
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lagb20

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: https://www.tandfonline.com/loi/lagb20

c-capability of Lie algebras with the derived
subalgebra of dimension two

Mohsen Parvizi, Farangis Johari & Peyman Niroomand

To cite this article: Mohsen Parvizi, Farangis Johari & Peyman Niroomand (2019): c-capability
of Lie algebras with the derived subalgebra of dimension two, Communications in Algebra, DOI:
10.1080/00927872.2019.1612414

To link to this article:  https://doi.org/10.1080/00927872.2019.1612414

Published online: 15 May 2019.

Submit your article to this journal 

Article views: 4

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lagb20
https://www.tandfonline.com/loi/lagb20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927872.2019.1612414
https://doi.org/10.1080/00927872.2019.1612414
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2019.1612414&domain=pdf&date_stamp=2019-05-15
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2019.1612414&domain=pdf&date_stamp=2019-05-15


c-capability of Lie algebras with the derived subalgebra of
dimension two

Mohsen Parvizia , Farangis Joharia, and Peyman Niroomandb

aDepartment of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran; bSchool of Mathematics
and Computer Science, Damghan University, Damghan, Iran

ABSTRACT
The current article is devoted to classify the c-capability of finite dimen-
sional nilpotent Lie algebras with the derived subalgebra of dimen-
sion two.
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1. Introduction and motivation

From Ref. [8], a group G is called capable if there exists some group E such that G ffi E=ZðEÞ;
where ZðEÞ denotes the center of E. Several works has been done on the notion of capability. For
example in Ref. [1, Corollary 4.16], it is well-known that the only capable extra-special p-groups are
p-groups of order p3 and exponent p, for odd p. Moreover, in the case G0 ¼ ZðGÞ and Z(G) is elem-
entary abelian p-group of rank 2, we know from Ref. [9] that p5 � jGj � p7; for a capable p-group G.
Since Lie algebras and groups have similar structures, many authors tried to define and prove
similar concepts between them. But in this way not everything are the same and there are differ-
ences between groups and Lie algebras so that most of time the proofs are different. Similar to
groups, a Lie algebra L is called capable provided that L ffi H=ZðHÞ for a Lie algebra H. The epi-
center of groups was defined in [1] while the analogs concept for Lie algebras can be found in
Ref. [17]. The epicenter of Lie algebra L; Z�ðLÞ is a useful instrument for detecting the capability.
In fact, it is known L is capable if and only if Z�ðLÞ ¼ 0:
Our approach is concerning the concept of the exterior center Z�ðLÞ; the set of all elements l of
L for which l� l0 ¼ 0L� L for all l0 2 L; where L�L denotes the exterior square of L (see [6]).
From Ref. [16], we know Z�ðLÞ ¼ Z�ðLÞ for any finite dimensional Lie algebra L and also the
structure of all capable nilpotent Lie algebras are given when their derived subalgebras are of
dimension at most one. These results developed the results of Ref. [1, Corollary 4.16] for groups
to the class of Lie algebras.
Capable special p-groups of rank 2 and exponent p were classified by Heineken in [9]. Similarly
from Ref. [12], a Lie algebra H is called generalized Heisenberg of rank n if H2 ¼ ZðHÞ and
dimH2 ¼ n; in which H2 denotes the derived subalgebra of H. If n ¼ 1; then H is called a
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Heisenberg Lie algebra. Recently in Ref. [12], we determine the structure of all capable nilpotent
Lie algebras with the derived subalgebra of dimension 2 over an arbitrary filed. It helps to
develop the result of Heineken [9] which is for groups, to the area of Lie algebras.

Similar to the case of groups, the c-capability of a Lie algebra can be defined as follows [19]. A Lie alge-
bra L is c-capable if there exists some Lie algebra H such that L ffi H=ZcðHÞ; where ZcðHÞ is the cth term
of the upper central series of H defined inductively as Z1ðHÞ ¼ ZðHÞ and Zcþ1ðHÞ is the pre-image of
ZðH=ZcðHÞÞ in H: Evidently, L is 1-capable if and only if it is an inner derivation Lie algebra, and L is
c-capable (c � 2) if and only if it is an inner derivation Lie algebra of a ðc� 1Þ-capable Lie algebra. If L is
c-capable, then L ffi H=ZcðHÞ ffi H=Zc� 1ðHÞ=ZðH=Zc� 1ðHÞÞ so it is ðc� 1Þ-capable, as well.

The last two authors in Ref. [14] proved that for extra-special p-groups, the notions “capable”
and “2-capable” are equivalent. The same motivation allows us to ask about the structure of c-
capable generalized Heisenberg Lie algebras of rank at most 2, while the c-capability of
Heisenberg Lie algebras is determined in [15, 16, 18].

The current article is devoted to classify all c-capable finite dimensional nilpotent Lie algebras
with the derived subalgebra of dimension two. In the same scene of research, we decide to show
that the notions of “capability” and “c-capability” are equivalent for such class of Lie algebras.

2. Preliminaries

In Ref. [19], the c-epicenter of a Lie algebra L, Z�
c ðLÞ; is defined to be the smallest ideal M of L

such that L/M is c-capable. For c ¼ 1; the 1-epicenter of L is called the epicenter of L in [17] and
is denoted by Z�ðLÞ: It is obvious that Z�

c ðLÞ is a characteristic ideal of L contained in ZcðLÞ; and
Z�
c ðL=Z�

c ðLÞÞ ¼ 0: Clearly, L is c-capable if and only if Z�
c ðLÞ ¼ 0:

The following proposition shows that a finite dimensional non-abelian nilpotent Lie algebra
with the derived subalgebra of dimension two can be decomposed into a stem Lie algebra and an
abelian Lie algebra. It gives the connection between the c-epicenter of such Lie algebras and the
c-epicenter of the non-abelian direct summands.

Proposition 2.1. Let L be a finite dimensional nilpotent non-abelian Lie algebra. Then L ¼ T�A
such that ZðTÞ ¼ L2 \ ZðLÞ and Z�

c ðLÞ ¼ Z�
c ðTÞ; where A is an abelian Lie algebra.

Proof. The result follows from [10, Corollary 4.3] and [11, Proposition 3.1]. w

The following proposition gives a criterion for detecting the capability of finite dimensional
nilpotent Lie algebras with the derived subalgebra of dimension two.

Proposition 2.2. Let L be a finite dimensional nilpotent Lie algebra such that dimL2 ¼ 2: Then

i. If L is capable and clðLÞ ¼ 2; then 3 � dimðL=ZðLÞÞ � 5:
ii. If L is capable and clðLÞ ¼ 3; then 3 � dimðL=ZðLÞÞ � 4:

Where c(L) denotes the nilpotency class of a Lie algebra L.

Proof. The result follows from [12, Proposition 2.6] and [13, Corollary 5.4]. w

The Lie algebras in this article are given with multiplication tables with respect to fixed bases
with trivial products of the form ½xi; xj� ¼ 0 omitted. We use the notation and terminology of
Ref. [4, 5, 7]. First, for a field F; let F� denotes the multiplicative group of non-zero elements of
F: In the following, we list all capable generalized Heisenberg Lie algebras of rank two.

Theorem 2.3. [13, Theorem 3.6] Let H be an n-dimensional generalized Heisenberg Lie algebra
with dimH2 ¼ 2: Then H is capable if and only if n ¼ 5; 6; 7 and H is isomorphic to one the fol-
lowing Lie algebras
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L5;8 ¼ hx1; :::; x5j x1; x2½ � ¼ x4; x1; x3½ � ¼ x5i;
L6;22 �ð Þ ¼ hx1; :::; x6j x1; x2½ � ¼ x5 ¼ x3; x4½ �; x1; x3½ � ¼ x6; x2; x4½ � ¼ �x6i;

where � 2 F=ð��þÞ and char F 6¼ 2;

L 2ð Þ
6;7 gð Þ ¼ hx1; :::; x6j x1; x2½ � ¼ x5; x3; x4½ � ¼ x5 þ x6; x1; x3½ � ¼ x6; x2; x4½ � ¼ gx6i;

where g 2 f0;xg and char F ¼ 2; or

L1 ffi hx1; :::; x7j x1; x2½ � ¼ x6 ¼ x3; x4½ �; x1; x5½ � ¼ x7 ¼ x2; x3½ �i:

Recall that an n-dimensional nilpotent Lie algebra L is said to be nilpotent of maximal class if Ln ¼
0 and Ln� 1 6¼ 0: In this case, we can see that dimðLj=Ljþ1Þ ¼ 1 for all j; 2 � j � n� 1 and
dimðL=L2Þ ¼ 2: Since the minimum number of elements required to generate a nilpotent Lie algebra
is dimðL=L2Þ; Lie algebras of maximal class are two generated. If L is of maximal class, then ZiðLÞ ¼
Ln� i for all i; 0 � i � n� 1 (see [2]). From Ref. [5], there is only a unique Lie algebra up to isomorph-
ism of maximal class with dimension 4 which has the following presentation

L4;3 ffi hx1; :::; x4j x1; x2½ � ¼ x3; x1; x3½ � ¼ x4i:
We say a Lie algebra L is a semidirect sum of an ideal I and a subalgebra K if L ¼ I þ K; I \
K ¼ 0 and K is not ideal. In this case L is denoted by K3 I:

The following results shows that the Lie algebra L5;5 ¼ hx1; :::; x5j½x1; x2� ¼ x3; ½x1; x3� ¼
x5; ½x2; x4� ¼ x5i has an ideal of maximal class of dimension four by the classification of 5-dimen-
sional nilpotent Lie algebras in Ref. [5].

Lemma 2.4. [13, Lemma 4.1] Let L ffi L5;5: Then L ¼ I3hx4i;
where I ¼ hx1; x2; x3; x5j½x1; x2� ¼ x3; ½x1; x3� ¼ x5i ffi L4;3; and ½I; hx4i� ¼ hx5i:

3. c-capable stem nilpotent Lie algebras with the derived subalgebra of
dimension two

In this section, we are going to determine c-capable stem nilpotent Lie algebras with the derived
subalgebra of dimension at most two. Since the nilpotent Lie algebras with the derived subalgebra
of dimension at most two have the nilpotency class at most 3; we divide the classification into
two subsections.

3.1. c-Capable stem nilpotent Lie algebras of class 2

We know that stem nilpotent Lie algebras of class two are generalized Heisenberg Lie algebras.
We are going to show that “capability” and “c-capability” are equivalent for generalized
Heisenberg Lie algebras of rank 2.

Here we recall the definition of standard fillform Lie algebras from [3].

Definition 3.1. For c � 2; Lie algebra L is called standard fillform of dimension cþ 1 provided
that if

L ¼ hx; y1; :::; ycj x; yi½ � ¼ yiþ1; 1 � i � c� 1i:
We denote this algebra by Fcþ1:

Clearly, a standard filiform Lie algebra of dimension cþ 1 is of maximal class, so for n � 3; there
is an n-dimensional Lie algebra of maximal class.
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For every n-dimensional Lie algebra of maximal class L; the following proposition shows that
L=Zn� 3ðLÞ is isomorphic to Heisenberg Lie algebra. Here we denote an abelian Lie algebra of
dimension n and the Heisenberg Lie algebra of dimension 2mþ 1 by A(n) and HðmÞ;
respectively.

Proposition 3.2. Let L be an n-dimensional Lie algebra of maximal class for n � 3:
Then L=Zn� 3ðLÞ ¼ L=L3 ffi Hð1Þ:

Proof. Since dimðL=Zn� 3ðLÞÞ ¼ 3 and L=Zn� 3ðLÞ is a Lie algebra of maximal class, we have
L=Zn� 3ðLÞ ffi Hð1Þ; as required. w

Corollary 3.3. H(1) is c-capable.

We give a necessary condition for detecting the c-capability of nilpotent Lie algebras of class 2
with the derived subalgebra of dimension two.

Lemma 3.4. Let L be a c-capable finite dimensional nilpotent Lie algebra of class two and dimL2 ¼
2: Then

3 � dimL=Z Lð Þ � 5:

Proof. Using Proposition 2.2, the result follows. w

We are going to construct a Lie algebra K of nilpotency class cþ 2 such that K=ZcðKÞ is a gen-
eralized Heisenberg Lie algebra of rank 2. The iterated commutator ½x; y; :::; y|fflfflffl{zfflfflffl}

c� times

� is denoted
by ½x;cy�:
Theorem 3.5. Consider the following nilpotent Lie algebras

K1 ¼ hy1; :::; ycþ5j y1; yj½ � ¼ yjþ2; y1; yj;ry1½ � ¼ yrþ5; 2 � j � 3; 1 � r � ci;
K2 ¼ hy1; :::; ycþ6j y1; y2½ � ¼ y3; y4½ � ¼ y5; y1; y3½ � ¼ y6; y2; y4½ � ¼ �y6;

y1; y2;ry1½ � ¼ y1; y3;ry1½ � ¼ yrþ6; 1 � r � ci;
where � 2 F=ð�� Þ and char F 6¼ 2:

K3 ¼ hy1; :::; y6; yrþ6; y
0
rþ6j y1; y2½ � ¼ y5; y3; y4½ � ¼ y5 þ y6; y1; y3½ � ¼ y6;

y2; y4½ � ¼ gy6; y1; y2;ry1½ � ¼ y0rþ6; y1; y3;ry1½ � ¼ yrþ6; 1 � r � ci;
where g 2 f0;xg and char F ¼ 2;

K4 ¼ hy1; :::; ycþ7j y1; y2½ � ¼ y3; y4½ � ¼ y6;

y4; y5½ � ¼ y2; y3½ � ¼ y7; y1; y2;ry1½ � ¼ y2; y3;ry2½ � ¼ yrþ7; 1 � r � ci:
Then dimK1 ¼ cþ 5; dimK2 ¼ cþ 6; dimK3 ¼ 2cþ 6; dimK4 ¼ cþ 7; clðKiÞ ¼ cþ 2; K3

i ¼ ZcðKiÞ
and Ki=ZcðKiÞ is a generalized Heisenberg Lie algebra of rank 2 for all i, 1 � i � 4; and they are
isomorphic to L5;8; L6;22ð�Þ; Lð2Þ6;7ðgÞ and L1; respectively.

Proof. Clearly clðKiÞ ¼ cþ 2: Also we can easily check that Ki=K3
i is isomorphic to L5;8;

L6;22ð�Þ; Lð2Þ6;7ðgÞ and L1; for all i, 1 � i � 4; respectively, by Theorem 2.3. Since Ki=K3
i is a general-

ized Heisenberg Lie algebra of rank two, we have

Z Kið Þ þ K3
i

� �
=K3

i 	 Z Ki=K
3
i

� � ¼ K2
i =K

3
i ;

so ZðKiÞ 	 K2
i for all i, 1 � i � 4: We claim that ZðKiÞ 	 K3

i for all i, 1 � i � 4: We may assume
that K ¼ K1: By contrary, let ZðKÞ6	K3: We have
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K= K3 þ Z Kð Þ� �� �ab ffi K=K2 ffi A 3ð Þ and K=K3 ffi L5;8:

By using the natural epimorphism g : K=K3 ! K=ðK3 þ ZðKÞÞ and considering the fact that
dimðK=K3Þ ¼ 5; we have 1 � dimðK=ðK3 þ ZðKÞÞÞ � 5: Since ZðKÞ6	K3; we have dimðK=ðK3 þ
ZðKÞÞÞ 6¼ 5: Since dimðK=ðK3 þ ZðKÞÞab ¼ 3; we get 3 � dimðK=ðK3 þ ZðKÞÞÞ � 4: If
dimðK=ðK3 þ ZðKÞÞÞ ¼ 3; then dimðK=ðK3 þ ZðKÞÞÞ ¼ 3 ¼ dimðK=ðK3 þ ZðKÞÞÞab: Thus
K=ZðKÞ=ðK=ZðKÞÞ3 is abelian and K2=ZðKÞ ¼ ðK=ZðKÞÞ3; which is a contradiction.

If dimðK=ðK3 þ ZðKÞÞÞ ¼ 4; since dimðK=ðK3 þ ZðKÞÞÞab ¼ 3; we have

A 1ð Þ ffi K2= K3 þ Z Kð Þ� �
	 Z K= K3 þ Z Kð Þ� �� �

:

Thus dimðK=ðK3 þ ZðKÞÞÞ2 ¼ 1 and so by [16, Theorem 3.6], we have K=ðK3 þ ZðKÞÞ ffi
Hð1Þ�Að1Þ: Let

hy1 þ K3 þ Z Kð Þ; y2 þ K3 þ Z Kð Þi ffi H 1ð Þ and hy3 þ K3 þ Z Kð Þi ffi A 1ð Þ:
It follows that

K2= K3 þ Z Kð Þ� �
¼ h y1 þ K3 þ Z Kð Þ; y2 þ K3 þ Z Kð Þ� �i:

Hence K2 ¼ h y1; y2½ �i þ K3 þ Z Kð Þ: On the other hand,

K2=K3 ¼ h y1; y2½ �i þ K3

K3
�

h y1; y3½ �i þ K3

K3

¼ h y1; y2½ �i þ K3

K3
�

K3 þ Z Kð Þ
K3

:

Since ½y1; y3� 2 K3 þ ZðKÞ; we have ðh½y1; y3�i þ K3Þ=K3 ffi ðK3 þ ZðKÞÞ=K3 ffi Að1Þ: Hence K3 þ
ZðKÞ ¼ h½y1; y3�i þ K3: Let A be the subalgebra of K generated by the set Y n fy2; y4g; where Y ¼
fy1; y2; :::; ycþ5g: Since ½y1; y3� ¼ y5; ½y1; y3;ry1� ¼ y5þr; for all r, 1 � r � c; by looking Definition
3.1, it is clear to see that A is a standard fillform Lie algebra of maximal class of dimension cþ 3:
So A2 ¼ h½y1; y3�i þ K3 ¼ K3 þ ZðKÞ: Thus Að1Þ ffi ZðKÞ ¼ ZðAÞ 	 A3 ¼ K3 and so ZðKÞ 	 K3:
It contradicts our assumption. Thus ZðKÞ 	 K3: Therefore

K=Z Kð Þ ¼ hy1 þ Z Kð Þ; :::; ycþ5 þ Z Kð Þj y1; y2½ � þ Z Kð Þ ¼ y4 þ Z Kð Þ;
y1; y3½ � þ Z Kð Þ ¼ y5 þ Z Kð Þ; y1; y3;ry1½ � þ Z Kð Þ ¼ y1; y2;ry1½ � þ Z Kð Þ ¼ y5þr þ Z Kð Þ; 1 � r � c� 1i

and K=ZðKÞ=ðK=ZðKÞÞ3 ffi L5;8: We conclude K=K3 ffi L5;8 ffi K=ðK3 þ ZðKÞÞ: Using induction
on clðKÞ; we are going to prove that ZcðKÞ ¼ K3: Assume that c ¼ 1: So cl(K) ¼ 3 and we get
ZðKÞ ¼ K3: Using the induction hypothesis,

K=Z Kð Þ� �3 ¼ Zc� 1 K=Z Kð Þ� � ¼ Zc Kð Þ=Z Kð Þ:
Hence ZcðKÞ ¼ K3: By a similar method, we may obtain ZcðKiÞ ¼ K3

i for i ¼ 2; 3; 4: The
result follows.

The following corollary is an immediate consequence of Theorem 3.5. w

Corollary 3.6. L5;8; L6;22ð�Þ; Lð2Þ6;7ðgÞ and L1 are c-capable.

The capability of generalized Heisenberg Lie algebras of rank 2 is equivalent to the c-capability
of them by the following theorem.

Theorem 3.7. Let H be an n-dimensional generalized Heisenberg Lie algebra of rank 2. Then H
is c-capable if and only if H is isomorphic to one of Lie algebras L5;8; L6;22ð�Þ; Lð2Þ6;7ðgÞ; or L1:
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Proof. Let H be a c-capable. Then by Theorem 2.3 and Lemma 3.4, H should be one of Lie alge-
bras L5;8; L6;22ð�Þ; Lð2Þ6;7ðgÞ; or L1: The converse is held by Corollary 3.6. The result follows. w

3.2. c-Capable stem nilpotent Lie algebras of class 3

We are going to show capable stem nilpotent Lie algebras of class 3 with the derived subalgebra
of dimension two are c-capable.

Theorem 3.8. Let T be a c-capable n-dimensional Lie algebra of class 3 and dimT2 ¼ 2:
Then 3 � dimðT=ZðTÞÞ � 4:

Proof. Since T is capable, the result follows from Proposition 2.2 ðiiÞ: w

For every n-dimensional Lie algebra L of maximal class, the following proposition shows that
L=Zn� 4ðLÞ is isomorphic to L4;3:

Proposition 3.9. Let L be an n-dimensional Lie algebra of maximal class for n � 4:
Then L=Zn� 4ðLÞ ¼ L=L4 ffi L4;3:

Proof. Since L2=Zn� 4ðLÞ ffi Að2Þ and dimðL=Zn� 4ðLÞÞ ¼ 4; we have L=Zn� 4ðLÞ is a Lie algebra of
maximal class of dimension 4 and so L=Zn� 4ðLÞ ffi L4;3; as required. w

Corollary 3.10. L4;3 is c-capable.

Proof. Let L be a standard fillform Lie algebra of maximal class of dimension cþ 4: By
Proposition 3.9, we have L=ZcðLÞ ffi L4;3; as required. w

Proposition 3.11. L5;5 is c-capable.

Proof. By Lemma 2.4, we have L5;5 ¼ I3hx4i; in which I ffi L ¼ 3; 4: Let H be the standard fill-
form Lie algebra of nilpotency class cþ 3 with the following presentation

H ¼ hx; y1; :::; ycþ3j x; y1½ � ¼ y2; yiþ1; y1½ � ¼ yiþ2; 1 � i � cþ 1i:
By Proposition 3.9 we have H=ZcðHÞ ffi L3;4:

Put H1 ¼ hx; y1; :::; ycþ3; bj x; y1½ � ¼ y2; yiþ1; y1½ � ¼ yiþ2; b;jþ1y1
� � ¼ y3þj;

0 � j � c; 1 � i � cþ 1i:
It is obviously seen that H1 ¼ H þ hbi such that b 62 H;H2 ¼ H2

1 ; clðHÞ ¼ clðH1Þ ¼ cþ 3 and
dim ðH1Þ ¼ cþ 5: We claim that ZcðH1Þ ¼ ZcðHÞ ¼ H4: Since ½b;cþ1y1� ¼ ycþ3; we have b 62
ZcðH1Þ and ZcðHÞ ¼ H4 ¼ H4

1 	 ZcðH1Þ: It is sufficient to show ZcðH1Þ 	 ZcðHÞ: By contrary, let
ZcðH1Þ 6¼ ZcðHÞ: We have H1=ZcðHÞ ¼ H=ZcðHÞ3 ðhbi þ ZcðHÞ=ZcðHÞÞ and H=ZcðHÞ ffi L4;3:
Thus

H1=Zc Hð Þ ¼ hxþ Zc Hð Þ; y1 þ Zc Hð Þ; y2 þ Zc Hð Þ; y3 þ Zc Hð Þ; bþ Zc Hð Þj
y2; y1½ � þ Zc Hð Þ ¼ y3 þ Zc Hð Þ; x; y1½ � þ Zc Hð Þ ¼ y2 þ Zc Hð Þ;
b; y1½ � þ Zc Hð Þ ¼ y3 þ Zc Hð Þi ffi L4;33hbi ffi L5;5:

There exists a natural epimorphism g : H1=ZcðHÞ ! H1=ZcðH1Þ: Since clðH1=ZcðH1ÞÞ ¼ 3 and
dimH1=ZcðHÞ ¼ 5; we have dimH1=ZcðH1Þ ¼ 4: So H1=ZcðH1Þ ffi L4;3: Therefore
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H1=Zc H1ð Þ ¼ hxþ Zc H1ð Þ; y1 þ Zc H1ð Þ; y2 þ Zc H1ð Þ; y3 þ Zc H1ð Þj
y2; y1½ � þ Zc H1ð Þ ¼ y3 þ Zc H1ð Þ; x; y1½ � þ Zc H1ð Þ ¼ y2 þ Zc H1ð Þi:

We conclude kerg ¼ ZcðH1Þ=ZcðHÞ ¼ ðhbi þ ZcðHÞÞ=ZcðHÞ: Therefore b 2 ZcðH1Þ: It is a contra-
diction. Thus ZcðH1Þ ¼ ZcðHÞ and so H1=ZcðH1Þ ¼ H=ZcðHÞ3 ðhbi þ ZcðHÞ=ZcðHÞÞ ffi L5;5: The
proof is complete. w

Now, we are in a position to show the c-capability of stem Lie algebras T of class 3
and dimT2 ¼ 2:

Theorem 3.12. Let T be an n-dimensional stem Lie algebra of class 3 and dimT2 ¼ 2: Then T is c-
capable if and only if T ffi L4;3 or T ffi L5;5:

Proof. Let T be c-capable. Since T is capable, [13, Theorem 4.9] implies T ffi L4;3 or T ffi L5;5: The
converse holds by using Corollary 3.10 and Proposition 3.11. w

4. c-capable nilpotent Lie algebras with the derived subalgebra of dimension two

In this section, we are going to determine all c-capable nilpotent Lie algebras with the derived
subalgebra of dimension two.

In the following corollary, all c-capable nilpotent Lie algebras of class 2 with the derived subal-
gebra of dimension 2 are classified.

Theorem 4.1. Let L be an n-dimensional nilpotent Lie algebra of nilpotency class 2 and dimL2 ¼
2: Then L is c-capable if and only if L is isomorphic to one of Lie algebra L5;8 �Aðn� 5Þ;
L6;22ð�Þ�Aðn� 6Þ; Lð2Þ6;7ðgÞ�Aðn� 6Þ or L1 �Aðn� 7Þ:
Proof. This is an immediate consequence of Proposition 2.1, [13, Theorem 5.2] and Theorem 3.7.

Now we are ready to determine all c-capable Lie algebras L of class 3 and dimL2 ¼ 2: w

Theorem 4.2. Let L be an n-dimensional Lie algebra of class 3 such that dimL2 ¼ 2: Then L is c-
capable if and only if L ffi L4;3 �Aðn� 4Þ or L ffi L5;5 �Aðn� 5Þ:

Proof. This is immediate from Proposition 2.1, [13, Theorem 5.3] and Theorem 3.12.

Finally the following theorem gives the classification of all c-capable finite dimensional nilpo-
tent Lie algebras with the derived subalgebra of dimension at most two.

Theorem 4.3. Let L be an n-dimensional nilpotent Lie algebra such that dimL2 � 2. Then L is c-
capable is if and only if L is isomorphic to one of the following Lie algebras

i. if dimL2 ¼ 0; then L ffi AðnÞ and n � 2;
ii. if dimL2 ¼ 1; then L ffi Hð1Þ�Aðn� 3Þ;
iii. if dimL2 ¼ 2 and clðLÞ ¼ 2; then L ffi L5;8 �Aðn� 5Þ; L ffi Lð2Þ6;7ðgÞ�Aðn� 6Þ; L ffi

L6;22ð�Þ�Aðn� 6Þ; or L ffi L1 �Aðn� 7Þ:
iv. if dimL2 ¼ 2 and clðLÞ ¼ 3; then L ffi L4;3 �Aðn� 4Þ or L ffi L5;5 �Aðn� 5Þ:

Proof. The result follows from Ref. [18, Corollary 3.2 and Proposition 3.6], Theorems 4.1
and 4.2. w

Corollary 4.4. Let L be an n-dimensional nilpotent Lie algebra such that dimL2 ¼ 2: Then
Z�
c ðLÞ ¼ Z�ðLÞ for all c � 1:
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Proof. If L is capable by the above we have Z�
c ðLÞ ¼ Z�ðLÞ ¼ 0: Now let L be a non-capable Lie

algebra, we have Z�ðLÞ 	 L2: Hence L=Z�ðLÞ is abelian or dimðL=Z�ðLÞÞ2 ¼ 1: Theorem 4.3
implies that L=Z�ðLÞ is c-capable and so Z�

c ðLÞ 	 Z�ðLÞ: The converse always holds so Z�
c ðLÞ ¼

Z�ðLÞ for all c � 1: w
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