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Strategies of tenogenic differentiation of
equine stem cells for tendon repair: current
status and challenges
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Abstract

Tendon injuries, as one of the most common
orthopedic disorders, are the major cause of early
retirement or wastage among sport horses which
mainly affect the superficial digital flexor tendon
(SDFT). Tendon repair is a slow process, and tendon
tissue is often replaced by scar tissue. The current
treatment options are often followed by an
incomplete recovery that increases the susceptibility
to re-injury. Recently, cell therapy has been used in
veterinary medicine to treat tendon injuries, although
the risk of ectopic bone formation after cell injection
is possible in some cases. In vitro tenogenic induction
may overcome the mentioned risk in clinical
application. Moreover, a better understanding of
treatment strategies for musculoskeletal injuries in
horse may have future applications for human and
vice versa. This comprehensive review outlines the
current strategies of stem cell therapy in equine
tendon injury and in vitro tenogenic induction of
equine stem cell.

Keywords: Horse, Tendinopathy, Cell therapy, Stem
cell, Cell differentiation, Tissue engineering

Background
Tendons are dense connective tissues that connect the
muscles to the bones and transfer forces generated by the
muscles to the bones for locomotion. The extracellular
matrix (ECM) of the tendon, which is mainly composed of
type I collagen fibrils, is turned over by tenocytes which are
responsible for the synthesis of collagen and extracellular
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matrix components [1]. Tenocytes, being terminally differ-
entiated, are elongated cells with extended nuclei within
the fascicles. In addition to tenocytes, tendons contain
stem/progenitor cells (TSPCs) as roundly shaped with ovi-
dal nucleus between the fascicles. In general, the location of
different types of TSPCs is poorly understood and defined
but they are most likely limited to endotenon and adjacent
to the vasculature [2]. A number of critical transcription
factors in tendon development and differentiation have
been identified. Scleraxis (SCX) is required for the gener-
ation of tendon progenitors whereas Mohawk (MKX) and
early growth response 1 and 2 (Egr1/2) are involved in
tendon differentiation and the regulation of genes en-
coding tendon-specific ECM proteins such as COL1,
COL3, and TNMD [3, 4].
It has been reported that up to 46% of musculoskeletal

injuries are tendon injuries including tendinopathy [5].
Most of the tendinopathy cases have been caused by a
combination of intrinsic and extrinsic factors, including
age, gender, disease, occupation, and physical training.
Tendinopathy consists of a series of reactions caused by
physical overuse. If physical overuse persists, eventually, a
defective healing response to accumulated micro-injuries
led to degenerative tendinopathy. Persistent hypoxia is
one of the major drivers of tendinopathy following the up-
regulation of expression of vascular endothelial growth
factor (VEGF) which induces the expression of matrix me-
talloproteinases (MMPs) resulting in degradation of the
tendon matrix [6]. Recently, it has been increasingly ac-
cepted that inflammation and degeneration may not be
considered to be two separate processes in tendinopathy.
Tendinopathy can be classified as either acute, due to ex-
cessive overload, or chronic, due to degenerative condition
that is persistent over time [7]. A tendinopathy therefore
can include tendon injuries such as paratenonitis, tendon-
itis, and tendinosis [8].
Injury of superficial digital flexor tendon (SDFT) is one

of the most frequent causes of lameness and wastage in
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racehorses [9]. The process of tendon healing is slow; this
poor healing ability happens due to its hypo-vascularity in
tandem with hypo-cellularity. The scar formation and ec-
topic mineralization after tendon injury can induce rup-
ture in the tendon of predisposed horse and happen
through increased expression of collagen type III (COL3)
that has smaller fibers and fewer crosslink compared to
collagen type I (COL1) leading to inferior mechanical
properties [10, 11]. The current treatment options result
in pain relief or replacement of the injured tissue that
remained as a clinical challenge to achieve a functional tis-
sue. In recent years, stem cell therapy has received in-
creasing attention as an alternative therapeutic option.
The identification and characterization of appropriate
sources of cells are required to achieve more effective re-
pair or regeneration of injured tendons.
The objective of the current review is presenting a

summary of recent studies in order to inform the reader
firstly about various aspects of stem cell therapy for ten-
don injury in horse and secondly about the current strat-
egies for defining the optimal conditions for in vitro
equine tenogenic differentiation.

Use of undifferentiated stem cells for repair of
tendon injury
Bone marrow-derived MSCs
In 2003 for the first time, Smith et al. implanted 6.4 ×
105 of autologous bone marrow-derived mesenchymal
stem cells (BM-MSCs) into SDFT of horse that had suf-
fered a strain-induced injury. There was no observable
swelling of the limb and no lameness at the walk; also,
the ultrasonographic images revealed the lesion filled
with granulation fibrous tissue and no adverse effects in
healing tendon was observed; the case study opened the
door to further researches. Although most of the clinical
investigations has shown promising results of BM-MSC
injection into SDFT defects, there are possible disadvan-
tages including painful procedures of BM harvesting,
long periods of cell expansion, increasing donor age,
passage number that reduces differentiation potential,
and possible bone formation following BM-MSC injec-
tion [12, 13]. Moreover, the injection of large volumes of
BM not only contains a small number of MSCs but also
might disrupt the intact tendon tissue [12].

Adipose tissue-derived mesenchymal stem cells
Adipose tissue-derived MSCs (ASCs) are the most abun-
dant and accessible source of MSCs. In addition, yielding
higher numbers of MSCs derived from equivalent amounts
of fat versus bone marrow provides another advantage in
using ASCs. ASCs have also attracted great attention as the
best candidate for cell therapy due to their ability to pro-
duce and secret ECM component and cytokines [14]. For
the first time in an animal trial study, the positive influence

of ASCs on tendon repair in horse is reported by Nixon et
al. [15] as described in Table 1. Moreover, ASCs showed
the greatest expression of the component of tendon
ECM in comparison with MSCs from other sources and
may be a promising cell source for the treatment of
equine tendinopathy [33].

Umbilical cord blood-derived MSCs
Equine MSCs derived from the umbilical cord blood
(UCB) or tissue (UCT) were first characterized by Koch
et al. [34] and Hoynowski et al. [35]. Although autolo-
gous UCB-MSCs need a long initial culture to obtain a
sufficient number of MSCs prior to use, allogeneic cul-
tured cells can overcome this limitation as an alternative
approach. Therefore, access to allogeneic UCB-MSC
banking in analogy with a human can increase the
chance of equine cell therapy [36]. In addition to the ad-
vantage of non-invasive collection, it has been demon-
strated that expression of scleraxis (SCX) is similar to
that of tendon-derived MSCs (TDSCs) in undifferenti-
ated, monolayer-cultured at passage 3 [37].

Tendon-derived MSCs
A current study has shown TDSCs (also known as tendon
stem/progenitor cells) as an ideal cell type that displayed
tendon-like phenotype and expressed the greatest level of
tendon-related markers compared to other sources of
MSCs for tendon regeneration [38]. Although using
TDSCs showed promising outcomes [32], utilizing them
might be limited due to donor site morbidity, inadequate
cells that need a long period of culturing, and phenotypic
drift during in vitro expansion. To overcome these limita-
tions to some extent, different approaches such as using
three-dimensional (3D) culture systems or the addition of
growth factors have been reported [39, 40].

Embryonic stem-like cells
Embryonic stem-like cells (ESCs) can provide a source
of allogeneic cells for treating tendon injuries in horse.
Unlike human and murine ESCs, equine ESCs have not
been shown to form teratoma [41]. Although ESCs over-
come some practical limitations of autologous MSCs,
they require the destruction of an embryo for being iso-
lated [42]. However, the clinical potential of ESC in the
treatment of tendon injuries is revealed, and the absence
of tumorigenic deviations of these cells remains to be
studied in longer follow-ups [28, 43]. It has recently been
suggested that the ethical and legal issues of ESCs for clin-
ical application can be overcome by induced pluripotent
stem cells (iPSCs). IPSCs maintain an epigenetic memory
of their origin; it can adversely affect their differentiation
potential. The generation of iPSCs from equine fibroblasts
constitutes an important step toward the understanding of
pluripotency in horse and a clinical tool in veterinary
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biomedicine [44, 45]. Moreover, their ability to differenti-
ate into tendon cells has been demonstrated [5].
Taking together, equine MSCs derived from the adi-

pose tissue, umbilical cord blood, and many other tissues
are promising candidates in regenerative medicine. Im-
plantation of MSCs can recruit the other MSCs or pro-
genitor cells toward injury site since they produce a
variety of cytokines and paracrine factors to improve the
regeneration potential [46].

Challenges of stem cell therapy in equine tendon
injury
Although the application of stem cells for tendon healing
is promising, some challenges should be considered in this
field. Efficacy of equine MSC therapy is difficult to be eval-
uated, and it depends on the use of appropriate control
groups, the severity and size of the lesion, time between
injury and implantation, number of stem cell for implant-
ation, models of tendinopathy (e.g., collagenase or surgical
disruption), and opting for single or multiple injection.
Intralesional injection of a cell suspension is the common
approach since the tendon lesions are typically located in
the center of SDFT [47]. Depending on the size and the
severity of lesion, the number of stem cells and the vol-
ume of cell suspension should be estimated prior to injec-
tion. It has been suggested that numbers of MSCs from 10
to 50 × 106 and the injection volume less than 1ml are re-
quired to prevent damage to fibers due to compression
[48]. It has been demonstrated that the best time for cell
therapy is after the inflammatory phase [12]. The number
of injection sites depends on the distribution of the
injected cells, the type of the cells, and the level of damage
observed ultrasonographically [16]. In addition, immuno-
modulatory effects of MSCs are dose and time dependent,
so that different outcomes are reported after single or re-
peated injection [49–52]. There are some concerns about
the use of direct injection of aspirated heterogeneous
mixed cell, for instance a small number of stem cells in a
large volume might disrupt remaining intact tendon tis-
sue; therefore, concentration of aspirate would overcome
this limitation to some extent [12]. Also, cell culture tech-
nique is helpful for re-implantation of large numbers of
MSC [53]. Although transporting the cells to clinic, the
handling step in clinic and injection process including
sheer stress caused by needle wall, needle size, and the use
of other tools for injection influence post-injection cell
viability and differentiation potential by increasing the
number of dead or damaged cells [54]. Twenty-four hours
after injection, more of half of labeled cells are lost, which
may enter the blood circulation due to damages in blood
vessels by injection process and relocate to other injury
sites [23, 55, 56]. Therefore, selection of the implantation
technique as well as reliable techniques for tracking of
transplanted cells is still challenging.

Though some studies have a control group, the lim-
ited sample size in horse studies and the inter-animal
variability of the pathological conditions influence
outcomes. Furthermore, some cases are mixed with
other biological factors such as BM supernatant [17],
autologous serum, platelet-rich plasma (PRP) [19],
and genetically modified MSCs [29]. Extensive in vivo
studies have been conducted on cell therapy for ten-
don injury in the horse (Table 1).

Various strategies for in vitro tenogenic
differentiation of equine stem cells
The result of MSC therapy can be affected by the use of
undifferentiated or differentiated MSCs for tendon re-
pair since the risk of ectopic bone formation after undif-
ferentiated MSC injection in tendon has been reported
[57, 58]. To avoid the abovementioned risk, MSCs would
be induced toward tenogenic differentiation before clin-
ical application [30, 31]. Figure 1 demonstrates a sche-
matic view on our understanding for improving the
tendon regeneration potential in horse. In vitro differen-
tiated stem cells could possibly result in faster regener-
ation after application [31]. In addition, it has been
demonstrated that 24% of injected MSCs were retained
at the site of injury after 24 h and most of the MSCs mi-
grate from the site of injury after transplantation which
might be directed to non-tenocyte differentiation in the
in vivo condition [55]. Different strategies have been de-
scribed to improve the ability of MSC and target sites to
better respond to the homing stimuli and recruitment of
stem cells respectively [59]. Here, we describe different
strategies of recent findings that are often a combination
of different strategies for tenogenic differentiation of
equine stem cells.

Growth factors
Growth factors (GFs) are important signaling molecules,
involving tendon development and differentiation, which
are produced at various stages of tendon healing [60].
The effect of exogenous addition of GFs to cell culture
media, which trigger tenogenic differentiation, is influ-
enced by the delivery of a single or multiple GF, incuba-
tion time, and cell type. Moreover, proper doses of GFs
need to be determined in order to achieve better results.
It should be noticed that small variations in concen-
trations of the GFs can result in considerably different
effects [61]. In addition, they have a short half-life,
which necessitates repeated dosing that poses costly
challenge in their clinical application. Table 2 summa-
rizes the results of in vitro experiments that investi-
gated the role of GFs on tenogenic differentiation of
various stem cells in horse.
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Co-culture system
Tendon regeneration can occur either via the ability of
MSCs to differentiate into tenocytes within the tissue or
via trophic factors produced by MSCs, or a combination of
these two mechanisms [48]. The first study on co-culture
in equine species was reported by Lovati et al. [70]. They
demonstrated that indirect co-culture of equine BM-MSCs
with tendon for 2 weeks could induce tenogenic differenti-
ation. Probably, the paracrine factors released by tendon
could be responsible for the observed effect.
Lange-Consiglio et al. [71] also highlighted the para-

crine effect of possible mechanisms for tendon healing
process. They investigated the effect of immunomodula-
tory of equine amniotic membrane-derived MSCs
(AMCs) both in direct and indirect co-culture systems
and demonstrated that AMCs inhibit the proliferation of
equine peripheral blood mononuclear cells (PBMCs)
after allogeneic stimulation in both culture systems.
They suggested that secreted factors of the conditioned
medium (CM) are responsible for the anti-proliferative
effect; therefore, no cell-to-cell contact was required.
Moreover, injection of AMC-CM in spontaneous tendon
injuries in horse showed no adverse effect such as fi-
brotic, metaplastic, or mineralization. In addition, the
re-injury rate was lower in comparison with untreated
cases after 2 years.
A recent study demonstrated that co-culture of ovine

amniotic epithelial cells (oAECs) with adult equine ten-
don started to aggregate and formed three-dimensional

bundle structure after 28 days with fusiform-aligned
cells, while oAECs cultured alone reached a confluent
monolayer. Furthermore, analyses by reverse transcrip-
tion polymerase chain reaction (RT-PCR) showed similar
expression of COL1, SCX, and COL3 in oAEC co-culture
compared to ovine tendons [26].

Various scaffold parameters
It is well-known that ECM not only provides a mechan-
ical support for cells but also regulates cell behavior. In
addition, cells are responsible for secreting ECM compo-
nents; thus, ECM is dynamic [72]. Recently, in vitro
studies, which have mimicked the dynamic nature of the
ECM, have tried to improve scaffold designing to pro-
mote tenogenic differentiation of equine stem cells as
described here.

Scaffold substrate materials and biomolecule presentation
A primary effort in the development of regenerative medi-
cine is the choice of an appropriate biomaterial scaffold
being able to mimic native ECM for providing an environ-
ment to speed healing or regeneration. Biologic scaffold
materials generate chemotactic molecules through scaf-
fold degradation process to the recruitment of stem cells.
Not only that, they have shown to alter the local innate
immune response, which contributes to tissue repair and
scaffold remodeling [47]. Reed et al. [73] investigated the
effect of three different substrates on tenogenic differenti-
ation and showed equine UCB-MSCs and ASCs cultured

Fig. 1 Schematic overview of the Cell therapy based on utilizing undifferentiated stem cells (a) or differentiated stem cells (b) through various
strategies (c) for tendon injury in horse. Dash line indicated possible applications of differentiated stem cells under different strategies for
tenogenic differentiation
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on gelatin-coated plasticware, 30% matrigel or collagen-
coated beads and treated with a different isomer of fibro-
blast growth factor (FGF) increased SCX expression on

matrigel, especially in ASCs. However, the regulation of
tenogenic gene expression in response to FGF stimulation
is considerably different in the two cell types.

Table 2 Summary of in vitro studies on tenogenic differentiation by growth factors in horse

Growth factor Concentration Other modification Cell source Outcome Reference

TGFB3 20 ng/ml 2D and 3D cultures Tenocytes and ESCs Unlike tenocytes, ESCs
upregulated tendon
markers in 2D culture
and showed synergic
effect with TGFB3 and
3D; no cartilage or bone
tissue deposition

[41, 62]

TGFB3 20 ng/ml 3D collagen gel IPS Reduced expression of
tendon-related marker
of iPSCs in 3D versus 2D
culture

[5]

BMP12 50 ng/ml AF-MSCs Elongated and spindle-
shaped; expressed
TNMD and DCN genes

[63]

BMP12 50 ng/ml BM-MSCs Elongated tenocyte-like
phenotype; expressed
TNMD and DCN genes

[64]

BMP12 50 ng/ml UCB-MSCs Expression of SCX, MKX,
TNM, COL1, and DCN by
RT-PCR; expression of
protein TNM, DCN

[65]

TGFB3, EGF2,
bFGF2, IGF-1

10 ng/ml LLLT PB-MSCs Supplementation with
bFGF2 and TGFB3
upregulated expression
of EGR1, and DCN;
increased TNC with LLLT

[66]

PDGF-BB, IGF-1, bFGF,
SDF-1 α, and GDF-5

5, 50, 5, 50 and 100 ng/ml
respectively

Scaffold Tenocytes Effect of pairing IGF-1,
GDF-5 rescue the tenocyte
phenotype and gene
expression profiles and
driving proliferation

[67]

TGFB1, IGF-1, insulin 10 ng/ml and 50 ng/ml 2D and 3D cultures Tenocyte Pro-tenogenic effect with
3D culture system treated
with GFs

[40]

GDF5, GDF6 and GDF7 10 ng/ml and 100 ng/ml Strain stimulation;
oxygen tension

AD-MSC Expression of tendon-
relevant genes were
higher with an oxygen
tension of 21%, tensile
stimulation and
supplementation
with GDF5 or GDF 7

[68]

IGF-1 100 ng/ml Acellular tendon
matrix

BM-MSCs and TDSCs COL and GAG syntheses
were higher in TDSCs; no
significant difference was
observed in the expression
of COL1, COL3, and COMP
between BM-MSCs and
TDSCs

[69]

TGFB3 2.5 ng/ml Treated with Gremlin
and SOST; nanofiber
scaffold

ASCs Increased tenogenic
markers; decreased
osteo-chondrogenic
markers treated with
T/G/S on nanofiber
scaffold

Our unpublished data

Abbreviations: TGF-β transforming growth factor, BMP bone morphogenetic protein, EGF epidermal growth factor, bFGF fibroblast growth factor, IGF-1 insulin-like
growth factor, PDGF-BB platelet-derived growth factor-BB, GDF growth and differentiation factor, SDF-1 stromal cell-derived factor-1, EGR1 early growth response
protein 1, DCN decorin, COL3A1 collagen type III, COL1A1 collagen type I, TNMD tenomodulin, T/G/S TGFB3/Gremlin/SOST, LLLT low-level laser therapy
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Interactions of growth factors and ECM in regulating
the repair process are important. Many of these growth
factors have been utilized either in the form of bound to
the extracellular matrix (in the sequestered form) or
freely soluble in it. Immobilizing the proteins is import-
ant to develop long-term tissue engineering solutions for
controlling the growth factor delivery, particularly when
increased diffusion or internalization of factors and re-
duced stability biomolecules are observed due to their
short half-life [74, 75]. The effect of delivery method
(e.g., soluble, sequestered) of five biomolecules on the
behavior of equine tenocytes seeded on anisotropic
collagen-glycosaminoglycan (CG) scaffold in tendon re-
generation applications showed that sequestration can
lead to a greater sustained bioactivity compared to sol-
uble supplementation [40].

Three-dimensional scaffolds
As discussed previously, a critical drawback of prolonged
in vitro culturing of tenocytes is the loss of differentiated
function. It has been revealed that three-dimensional
(3D) culture system prevents cellular de-differentiation
to some extent. In this regard, Theiss and colleagues
[40] showed that 3D microtissue system maintains the
tenocyte phenotype in vitro. They also demonstrated
that equine tenocytes retained a more differentiated state
when scaffold-free micro tissue spheroids were embed-
ded in collagen gels.
Barsby et al. [62] indicated that 3D culture enhanced

tenogenic differentiation of equine ESCs seeded into 3D
anchored collagen in comparison with 2D. In addition,
equine tenocytes and ESCs are able to form constructs
resembling artificial tendon by contraction of the matrix.
Moreover, treatment with transforming growth factor
(TGFB3) increased the initial rate of contraction and
had a synergic effect on the upregulation of tendon-
associated gene expression in 3D ESC culture, while the
presence or absence of TGFB3 had no effect on contrac-
tion rate of tenocyte constructs. Although they did not
compare tendon-related marker expression in 2D and
3D culture for equine tenocytes, it seems that 3D culture
could keep the expression of tendon-associate proteins
constant for long-term culture [41, 62]. Comparing the
functional tendon differentiation of iPSCs with ESCs in
3D culture system by the same group showed that ESCs
and iPSCs treated with TGFB3 in 2D culture system up-
regulated tendon-related genes; however, iPSCs delayed
in comparison to ESCs. Furthermore, in contrast to
ESCs, expression of tendon-associated genes with the
exception of COL1 was not detected in iPSCs seeded on
constructs and failed to generate artificial tendons. They
suggested that one of the reasons is epigenetic differ-
ences between iPSCs and ESCs [5].

Decellularization of tendon tissue provides a 3D scaffold
with a native ECM and a similar structure and topography
to the tendon. Different protocols for decellularization of
tendon tissue by using physical or chemical methods have
been investigated [76]. Comparison of some tendon extra-
cellular matrix markers of the cells isolated from
equine bone marrow, tendon, and muscle on tendon
matrix showed that COL1 expression was similar
among different cell sources and TDSCs expressed
highest COL3 expression [77].

Scaffold micro-nano structure
Mechanical properties of scaffold at the macro- and
micro-scales are known to influence the cellular behav-
iors. Accordingly, 3D culture is important to prevent
tenocytes de-differentiating within 2D culture. Recently,
it has been revealed that phenotype of tenocytes is lost
within 3D scaffold. Maintaining a high degree of anisot-
ropy in scaffold to prevent altering cell fate due to loss
of structural stability via cell-mediated contractile forces
is a challenge in tendon tissue engineering [78]. The an-
isotropic CG scaffold with high crosslinking densities
and small pore sizes indicated the increase in bioactivity
of equine tenocytes and resistance to contraction as well
as an increase and maintenance in expression of teno-
genic markers for long-term culture [39].
The nanoscale topography is another factor in scaffold

designing which indicated good results on tenogenic
differentiation. Popielarczyk et al. [79] investigated the
effect of topography on tenogenesis and showed that
nanofiber topography alone can influence the tenogenic
differentiation of equine BM-MSCs. Upregulation in the
expression of tenogenic genes and production of ECM
component was observed in aligned nanofiber scaffold
with both a parallel and perpendicular oriented fibrous.
As mentioned previously, typical equine tendon le-

sions are located in the center of the SDFT surrounded
by almost intact tendon tissue. Therefore, the choice of
a scaffold, delivery of which into equine tendon injury is
easy, should be considered; further studies are needed in
the future.

Mechanical stimulation
The mechanical stimulation is a major parameter in tendon
biology. Conversion of mechanical stimulus into a bio-
mechanical signal results in cell proliferation, differenti-
ation, and ECM synthesis. Different physical environmental
factors, from substrate stiffness to dynamic mechanical
loading, in the form of static tension or cyclic axial
stimulation, may regulate tenogenic stem cell differen-
tiation [1, 80]. Depending on the stimulation regime,
mechanical stress can induce tenogenic or osteogenic
differentiation of stem cells. Raabe et al. [68] exam-
ined the influence of strain as the sole factor or in
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combination with other factors (GFs and O2 tension) in
equine ASCs cultured on collagen I gel scaffold. The re-
sults of uniaxial tensile strain versus no mechanical stimu-
lation showed tendon-like morphology with an alignment
of cells and matrix in the collagen I gel construct. In
addition, comparing the three cyclic strain (0, 3, and 5%)
on tenogenic differentiation made by Youngstrom et al.
[81], equine BM-MSCs seeded on decellularized tendon
scaffold under 3% cyclic strain showed an increased ex-
pression of SCX, COL1, decorin (DCN), and biglycan, as
well as increased ratio of relative COL1 to COL3, and an
increase in elastic modulus and ultimate tensile strength
of construct. However, cyclic axial strain can also increase
the expression of osteogenic markers. In this respect,
equine ASCs were seeded on decellularized tendon matrix
under static and 2% cyclic strain with different stimulation
regime, which showed upregulation of expression of
osteopontin, COL3, and DCN and downregulation of
COL1 in all of the groups compared to that of the mono-
layer control group. Although the expression of SCX at
the last time point was upregulated slightly, a significant
increase was observed under a short period of mechanical
stimulation. They found that the difference between gene
expression in their study and the findings of Youngstrom
et al. is associated with the time points of gene expression
analysis. They also showed that tendon matrix synthesis
and tenogenic differentiation were under moderate mech-
anical stimulation regimes [82].

Laser therapy
Low-level laser therapy (LLLT) is a modality to reduce
inflammation and pain and to accelerate tissue healing.
There is little literature on the controversial outcome of
the use of LLLT for equine tendinopathy. The interpret-
ation of in vivo outcomes is considerably difficult due to
many intervening variables. Recently, several studies
have investigated the in vitro effect of laser irradiation
on the cellular behavior; it depends on laser light wave-
length, energy density, and cell type [83, 84]. Irradiating
equine PB-MSCs with a 660-nm wavelength laser indi-
cated no significant difference in proliferation and differ-
entiation versus the control group, although combination
of some growth factors with LLLT arrested cell prolifera-
tion and enhanced tenogenic differentiation in compari-
son with the other group. The co-treatment of PB-MSCs
with bFGF2 and TGFB3 without LLLT significantly in-
creased the expression of early growth response protein-1
(EGR1) and DCN, while the synergistic effect of GFs with
LLLT significantly increased expression of EGR1, DCN,
and Tenascin C [66].

Genetically modified cells
Several in vitro studies have investigated the role of gene
products in tendon healing by gene delivery growth

factors, transcription factors, and non-coding RNA into
equine stem cells.
BMP12 has been established as a tenogenic growth factor,

and a promising finding of equine stem cells treated with
recombinant BMP12 protein is presented in Table 2.
Furthermore, early cellular effects of equine tenocytes and
BM-MSCs transfected with BMP12 and BMP2 were ob-
served in response to BMP12. The upregulation of COL1
and cartilage oligomeric matrix protein (COMP) expression
was the greatest in tenocytes treated with BMP12 com-
pared to BM-MSCs, and no mineralization detected in both
cell types. It suggested that BMP12 gene delivery might
induce early differentiation in early tendon healing [85].
The role of microRNA (miRNA) has been revealed in

tendinopathy and tendon injury healing. In this regard,
Millar et al. [86] indicated that the expression of COL3
was upregulated in tendinopathy. By contrast, miR-29a
expression was significantly downregulated. Additionally,
in vitro transferring of miR-29a into equine tenocytes
showed the reduced expression of COL3. Moreover, in-
hibition of miR-29a upregulated the expression of COL3.
In fact, miR-29a plays an important role in the regulation
of COL3 expression in tendinopathy. Accordingly, the con-
dition medium of AMCs decreases the pro-inflammatory
genes and appears to demonstrate promising in vivo results
for tendon healing. Indeed, miRNAs, identified in microve-
sicles secreted by equine AMCs, are responsible for these
effects [87].
SCX is a well-known transcription factor in tendon de-

velopment and differentiation, while it has been recently
reported that SCX has a distinct role in different stages
of development and in different cell types. Knockdown
of SCX reduced the expression of COL1, COMP, and
SOX9 in fetal tenocytes, while it made no significant
changes in the expression of their genes in adult teno-
cytes in 2D. Furthermore, adult tenocytes transfected
with shSCX contracted the 3Dcollagen gel, while fetal
tenocytes and ESCs failed to generate artificial tendon
following SCX knockdown. SCX overexpression in fetal
tenocytes, in which SCX had been knocked down
formerly, reversed these effects [88].
As described above, the upregulation of expression of

SCX was observed after physiological loading, but its
mechanoresponse is not well defined. Recently, one
study identified the novel role of SCX in modulating
cytoskeletal tension. Equine tenocytes transfected with
SCX siRNA decreased cytoskeletal stiffness by changing
the focal adhesion-related gene expression and resulted
in an inability to migrate on the soft surface [89].

Oxygen tension
It is well known that oxygen (O2) tension depends on
species, source of tissue, and other factors influencing
the cell behavior. Although the physiological condition
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is hypoxic in some tissues, in vitro culture condition is
routinely normoxic and needs further studies for
standardization of the cell culture [90, 91]. The first ana-
lysis of the influence of oxygen tension on the behavior
of equine MSCs showed that hypoxia reduces the prolif-
erative capacity of cells, while it does not have any effect
on the phenotype of cells, and it appears to keep them
more undifferentiated [90].
Comparison of the influence of normoxic and hypoxic

conditions (3% versus 21% O2 tension) on tenogenic
differentiation of ASCs indicated that the cell morph-
ology was more tendon-like under 21% O2, while the
gene expression of the tendon-relevant markers revealed
no significant differences. The gene expression of COL1
was higher under 21% O2 than 3% O2. Cells were almost
damaged under hypoxic conditions [68].

Conclusion
Taken together, despite the wide range of studies, trans-
lating basic findings to clinical applications is limited; it
is due to some concerns about the risk of bone, tumor,
and scar formation. To fill the gap between experimental
research and clinical applications, reliable and specific
markers for the identification of tenocytes as well as
conducting non-randomized studies with long-term
follow-up periods are deemed necessary for further
evaluation of the efficacy and safety of tendon injury. Fi-
nally, there are great resemblances between equine
superficial digital flexor tendon and human Achilles ten-
don in the size of anatomical structure and load, func-
tion (energy store), pathophysiology of tendon injury,
and the healing response under activity or traumatic
rupture compared to other species [11, 92]. Moreover,
considering the result of induced tendinopathy in equine
species which reflects the conditions encountered in hu-
man, horse is accepted as an appropriate model in this
area by research community and other authorities such
as the US Food and Drug Administration (FDA) and the
European Medicines Agency (EMA) [93]. Moreover, the
high-level analogy between human and equine MSCs
may have a great translational value for both species for
future clinical aspects [93, 94]. As summarized in this
review, utilizing tenogenically induced MSCs through
pretreatment with bioactive compounds and applying
other in vitro strategies may increase cell survival and
the efficacy of cell therapy for tendon repair. Most of the
success achieved in cell therapy in horses with core le-
sions in SDFT has been observed following the intrale-
sional injection due to granulation tissue and the
enclosed nature of core lesions that may have provided
an appropriate scaffold. Therefore, for other forms of
damaged tendon (eccentric lesions), future studies
should optimize cell dose, time, and route of injection
since accurate injection placement and retention of cells

are more problematic [53]. In this case, the use of delivery
vehicle such as different types of scaffold or self-
organizing tendon (3D tendon-like tissue constructs) may
improve stem cell retention at the site of injury with re-
gard to ensuring that implantation of cells should occur
within 24 h of resuspension in culture. In addition, it
should be considered that the individual differences such
as age, genetic factors, and donor health status affect the
properties of MSCs [95]. Hence, the complete molecular
analysis of MSCs in order to their modification seems to
be highly necessary before the clinical application.
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