

ab ¼
Ha

cdHbcd. This action has been found in [19]. Replacing
(33) into (32), one finds the corresponding T-duality trans-
formations to be

Δḡμν ¼ 0;

Δϕ̄ ¼ 0;

Δφ ¼ a1ð∂μφ∂μφþ eφV2 þ e−φW2Þ;
Δgμ ¼ a1ð2e−φ=2∂νφWμν þ eφ=2H̄μναVναÞ;
Δbμ ¼ a1ð2eφ=2∂νφVμν − e−φ=2H̄μναWναÞ;

ΔH̄μνα ¼ 12a1∂ ½μðWν
βVαβ�Þ − 3eφ=2V ½μνΔgα�

− 3e−φ=2W½μνΔbα�: ð35Þ

These transformations are exactly those that have been found
in [16].
We have seen that the T-duality constraint cannot fix the

overall factor b1 in (27) or a1 in (34). This is as expected
because the bosonic, the heterotic, and the superstring
theories all have the same T-duality but they have different
overall factors. In fact, a1 ¼ b1 ¼ −1=16 for bosonic
theory, a1 ¼ b1 ¼ −1=32 for heterotic theory, and a1 ¼
b1 ¼ 0 for superstring theory. If the T-duality constraint
could fix the overall factor, then the effective action that the
T-duality constraint generated would not be the correct
effective action of all bosonic, heterotic, and superstring
theories at order α0.
The heterotic theory has another term at the four-

derivative level, i.e.,

S1 ⊃ −
2c1α0

κ2

Z
d10xe−2Φ

ffiffiffiffiffiffiffi
−G

p �
−
1

6
HabcΩabc

�
: ð36Þ

This term results from the Green-Schwarz anomaly can-
cellation mechanism [22] which requires the nonstandard
gauge transformation of the B-field, i.e.,

Bab → Bab þ ∂ ½aλb� þ α0∂ ½aΛi
jωb�ji; ð37Þ

where Λi
j is the matrix of the Lorentz transformations and

ωbi
j is the spin connection. Under this transformation the

three-formHabcþα0Ωabc is invariant, i.e.,Habcþα0Ωabc→
Habcþα0Ωabc. The Chern-Simons three-form Ω is

Ωabc ¼ ω½aij∂bωc�ji þ
2

3
ω½aijωbj

kωc�ki;

ωai
j ¼ ∂aebjebi − Γab

cecjebi; ð38Þ
where eaiebjηij ¼ Gab. We have imposed the T-duality
constraint on this action and found that it is invariant under
the T-duality transformation (18) provided that Δḡμν ¼
Δφ̄ ¼ 0 and

Δφ ¼ c1
6
VμνWμν;

Δgμ ¼ −
c1
12

�
eφ=2∂νφVμν −

1

2
e−φ=2H̄μναWνα

þ eφ=2ω̄μναVνα

�
;

Δbμ ¼ −
c1
12

�
e−φ=2∂νφWμν þ

1

2
eφ=2H̄μναVνα

− e−φ=2ω̄μναWνα

�
;

ΔH̄μνα ¼ −3eφ=2V ½μνΔgα� − 3e−φ=2W½μνΔbα�; ð39Þ

where ω̄μνα is a nine-dimensional spin connection. In
finding the above result, we did not assume that the base
space is flat. As expected, the parity of the above terms are
different from the corresponding terms in (28) because the
parity of their corresponding actions is different.
We have shown in this paper that the T-duality constraint

when the B-field is not zero can be used to find both the
effective action and its corresponding T-duality transforma-
tions at order α0. It would be interesting to extend these
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calculations to the orders α02; α03 as their effective actions are
not known in the literature. WhenB-field is zero, it has been
shown in [17,18] that theT-duality constraint reproduces the
known couplings in the literature.
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