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Abstract

Violation of the Lorentz symmetry has important effects on physical quantities including field propaga-
tors. Therefore, in addition to the leading order, the sub-leading order of quantities may be modified. In this 
paper, we calculate the next to leading (NLO) radiative corrections to the Casimir energy in the presence 
of two perfectly conducting parallel plates for φ4 theory with a Lorentz-breaking extension. We do the 
renormalization and investigate these NLO corrections for three distinct directions of the Lorentz violation; 
temporal direction, parallel and perpendicular to the plates.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Casimir effect which is a physical manifestation of changes in the quantum vacuum fluc-
tuations for different configurations, was discovered by H.B.G. Casimir in 1948 [1]. He showed 
the existence of this effect as an attractive force between two infinite parallel uncharged per-
fectly conducting plates in vacuum (for a general review on the Casimir effect, see Refs. [2,3]). 
Sparnaay [4] and Arnold et al. [5] experimentally observed the Casimir force for such a con-
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figuration. Also, the other measurements, with greatly improved precisions, have been done for 
various geometries [6–8].

In addition to the leading Casimir energy, the next to leading order (NLO) radiative correc-
tions to this effect is an exciting subject of discussion. The first endeavors to calculate the leading 
radiative corrections to the Casimir energy were reported in [9]. Also, many works on the radia-
tive corrections to the Casimir energy for various cases exist in the literature (see for instance 
[10,11]). In the case of a real massive scalar field, NLO correction to the Casimir energy has 
been computed in [2,12]. We have also calculated one loop radiative corrections to the Casimir 
energy in [13].

In original quantum field theory (QFT), the Lorentz symmetry is preserved. However, there 
are some theories which present models with Lorentz symmetry violation (for example [14,
15]). Naturally, Lorentz symmetry violation arises from, for example, existence of space-time 
anisotropy [16,17] or non-commutativity [18,19] or a spacetime varying coupling constant [20,
21]. Investigations of Casimir effect with Lorentz-breaking symmetry for QED theory have been 
done (see please [22–24]). It has also been studied recently for a real massive scalar field in [25].

In this paper we calculate the NLO correction to the Casimir energy in an interacting scalar 
field theory, λφ4, with a Lorentz violating term. Our configuration is two perfectly conducting 
parallel plates. We work within the renormalized perturbation theory, therefore we need to recon-
sider the renormalization for this theory. Naturally, the counterterms needed for renormalization, 
are modified due to the existence of new Lorentz violating terms in the Lagrangian.

To take the physical result and resolve infinities problem, we use a well-known approach 
called Boyer method [26]; also is known as Box Renormalization Scheme (BRS). This method 
uses a completely physical approach by enclosing the whole system in a box of volume V = L3

which finally may tend to infinity in such a way that difference between the zero point energies of 
two different configurations is calculated. It removes all ambiguities associated with appearance 
of the infinities without resorting to any other schemes such as analytic continuation approach. It 
is notable that, in BRS the subtraction procedure in calculation of Casimir energy takes place in 
two physical configurations with similar nature, which is another advantage of BRS.

We organized our paper as follows:
We introduce our model for Lorentz-breaking symmetry of the theory in section 2. We shall 

see that energy-momentum tensor and Klein-Gordon (KG) equation is modified. In section 3, we 
survey renormalization of the related theory within a Lorentz-breaking case. In section 4 we cal-
culate the NLO radiative correction to the Casimir energy for φ4 theory with Lorentz-breaking 
symmetry. We note that at this stage we consider the existence of Lorentz-symmetry parame-
ter in two cases: 1. time-like (TL), and 2. space-like (SL). Finally, in last section we state our 
conclusions.

2. The Lorentz-breaking φ4 theory

2.1. The model

In this section, we present the Lorentz symmetry breaking for a scalar field theory due to 
an anisotropy of space-time. We do this by insertion an additional term in the KG Lagrangian 
density

L(x) = 1 (
∂μφ

)2 + 1
c (u · ∂φ)2 − 1

m2
0φ

2, (1)

2 2 2
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where m0 is the bare mass and the dimensionless parameter c, which is much smaller than one, 
manifests the Lorentz symmetry breaking of the system by a coupling between the derivative of 
the scalar field φ and a constant four-vector uμ. Adding a self-interaction term to Eq. (1) we get

L(x) = 1

2

(
∂μφ

)2 + 1

2
c (u · ∂φ)2 − 1

2
m2

0φ
2 − λ0

4! φ
4, (2)

where λ0 is our bare coupling. The equation of motion for Lagrangian (1) reads as[
� + c(u · ∂)2 + m2

0

]
φ(x) = 0. (3)

It is obvious that this modified KG equation, for c = 0 reverts to the original KG equation of 
motion with the following dispersion relation:

ω2
n =

∣∣∣k⊥
∣∣∣2 + k2

n + m2
0. (4)

The violation of Lorentz symmetry has vital consequences such as modification of dispersion re-
lation which directly affects the propagator of the field. We consider this effect in three different 
cases. In the first case we assume that the Lorentz violation is in the time direction. The sec-
ond and third are the SL Lorentz violations in the directions parallel (pl-SL) and perpendicular 
(pr-SL) to the plates.

2.2. Propagator in bounded space

To calculate radiative corrections to any physical quantity, including Casimir energy, we need 
to know the exact form of propagator. In this subsection we first derive the propagator, suit-
able for Casimir effect problem, in the context of standard quantum field theory (without any 
Lorentz-violating term). Our configuration is two parallel plates located at z = ±a/2 perpendic-
ular to z-axis with a separation a. We suppose the fields satisfy Dirichlet boundary conditions 
(DBCs) on the plates,

φ (x)

∣∣∣∣
z=±a/2

= 0. (5)

Being d the dimension of space-time, the field φ is defined with quantized modes as

φ(x) =
∫

dd−2k⊥

(2π)d−1

∞∑
n=1

(
1

aωn

)1/2

×
{

e−i(ωnt−k⊥.x⊥) sin
[
kn(z + a

2
)
]

an + ei(ωnt−k⊥.x⊥) sin
[
kn(z + a

2
)
]

a†
n

}
, (6)

where k⊥ and kn = nπ
a

denote the momenta parallel and perpendicular to the plates, respectively.

Here, a†
n and an are creation and annihilation operators, respectively, with the following com-

mutation relations:

[an,a†
n′ ] = δn,n′ , [an,an′ ] = [a†

n,a†
n′ ] = 0,

and a|0〉 = 0 defines the vacuum state in the presence of boundary conditions. One may easily 
find Feynman Green’s function of the KG equation as
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GF (x, x′) = i
2

a

∫
dω

2π

∫
dd−2k⊥

(2π)d−2

×
∑
n

e−iω(t−t ′)e−ik⊥.(x⊥−x′⊥) sin
[
kn(z + a

2 )
]

sin
[
kn(z

′ + a
2 )
]

ω2 − k⊥2 − k2
n − m2

0 + iε
. (7)

We then find Euclidean Green’s function by the following definitions:

ωE = −iω ; k⊥
E = k⊥,

which finally leads to (we need only GF(x, x) in our calculations)

GF (x, x) = 2

a

∫
dωE

2π

∫
dd−2k⊥

E

(2π)d−2

∑
n

sin2 [kn(z + a
2 )
]

ω2
E + k⊥

E

2 + k2
n + m2

0 + iε
. (8)

2.2.1. TL vector case
Choosing the four-vector to be TL, uμ = (1, 0, 0, 0), the second term in Eq. (3) becomes c∂2

0 . 
Hence, the dispersion relation (4) takes the form

(1 + c)ω2
n = k⊥2 + k2

n + m2
0. (9)

Therefore, we can find the propagator for this case by replacing ω2 → (1 + c)ω2 in Eq. (8)

GF (x, x) = 2

a

∫
dωE

2π

∫
dd−2k⊥

E

(2π)d−2

∑
n

sin2 [kn(z + a
2 )
]

(1 + c)ω2
E + k⊥

E

2 + k2
n + m2

0 + iε
(10)

Changing variable ω′ = √
1 + c ωE , we obtain

GF (x, x) = 2

a(1 + c)1/2

∫
dd−1k

(2π)d−1

∑
n

sin2 [kn(z + a
2 )
]

k2 + k2
n + m2

0 + iε
, (11)

where k = (ω′, k⊥
E). Performing the angular integration, finally we have

GF (x, x) = 2

a(1 + c)1/2 	d−1

∫
dkkd−2

(2π)d−1

∑
n

sin2 [kn(z + a
2 )
]

k2 + k2
n + m2

0 + iε

= 4

a(1 + c)1/2(4π)
d−1

2 
(d−1
2 )

∫
dkkd−2

∑
n

sin2 [kn(z + a
2 )
]

k2 + k2
n + m2

0 + iε
, (12)

where the solid angle 	d = 2πd/2


(d/2)
, with 
(x) being the Gamma function, corresponds to the 

area of a unit sphere in d dimensions.

2.2.2. SL vector case
In SL case we choose three distinct directions for four-vector uμ; uμ = (0, 1, 0, 0), uμ =

(0, 0, 1, 0) and uμ = (0, 0, 0, 1). In this case the Lorentz-breaking term in (3) is −c∂2
i with i =

x, y or z. There is no difference between the physics of the first two vectors (pl-SL case), which 
are parallel to the plates, and the dispersion relations for both cases are also the same. Choosing 
uμ = (0, 0, 1, 0) for instance, Eq. (4) becomes

ω2 = k2 + (1 − c)k2 + k2 + m2. (13)
n x y n 0
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Changing the variables k = (ω, k′⊥
E) with k′

y = √
1 − c ky , in a similar manner to the TL case, 

the Green’s function is derived as:

GF (x, x) = 4

(1 − c)1/2a(4π)
d−1

2 
(d−1
2 )

∫
dkkd−2

∑
n

sin2 [kn(z + a
2 )
]

k2 + k2
n + m2

0 + iε
. (14)

Now, for the last case (pl-SL), uμ = (0, 0, 0, 1) is normal to the plates and Eq. (4) becomes

ω2
n = k⊥2 + (1 − c)k2

n + m2
0. (15)

In this case, the Euclidean Feynman propagator is derived as

GF (x, x) = 4

a(4π)
d−1

2 
(d−1
2 )

∫
dkkd−2

∑
n

sin2 [kn(z + a
2 )
]

k2 + (1 − c)k2
n + m2

0 + iε

= 4

a(4π)
d−1

2 
(d−1
2 )

∫
dkkd−2

∑
n

sin2 [kn(z + a
2 )
]

k2 + k′2
n + m2

0 + iε
, (16)

where k′
n = nπ/a′ with a′ = a/

√
1 − c.

For the future use, in the case of free space without plates, we note that the propagator for a 
Lorentz symmetry breaking theory becomes

GF (x, x) = 1

(1 ± c)
1
2

∫
ddk

(2π)d

i

k2 − m2
0

(17)

= 1

(1 ± c)
1
2 (4π)

d
2


(1 − d
2 )

(m2
0)

1− d
2

,

where + (−) is used for TL (SL) vector case.

3. Renormalization up to order λ

At the level of quantum corrections, all unphysical quantities such as m0 and λ0 need to be 
renormalized. Therefore, we need to do a renormalization procedure to extract the physical m
and λ from the bare parameters m0 and λ0 (see [27]). Here, we work within the standard renor-
malized perturbation theory. In the Lagrangian (2), after rescaling the fields by a field strength 
renormalization Z, namely φ = Z

1
2 φr we have

L = 1

2
(∂μφr)

2 + 1

2
c(u · ∂φr)

2 − 1

2
m2φ2

r − λ

4!φ
4
r

+1

2
δZ(∂μφr)

2 − 1

2
δmφ2

r − δλ

4! φ
4
r , (18)

where δm = m2
0Z −m2, δλ = λ0Z

2 −λ and δZ = Z − 1 are the counterterms. Then, we have two 
new Feynman rules from the above Lagrangian

= −iδλ

= i[(c ± 1)pμpμδZ − δm], (19)
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where + (−) along with μ = 0 (μ = i) are used for TL (SL) vector case (for more details see 
[28]). The counterterms are totally fixed by two renormalization conditions:

= −iλ (s = 4m2, t = u = 0) (20)

= i

p2 − m2 + (terms regular at p2 = m2).

From the first renormalization condition it is obvious that δλ = O(λ2). The second renormaliza-
tion condition which gives the physical mass m, up to order λ, can be written as

0 = +

= −1

2

iλ

(1 ± c)1/2(4π)
d
2


(1 − d
2 )

(m2)1− d
2

+ i[(c ± 1)pμpμδZ − δm] (21)

where we have used Eq. (17). Therefore, δZ up to order O(λ) is zero, and

δm = − λ

2(1 ± c)1/2(4π)
d
2


(1 − d
2 )

(m2)1− d
2

. (22)

4. Radiative correction to the Casimir energy

The Casimir energy is defined as follows:

ECas. = EB − EF, (23)

where EB and EF are the vacuum expectation values of the energies with and without plates, 
respectively. As we stated in the Introduction, the tree-level study of the Casimir energy with 
Lorentz violation have been performed in [25]. In this reference, to remove the infinities and 
derive the finite physical result, authors have used Abel-Plana summation (APS) formula which 
converts an integral into a sum. Their results for TL (+) and pl-SL (−) cases are

E(0)
Cas. = −L2(1 ± c)

1
2 am4

6π2

∞∫
1

(v2 − 1)
3
2 dv

e2amv − 1
, (24)

and for pr-SL is

E(0)
Cas. = −L2a′m4

6π2

∞∫
1

(v2 − 1)
3
2 dv

e2a′mv − 1
. (25)

Here, in order to calculate the radiative corrections, along with APS formula we use BRS [26]. 
In this approach, we first compare the energies in two various configurations: when the plates are 
at ±a/2 as compared to ±b/2. We confine each configuration in a box with edges are located 
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Fig. 1. The labels a1, etc. denote the appropriate sections in each configuration separated by the plates.

at ±L/2 in all directions (see Fig. 1). Now, the Casimir energy is defined as

ECas. = lim
b/a→∞

[
lim

L/b→∞ (Ea − Eb)

]
, (26)

where,

Ea = Ea1 + 2Ea2, Eb = Eb1 + 2Eb2. (27)

The radiative corrections to the zero point energy in the (for example) a1 part, i.e. z ∈ [−a
2 , a2 ], 

are

�Ea1 = E
(1)
a1 + E

(2)
a1 + · · · =

∫
V

d3x〈	|HI |	〉

= i

∫
V

d3x

⎛
⎜⎜⎝ 1

2
+ 1

8
+ 1

8
+ . . .

⎞
⎟⎟⎠ , (28)

where |	〉 is the vacuum state in the presence of interaction. Up to order λ we have

E(1)
a1

= i

∫
V

d3x

⎛
⎜⎜⎝ 1

2
+ 1

8

⎞
⎟⎟⎠

= i

∫
V

d3x
[
− i

2
δmGa1(x, x) − iλ

8
G2

a1(x, x)

]
, (29)

where Ga1(x, x) is the propagator of the real scalar field in region a1 (we drop the subscript ‘F’ 
for simplicity).

4.1. TL & pl-SL vector cases

To calculate the first term in Eq. (29), E(1),F
a1 , using Eqs. (12) and (22) and carrying out the 

spatial integration, one obtains the correction to the vacuum energy in region a1, up to O(λ), as:
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E(1),F
a1

= 1

2

∫
V

δmGa1(x, x)d3x

= − λ
√

π
(1 − d
2 )Ld−2

2(1 ± c)(4π)d(m2)1− d
2 
(d−1

2 )

∞∫
0

dkkd−2
∑
n

1

k2 + k2
a1,n + m2

, (30)

where ka1,n = nπ
a

. Integrating over momentum k yields

1

2

∫
V

δmGa1(x, x)d3x = λπ
3
2 
(1 − d

2 ) sec( dπ
2 )Ld−2

4(1 ± c)(4π)d(m2)1− d
2 
(d−1

2 )

∑
n

ωd−3
a1,n

, (31)

where ωa1,n = (m2 + k2
a1,n

)1/2. This is one of the four terms (related to the a1 region) that 
contribute to the NLO radiative correction for Casimir energy Eq. (26). To derive the Casimir 
energy from Eq. (31), we apply APS formula [29],

∞∑
n=1

g(n) = −g(0)

2
+

∞∫
0

g(x)dx + i

∞∫
0

g(it) − g(−it)

e2πt − 1
dt, (32)

with,

g(n) = ωd−3
a1,n + ωd−3

a2,n − ωd−3
b1,n − ωd−3

b2,n. (33)

We note that the g(0) term vanishes. Also the second term on the right hand side of Eq. (32), 
with respect to suitable changing of variables in the four integrals below, vanishes:

a

π

∞∫
0

dk′ (m2 + k′ 2
)(d−3)/2 + 2

L − a

2π

∞∫
0

dk′ (m2 + k′ 2
)(d−3)/2

− b

π

∞∫
0

dk′ (m2 + k′ 2
)(d−3)/2 − 2

L − b

2π

∞∫
0

dk′ (m2 + k′ 2
)(d−3)/2 = 0. (34)

Finally, we calculate branch-cut terms in Eq. (32). Assuming f (x) = [x2 − ( am
π

)2](d−3)/2 we 
have

B(a) = i

∞∫
0

f (it) − f (−it)

e2πt − 1
dt = −2

(π

a

)d−3
∞∫

am
π

[t2 − ( am
π

)2](d−3)/2

e2πt − 1

= −
∞∑

j=1

2Kd−2
2

(2amj)
(d−1
2 )

ad−3π3/2( am
j

)
2−d

2

, (35)

where Kn(x) is the modified Bessel function of order n. To calculate the integral, we have used 
the identity

1

e2πt − 1
=

∞∑
e−2πjt . (36)
j=1
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Therefore, we obtain

E(1),F
a1

= − λπ
3
2 
(1 − d

2 ) sec( dπ
2 )L2

4(1 ± c)a3(4π)d(m̃2)1− d
2 
(d−1

2 )

∞∑
j=1

2Kd−2
2

(2m̃j)
(d−1
2 )

π3/2( m̃
j
)

2−d
2

, (37)

where m̃ = ma is a dimensionless parameter. Then, according to Eq. (26) the contribution of the 
Eq. (31) to Casimir energy is

E(1),F
Cas. = lim

b/a→∞

[
lim

L/b→∞

(
E(1),F

a1
− E

(1),F
b1

+ E(1),F
a2

− E
(1),F
b2

)]
. (38)

Taking the limits, only the first term survives. Finally, we take the limit d → 4,

E(1),F
Cas. = −

∞∑
j=1

λm̃3L2

512(1 ± c)a3π4

1

j

[
K1(2m̃j)

(
ln(

m̃3

16π2j
) + γ − 1

)
+ K ′

1(2m̃j)

]
, (39)

where K ′
q(x) = ∂

∂q
Kq(x) and γ is the Euler-Mascheroni number.

The contribution of the second term in Eq. (29) to the Casimir energy, E(1),S
a1 , without Lorentz 

violating terms, have been calculated in Ref. [11] using BRS:

E(1),S
a1

= λ

8

∫
V

G2
a1(x, x)d3x

→ E(1),S
Cas. = −λL2 B(a)

128π2

×
[
B(a)

a
− m

a
+ m2

π
(ln 2 + 1/2)

]
(no Lorentz violation) (40)

= −λL2
∞∑

j=1

m

128π3

K1(2amj)

j

×
⎡
⎣ m

πa

∞∑
j ′=1

K1(2amj ′)
j ′ + m

a
− m2

π
(ln 2 + 1/2)

⎤
⎦ . (41)

But, when we have a TL (pl-SL) Lorentz breaking term, an extra factor 1√
1+c

( 1√
1−c

), as we 
see in Eq. (12) (Eq. (14)), is multiplied to the propagator. Therefore to derive the Casimir en-
ergy contribution we only need to multiply the factor 1

1+c
( 1

1−c
) to Eq. (41). Accordingly, using 

Eqs. (41) and (39), we can write NLO radiative correction to the Casimir energy as

E(1)
Cas. = E(1),F

Cas. + E(1),S
Cas. (42)

= −λL2

(1 ± c)

∞∑
j=1

{
m

128π3

K1(2amj)

j

[
m

πa

∞∑
j ′=1

K1(2amj ′)
j ′ + m

a
− m2

π
(ln 2 + 1/2)

]

− m3

512π4

1

j

[
K1(2amj)

(
ln(

a3m3

16π2j
) + γ − 1

)
+ K ′

1(2amj)

]}
.

From this result it is obvious that the influence of the Lorentz-symmetry breaking parameter 
appears only in a factor.
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Two special limits are interesting to calculate; the large mass ma � 1, and small mass m → 0
limits:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E
(1)
Cas.

am�1−→ 3 L2

1024π7/2

λ

(1 ± c)a3 (am)5/2 ln(am) e−2am,

E
(1)
Cas.

m→0−→ − L2λ

512π4(1 ± c)a3

⎛
⎝ ∞∑

j=1

1

j2

⎞
⎠

2

= − L2λ

18432(1 ± c)a3 ,

(43)

with + (−) for TL (pl-SL) case.

4.2. pr-SL vector case

For the pr-SL vector case, uμ = (0, 0, 0, 1), we do not need to do new calculation. In this case, 
applying Eq. (16) leads us to the following expression for Eq. (31):

1

2

∫
V

δmGa1(x, x)d3x = λπ
3
2 
(1 − d

2 ) sec( dπ
2 )Ld−2

4(1 − c)1/2(4π)d(m2)1− d
2 
(d−1

2 )

∑
n

ω′d−3
a1,n

, (44)

where ω′
a1,n = (m2 + k′2

a1,n
)1/2. Therefore, the Eq. (35) becomes

B(a′) = −
∞∑

j=1

2Kd−2
2

(2a′mj)
(d−1
2 )

a′ d−3π3/2( a′m
j

)
2−d

2

= −
∞∑

j=1

2Kd−2
2

(
2amj√

1−c

)

(d−1

2 )

(1 − c)
3−d

2 ad−3π3/2
(

am

j
√

1−c

) 2−d
2

, (45)

and hence, we get

E(1),F
a1

= − λπ
3
2 
(1 − d

2 ) sec( dπ
2 )L2

4(1 − c)
6−d

4 a3(4π)d(m̃2)1− d
2 
(d−1

2 )

∞∑
j=1

2Kd−2
2

(
2m̃j√
1−c

)

(d−1

2 )

π3/2
(

m̃
j

) 2−d
2

. (46)

Now, we use the above equation to compute Eq. (38), and take the limit d → 4, to get

E(1),F
Cas. = λL2m3

(1 − c)1/2512π4

∞∑
j=1

1

j

[
K1(

2amj√
1 − c

)

(
ln(

a3m3

16π2j
) + ln(1 − c) + γ − 1

)

+K ′
1(

2amj√
1 − c

)

]
. (47)

Similarly, for the second term in Eq. (29), now the Eq. (40) becomes

E(1),S
Cas. = − λL2

(1 − c)1/2

B(a′)
128π2

[
B(a′)

a
− m

a
+ m2

π
(ln 2 + 1/2)

]

d→4= − λL2

(1 − c)1/2

∞∑
j=1

m

128π3

1

j
K1(

2amj√
1 − c

)

[
m

πa

∞∑
j ′=1

1

j ′ K1(
2amj ′
√

1 − c
)

+m − m2

(ln 2 + 1/2)

]
. (48)
a π
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Fig. 2. The ratio between the first order radiative corrections and leading terms, E(1)
Cas./E

(0)
Cas. , in terms of plates separation a, 

for c = 0.1, λ = 0.1 and m = 1; λm is the Compton wavelength of the scalar field.

Therefore, the result for the radiative correction of Casimir energy for the pr-SL vector case can 
be written as

E(1)
Cas. = E(1),F

Cas. + E(1),S
Cas.

= − λL2

(1 − c)1/2

∞∑
j=1

{
m3

512π4

1

j

[
K1(

2amj√
1 − c

)

(
ln(

a3m3

16π2j
) + ln(1 − c) + γ − 1

)

+K ′
1(

2amj√
1 − c

)

]

+ m

128π3

1

j
K1(

2amj√
1 − c

)

[
m

πa

∞∑
j ′=1

1

j ′ K1(
2amj ′
√

1 − c
) + m

a
− m2

π
(ln 2 + 1/2)

]}
. (49)

We can also compute the large mass and massless limits:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E
(1)
Cas.

am�1−→ 3 L2

1024π7/2

λ

(1 − c)1/2a3 (am)5/2 ln(am) e
−2am√

1−c
,

E
(1)
Cas.

m→0−→ − L2λ(1 − c)1/2

512π4a3

⎛
⎝ ∞∑

j=1

1

j2

⎞
⎠

2

= −L2λ(1 − c)1/2

18432a3 .

(50)

In Fig. 2, we have illustrated the variation of the ratio between the first order radiative corrections 
and leading terms, E(1)

Cas. /E
(0)
Cas. , in terms of plates separation, for three distinct cases TL, pl-SL and 

pr-SL. We have also plotted this ratio in terms of Lorentz violating parameter c in Fig. 3.
There exist many measured and derived values of coefficients for Lorentz violation in the 

Standard Model Extensions (see [30]) which have been tabulated in Ref. [31]. If we can compare 
our scalar model with the only existing scalar sector in the Standard Model, the Higgs sector, 
we find |c| < 10−6 from nuclear β decay [32] and for the space-like case |c| < 10−19 from laser 
interferometry [20]. From Fig. 3, we see that the ratio between the correction and leading term 
of the Casimir energy for these limits is some finite value (about −0.3%).
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Fig. 3. The variation of the ratio between first order radiative correction and leading term, E(1)
Cas./E

(0)
Cas. , in terms of the 

Lorentz violating parameter c, with λ = 0.1, m = 1 and a = 10(λm).

5. Conclusions

In this paper we have calculated the next to leading order radiative correction to the Casimir 
energy for φ4 theory with Lorentz-breaking symmetry in the context of renormalized pertur-
bation theory. Our approach to calculate this energy is box renormalization method introduced 
firstly by Boyer [26] and used for example in [11,33–35]. The violation of symmetry breaking 
can be appeared in the Lagrangian by insertion of a term which couples the derivative of a field 
to a constant vector uμ. This additional term in the Lagrangian modifies the dispersion relation 
and accordingly propagators of the fields. Therefore, in addition to the leading terms of phys-
ical quantities, all their sub-leading corrections are also affected. In three separate cases of the 
Lorentz violation, violation in the time direction (TL), in the directions parallel (pl-SL) and per-
pendicular (pr-SL) to the plates, the leading terms of Casimir energy for φ4 theory have been 
recently calculated in [25]. Here, we have investigated NLO corrections. We have plotted our 
results in Figs. 2 and 3.
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