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Abstract: 33 

We address the logistics and planning problem of delivering Ready Mixed Concrete (RMC) to a 34 
set of demand customers from multiple depots. The RMC Dispatching Problem (RMCDP) is 35 
closely related to the Vehicle Routing Problem (VRP) with the difference that demand nodes in 36 
the RMCDP may be visited more than once by a truck. This class of routing problems can be 37 

represented using Mixed-Integer Programming (MIP) and is known to be NP-hard. Solving 38 
RMC delivery problems is often achieved through heuristics and meta-heuristic based methods 39 
as exact solution approaches are often unable to find optimal solutions efficiently, in particular 40 
when multiple depots are represented in the model. Although a variety of methods are available 41 
to solve MIP models, in this paper we attempt to solve the RMCDP using a Lagrangian 42 

relaxation technique. Namely, we derive a solution algorithm based on Lagrangian relaxation to 43 
reduce the complexity of the initial MIP model and show that the proposed relaxation is able to 44 
provide promising computational results on a realistic dataset representative of an active 45 

RMCDP in the region of Adelaide, Australia. 46 

 47 

Keywords: Lagrangian Relaxation, Duality, MIP, Ready Mixed Concrete, Dispatching.  48 



1.  Introduction 49 

In this paper, we address the problem of delivering Ready Mixed Concrete (RMC) to a set of 50 
demand customers. This logistics and planning problem arise in many real-world applications 51 
where a large amount of RMC needs to be delivered to several construction sites while 52 
respecting some scheduling and haul time constraints. The underlying routing problem within 53 

RMC delivery is closely related to the Vehicle Routing Problem (VRP), with the difference that 54 
in the RMC Dispatching Problem (RMCDP) a customer may be visited more than once by the 55 
same truck to be entirely serviced. The RMCDP can be represented mathematically using Mixed 56 
Integer Programming (MIP) and therefore this class of routing problems requires dedicated 57 
models and solution methods. In this contribution, we introduce a novel Lagrangian relaxation 58 

(1) approach to solve the RMCDP. 59 

 60 

In RMCDP it is desirable to find the best allocation of delivery trucks to depots and customers so 61 
that transportation costs are minimized. In this paper, we attempt to solve this NP-hard problem 62 
using Lagrangian Relaxation. Lagrangian relaxation has been widely used to solve hard Integer 63 

Programming (IP) models and attempts to relax the original problem by representing a set of 64 
constraints as penalties within the objective function through the use of Lagrangian multipliers. 65 

Though there are many modeling strategies and approaches that have been developed by 66 
researchers in the past (1), in this paper, we focus on a simple implementation of Lagrangian 67 
Relaxation where we dualize the flow constraints and implement a basic sub-gradient algorithm 68 

(non-differentiable optimization method) to obtain the values for the Lagrangian multipliers. We 69 
test this solution algorithm using a realistic dataset representative of an active multi-depot 70 

RMCDP in the region of Adelaide, Australia and report promising results. 71 

 72 

The paper is organized as follows: Section 2 summarizes the existing literature on the RMC 73 

delivery problems and related works; Section 3 presents the mathematical formulation of the 74 
MIP proposed to represent the RMCDP; Section 4 introduces a novel Lagrangian relaxation 75 

approach for the RMCDP; Section 5 details the implementation of the proposed solution 76 

algorithm and the results obtained and Section 6 concludes this research. 77 

 78 

2. Literature Review 79 

In this section, we briefly summarize the existing literature on RMC delivery problems and the 80 

related VRP formulations.  81 

 82 

Most of the work on RMC delivery has been published within the last decade and several 83 

formulations have been proposed for single-depot and for multi-depots dispatching problems. 84 

Single-depot RMCDPs aim to represent small to medium sized delivery problems which only 85 
have an active batch plant and an assumed homogeneous fleet. The multi-depot variant seeks to 86 
represent the case where multiple batch plants (depots) are available to load RMC into delivery 87 
trucks and a wide range of trucks is typically available within the fleet. Feng and Wu (2) 88 
introduced a single-depot model which focuses on minimizing idle times. Due to the complexity 89 

of the RMCDP, the authors solve this model heuristically and recently introduced a more 90 
advanced model (3) to refine their approach. Naso et al. (4) introduced a multi-objective model 91 
for multi-depot RMCDP with a homogeneous fleet of trucks. Their model is also able to take 92 



into account hired trucks as well as out-sourced deliveries. However, the proposed formulation 93 

requires a large number of decision variables as well as side constraints, hence the authors use a 94 
Genetic Algorithm (GA) to tackle the problem. Yan et al. (5) introduced a decomposition based 95 
formulation for the single-depot RMCDP with a homogeneous fleet. In this formulation, the 96 

authors decompose a customer according to the number of required deliveries. Subsequently, a 97 
several variants of this formulation were proposed which incorporate additional features of the 98 
RMC delivery problem, such as overtime consideration (6), incident management and stochastic 99 
travel times (7). Lin et al. (8) presented a formulation that introduces uncertainty in the demand 100 
for RMC and minimizes the total waiting time. The authors represent the RMC dispatching 101 

problem as a job shop problem where the construction site represents a job and trucks represent 102 
workstations. This model can be used to address single-depot dispatching problem with a 103 
heterogeneous fleet. Another model using a similar approach was presented by Schmid et al. (9) 104 
for a single-depot RMCDP with a heterogeneous fleet. The authors present a MIP model that 105 

seeks to avoid unsupplied customers by penalizing the unsatisfied customers in the objective 106 
function. A more advanced version of this model was subsequently introduced (10). Recently, a 107 

single-depot formulation for the homogeneous truck case was proposed and shown to optimally 108 

reduce the number of decision variables when the scheduling considerations can be omitted (11). 109 

In an effort to address the case of multi-depot RMCDP, Asbach et al. (12) introduced a node-110 
decomposition oriented formulation which proved to be a promising approach to tackle this 111 

variant. In this formulation, a depot is divided into a set of sub-depots based on the number of 112 
possible loading slots at that depot. Similarly, a customer is divided into a set of sub-customers 113 
according to the number of required deliveries. While this approach is shown to reduce the 114 

number of side constraints in the obtained MIP, the number of decision variables may increase 115 
significantly. This decomposition approach was subsequently used along with different solution 116 

methods for the multi-depot RMCDP (13- 17). The present paper builds on this research and 117 

introduces a novel solution method based on Lagrangian relaxation. The RMCDP can also be 118 

perceived as a VRP with capacity, split deliveries (18) with the addition of scheduling 119 
constraints that can be introduced in the formulation with dedicated time window side constraints 120 

(19). However, if no node decomposition is conducted, a careful attention must be given to the 121 
arising flow constraints within VRP-based formulation to represent the possibility that depot and 122 

customer nodes may be visited more than once during the course of the operations period.  123 

 124 

In this paper, we present formulation based on the aforementioned depot and customer node 125 

decomposition and introduce a novel a Lagrangian relaxation based solution algorithm to 126 

improve the computational tractability of the mutli-depot RMDCP. 127 

 128 

3. Mathematical Formulation 129 

 130 

In this section, we introduce the mathematical formulation of the RMCDP. In a RMC batch 131 
plant, the specifications of concrete mix are designed and raw materials are mixed together based 132 

on orders. Then fresh concrete is loaded into a truck. The loaded truck hauls the concrete and 133 
pours it at the destination and then returns to the batch plant. In practice, the mixing part is 134 
performed automatically while the rest of the process is handled by human experts. Dispatchers 135 
are responsible for deciding to send a truck from a batch plant at a specific time to a project. This 136 
job becomes more complicated when a dispatcher need to make calculated decisions for 137 



supplying concrete for a certain project that is located between two or more batch plants. This 138 

decision-making task involves the management of the distance from batch plants (depots) to 139 
customers’ facilities, the total amount of concrete required (demand), the temporal spacing time 140 
between deliveries, the truck RMC capacities as well as the time of the first unload. Based on 141 

this information the dispatch manager needs to manage the supply to each customer and each of 142 
their projects while trying to keep all customers pleased. The dispatcher makes decisions about 143 
the location(s) of supplier batch plant(s), time of delivery and the size of trucks. Having several 144 
active batch plants and several projects increase the complexity of this process and the role of the 145 
dispatch manager becomes more critical, as the entire RMC system works according to the 146 

schedule that is developed by the dispatch manager. 147 

 148 

This concrete delivery problem can be represented as a logistics and transportation planning 149 

problem where delivery trucks are to be routed from a set of start nodes to a RMC depot, supply 150 
RMC to a set of demand customers and finish their journey at a final node. We can decompose 151 

the journey of a vehicle in four types of trips, as depicted by Fig. 1:  152 

 153 

1. Start–Depot: trips from the start nodes to the first assigned depot nodes in the route. 154 

2. Depot–Customer: trips from the depot nodes to the customer nodes (the vehicle carry 155 
RMC). 156 

3. Customer–Depot: trips from the customer nodes to the depot nodes (the vehicle is empty 157 
and will be loaded at the next depot). 158 

4. Customer–Final: trips from the customer nodes to the final nodes. 159 

 160 

 161 

Fig. 1 – An example of a solution for the RMCDP with four types of trips. 162 

 163 

Since a depot and/or a customer may be visited more than once by the same truck within the 164 

delivery period, the traditional network flow formulations for VRP cannot be used to directly to 165 
represent this dispatching problem. We use a depot/customer node decomposition to transform 166 
an original RMCDP instance into a network flow instance where each sub-depot and sub-167 
customer can only be visited at most once during the operation period. We use the following 168 

notation for the sets and parameters used throughout the paper: 169 

 170 



𝑁 set of nodes: 𝑁 = 𝑆 ∪ 𝐷 ∪ 𝐶 ∪ 𝐹 

𝐴 set of arcs 

𝐶̅ set of customer nodes 

𝐷̅ Set of depot nodes 

𝐶 set of sub-customer nodes 

𝐷 set of sub-depot nodes 

𝑆 set of start nodes 

𝐹 set of final nodes 

𝐾 set of vehicles 

𝑄𝑢 demand of customer 𝑢 ∈ 𝐶̅ 

𝑐𝑘 capacity of vehicle 𝑘 ∈ 𝐾 

𝑠𝑢 service time at depot  𝑢 ∈ 𝐷̅ 

𝛽𝑢 penalty for not servicing customer 𝑢 ∈ 𝐶̅ 

[𝐿𝑢, 𝑈𝑢] feasible time-window for node 𝑢 ∈ 𝐶̅ ∪ 𝐷̅ 

𝑧𝑢𝑣𝑘 travel cost on arc (𝑢, 𝑣) ∈ 𝐴  for vehicle 𝑘 ∈ 𝐾 

𝑡𝑢𝑣𝑘 travel time on arc (𝑢, 𝑣) ∈ 𝐴  for vehicle 𝑘 ∈ 𝐾 

𝛾 maximum concrete haul time 

𝑇 operations period 

 171 

To ensure that the capacity of the depot is respected, we compute the maximum number of 172 

loading slots at a depot 𝑢 ∈ 𝐷̅ according to its service time 𝑠𝑢. Hence the number of sub-depot 173 

nodes over the operations period 𝑇 is given by ⌊
𝑇

𝑠𝑢
⌋. Similarly, the number of deliveries required 174 

to service a customer 𝑢 ∈ 𝐶̅ must respect the capacity of the trucks used to deliver RMC. Two 175 

cases can be identified: 176 

 Homogeneous fleet: in this case, all trucks have the same capacity and therefore the 177 

number of sub-customer nodes is given by 𝑆𝐶𝑢 = ⌈
𝑄𝑢

𝑐
⌉ where 𝑐 = 𝑐𝑘, ∀𝑘 ∈ 𝐾. 178 

 Heterogeneous fleet: in this case, trucks may have a different capacity and therefore we 179 
can determine an upper bound on the number of sub-customer nodes which is given by 180 

𝑆𝐶𝑢 = ⌈
𝑄𝑢

𝑚𝑖𝑛 𝑘∈𝐾{𝑐𝑘} 
⌉. 181 

Hence each customer node 𝑢 ∈ 𝐶̅ can be decomposed into 𝑆𝐶𝑢 sub-customer nodes and we can 182 

then define the cluster sets 𝐶𝑢, ∀𝑢 ∈ 𝐶̅ composed of all the sub-customer nodes 𝑖1 … 𝑖𝑆𝐶𝑢
 that 183 

represents the real customer node 𝑢: 184 

𝐶𝑢 ≡ {𝑖1 … 𝑖𝑆𝐶𝑢
}, ∀𝑢 ∈ 𝐶̅ 

The deliveries of RMC to customer nodes can then be planned using the cluster sets in order to 185 

ensure that the model does not plan more deliveries than requested to satisfy the demand. 186 



We denote 𝑁 = 𝑆 ∪ 𝐷 ∪ 𝐶 ∪ 𝐹 the set of nodes used in the routing process and we denote 𝐴 the 187 

set of valid trips, that is, 𝐴 ⊂ 𝑁 × 𝑁 is the set of arcs that can be used to construct a solution for 188 
the RMCDP. Precisely, only trips of the four types listed above can be used within the journey of 189 

a truck, hence the set of valid trips is given by: 190 

 191 

𝐴 ≡ {{(𝑢, 𝑣): 𝑢 ∈ 𝑆, 𝑣 ∈ 𝐷} ∪ {(𝑢, 𝑣): 𝑢 ∈ 𝐷, 𝑣 ∈ 𝐶} ∪ {(𝑢, 𝑣): 𝑢 ∈ 𝐶, 𝑣 ∈ 𝐷} ∪ {(𝑢, 𝑣): 𝑢 ∈ 𝐶, 𝑣 ∈ 𝐹}} 

 192 

Note that set 𝐴 excludes all trips between two depots or two customers. Fig. 2 illustrates this 193 
depot/customer node decomposition: each sub-depot and sub-customer node is visited at most 194 

once in the solution.  195 

 196 

Fig. 2 – Decomposition of depot and customer nodes into sub-depot and sub-costumer. 197 

The decision variables of the proposed RMCDP model can be divided into three categories: 198 

namely, the routing variables 𝑥𝑢𝑣𝑘 are defined as 199 

∀ (𝑢, 𝑣) ∈ 𝐴, ∀ 𝑘 ∈ 𝐾,     𝑥𝑢𝑣𝑘 ≡ {
1  𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑢𝑠𝑒𝑠 𝑎𝑟𝑐 (𝑢, 𝑣)

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(1) 

the assignment variables 𝑦𝑢 are defined as 200 

∀ 𝑢 ∈ 𝐶,     𝑦𝑢 ≡ {
1   𝑖𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑖𝑠 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑;
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                

 
(2) 

and the timing variables 𝑤𝑢 are defined as 201 

∀ 𝑢 ∈ 𝐶 ∪ 𝐷,     𝑤𝑢 ∈ [𝐿𝑢, 𝑈𝑢]. (3) 

where 𝐿𝑢 and 𝑈𝑢 are lower and upper bounds on the feasible arrival time at node 𝑢. The 202 

proposed model for the RMCDP is represented by Equations (4)-(15). 203 

 204 



min  ∑ ∑ 𝑧𝑢𝑣𝑘𝑥𝑢𝑣𝑘

𝑘∈𝐾(𝑢,𝑣)∈𝐴

+  ∑(1 − 𝑦𝑢)𝛽𝑢

𝑢∈𝐶̅

 
 (4) 

Subject to:   

∑ ∑  𝑥𝑢𝑣𝑘

𝑣∈𝐷𝑢∈ 𝑆

= 1 ∀ 𝑘 ∈ 𝐾                                                   (5) 

∑ ∑  𝑥𝑢𝑣𝑘

𝑣∈𝐹𝑢∈𝐶

= 1 ∀ 𝑘 ∈ 𝐾                                                   (6) 

∑ 𝑥𝑢𝑣𝑘

𝑢∈𝑁

− ∑ 𝑥𝑣𝑢𝑘

𝑢∈𝑁

= 0 ∀ 𝑘 ∈ 𝐾  , ∀ 𝑣 ∈ 𝐶 ∪  𝐷 (7) 

∑ ∑ 𝑥𝑢𝑣𝑘

𝑢∈𝑁𝑘∈𝐾

≤ 1 ∀ 𝑣 ∈ 𝐶 ∪ 𝐷 (8) 

𝑥𝑢𝑣𝑘 + 𝑥𝑣𝑢𝑘 ≤ 1 ∀ 𝑢 ∈ 𝐷, ∀ 𝑣 ∈ 𝐶, ∀𝑘 ∈  K (9) 

∑ ∑ ∑ 𝑥𝑣𝑖𝑘𝑐𝑘

𝑘∈𝐾𝑖∈𝐶𝑢𝑣∈𝐷

≥ 𝑄𝑢𝑦𝑢 ∀ 𝑢 ∈ 𝐶̅ (10) 

−𝑀(1 − 𝑥𝑢𝑣𝑘) + 𝑠𝑢 + 𝑡𝑢𝑣𝑘 ≤  𝑤𝑣 − 𝑤𝑢 ∀ 𝑢 ∈ 𝐷, ∀ 𝑣 ∈ 𝐶, ∀𝑘 ∈  K (11) 

𝑀(1 − 𝑥𝑢𝑣𝑘) + 𝛶 + 𝑠𝑢 ≥  𝑤𝑣 − 𝑤𝑢 ∀ 𝑢 ∈ 𝐷, ∀ 𝑣 ∈ 𝐶, ∀𝑘 ∈  K (12) 

𝑥𝑢𝑣𝑘 ∈ {0,1} ∀ (𝑢, 𝑣)  ∈ 𝐴, ∀𝑘 ∈  K (13) 

𝑦𝑢 ∈ {0,1} ∀𝑢 ∈ 𝐶 (14) 

𝑤𝑢 ∈ [𝐿𝑢, 𝑈𝑢] ∀𝑢 ∈ 𝐶 ∪ 𝐷 (15) 

   

The objective function (4) seeks to minimize the transportation costs while supplying a 205 

maximum number of customers. Constraints (5) and (6) enforce that each vehicle commences its 206 
journey from a start node and terminates it at a final node. Constraint (7) is the flow conservation 207 

constraint and ensures that no truck is left behind at a sub-depot or a sub-customer node. 208 
Constraint (8) states that no sub-depot or sub-customer node may be visited more than once. 209 

Constraint (9) is a subtour elimination constraint, namely it guarantees that no pair of sub-210 
customer and sub-depot nodes forms a subtour. Constraint (10) links the routing variables to the 211 

assignment variables and allows variable 𝑦𝑢 to be equal to one at the condition that the demand 212 

of the sub-customer node 𝑢 is supplied. Constraints (11) and (12) are time windows constraints 213 
that into consideration the load and unload time at depot and customer nodes, the travel time 214 
between these nodes as well as the perishable goods consideration (maximum concrete haul 215 
time). They ensure that a trip can be planned only if both sub-depot and sub-customer nodes can 216 
be visited during the specified time windows. Finally, Constraints (13), (14) and (15) define the 217 

domain of the decision variables.  218 

 219 

The model represented by Equations (4)-(15) is a Mixed-Integer Linear Program (MILP) which 220 
can be solved by enumerative algorithms such as Branch-and-Bound and/or Branch-and-Cut 221 
which are widely implemented in off-the-shelf optimization software. However, the potentially 222 
large number of variables induced by the node decomposition may significantly affect the 223 

computational tractability of the proposed formulation. In the following section, we present a 224 

novel Lagrangian relaxation approach to solve the RMCDP represented by Equations (4)-(15). 225 

 226 

 227 



4. Solution Method 228 

In this section, we present the solution method developed to address the above multi-depot 229 
RMCDP. Our approach is based on the Lagrangian relaxation theory (1). One of the difficulties 230 
in designing efficient Lagrangian relaxations is that it can be difficult to choose the set of 231 
constraint to pass in the objective function so as to yield the best possible approximation of the 232 

initial model while improving the computational tractability of the model. We first present the 233 

basic theory of Lagrangian relaxation before presenting the scheme adopted in this study. 234 

 235 

Let 𝑍𝐼𝑃 be the optimal value of an IP problem defined as: 236 

𝑍𝐼𝑃 = {min 𝐶𝑇𝑥 ∶ 𝐴𝑥 = 𝑏, 𝑥 ∈ 𝑋, 𝑥 𝑖𝑛𝑡𝑒𝑔𝑒𝑟} 

where 𝐴𝑥 = 𝑏 is a set of linear constraints, 𝐶 is a cost vector and 𝑋 represents the feasible region 237 

of the variables. Let 𝑍𝐿𝑃 be the optimal value of the Linear Programming (LP) relaxation of the 238 
IP model obtained by dropping the integrality conditions. The Lagrangian relaxation of the IP 239 

relative to 𝐴𝑥 =  𝑏 with a vector 𝜆 unrestricted in sign is: 240 

𝑍𝐿(𝜆) = {min 𝐶𝑇𝑥 +  𝜆𝑇(𝑏 − 𝐴𝑥) ∶ 𝑥 ∈ 𝑋, 𝑥 𝑖𝑛𝑡𝑒𝑔𝑒𝑟} 

𝜆 is known as the Lagrange multipliers (20) and by passing some of the constraints in the 241 

objective function, the Lagrangian relaxation relative to 𝐴𝑥 = 𝑏 seeks to penalize this relaxed 242 

problem by iteratively adjusting the values of the Lagrange multipliers. Let 𝑍𝐿 ≡ max𝜆{𝑍𝐿(𝜆)}, it 243 

is well known from the Lagrangian relaxation theory that 𝑍𝐿𝑃 ≤  𝑍𝐿  ≤  𝑍𝐼𝑃. Finally, if problem 244 
the IP is feasible and its Lagrangian relaxation possesses an integral optimal solution, then 245 

𝑍𝐿𝑃 = 𝑍𝐿. 246 

In the course of this study, we have tried to dualize multiple set of constraints within the set of 247 
Equations (5)-(15) and it has been observed that dualizing the first flow constraint (5) provided 248 

the best outcome. For this reason, we present the Lagrangian relaxation relative to this set of 249 
constraint. Namely, we can pass Equation (5) into the initial objective function (4) using the 250 

Lagrange multipliers 𝜆𝑘 for each 𝑘 ∈ 𝐾; the Lagrangian relaxation model is represented by 251 
Equations (16)-(26). 252 

min  ∑ ∑ 𝑧𝑢𝑣𝑘𝑥𝑢𝑣𝑘

𝑘∈𝐾(𝑢,𝑣)∈𝐴

+  ∑(1 − 𝑦𝑢)𝛽𝑢

𝑢∈𝐶̅

+  ∑ 𝜆𝑘

𝑘∈𝐾

(1 − ∑ ∑ 𝑥𝑣𝑢𝑘𝑐𝑘

𝑣∈𝐷𝑢∈𝑆

) 
(16) 

 253 

Subject to:   

∑ ∑  𝑥𝑢𝑣𝑘

𝑣∈𝐹𝑢∈𝐶

= 1 ∀ 𝑘 ∈ 𝐾                                                   (17) 

∑ 𝑥𝑢𝑣𝑘

𝑢∈𝑁

− ∑ 𝑥𝑣𝑢𝑘

𝑢∈𝑁

= 0 ∀ 𝑘 ∈ 𝐾  , ∀ 𝑣 ∈ 𝐶 ∪  𝐷 (18) 

∑ ∑ 𝑥𝑢𝑣𝑘

𝑢∈𝑁𝑘∈𝐾

≤ 1 ∀ 𝑣 ∈ 𝐶 ∪ 𝐷 (19) 

𝑥𝑢𝑣𝑘 + 𝑥𝑣𝑢𝑘 ≤ 1 ∀ 𝑢 ∈ 𝐷, ∀ 𝑣 ∈ 𝐶, ∀𝑘 ∈  K (20) 

∑ ∑ ∑ 𝑥𝑣𝑖𝑘𝑐𝑘

𝑘∈𝐾𝑖∈𝐶𝑢𝑣∈𝐷

≥ 𝑄𝑢𝑦𝑢 ∀ 𝑢 ∈ 𝐶̅ (21) 

−𝑀(1 − 𝑥𝑢𝑣𝑘) + 𝑠𝑢 + 𝑡𝑢𝑣𝑘 ≤  𝑤𝑣 − 𝑤𝑢 ∀ 𝑢 ∈ 𝐷, ∀ 𝑣 ∈ 𝐶, ∀𝑘 ∈  K (22) 



𝑀(1 − 𝑥𝑢𝑣𝑘) + 𝛶 + 𝑠𝑢 ≥  𝑤𝑣 − 𝑤𝑢 ∀ 𝑢 ∈ 𝐷, ∀ 𝑣 ∈ 𝐶, ∀𝑘 ∈  K (23) 

𝑥𝑢𝑣𝑘 ∈ {0,1} ∀ (𝑢, 𝑣)  ∈ 𝐴, ∀𝑘 ∈  K (24) 

𝑦𝑢 ∈ {0,1} ∀𝑢 ∈ 𝐶 (25) 

𝑤𝑢 ∈ [𝐿𝑢, 𝑈𝑢] ∀𝑢 ∈ 𝐶 ∪ 𝐷 (26) 

   

   

The problem represented by Equations (16)-(26) is a MIP that necessitates the Lagrange 254 

multipliers 𝜆𝑘 to be computed beforehand. In order to determine the values of the Lagrange 255 
multipliers, we initialize them with the marginal values (dual) of the LP relaxation of the initial 256 
MIP defined by Equations (4)-(15). We then use a generic sub-gradient optimization algorithm to 257 
iteratively update the values of the Lagrange multipliers (17). Convergence of the sub-gradient 258 

algorithm is achieved when the maximal relative gap between two consecutive values of the 259 
Lagrange multipliers is lower than a predefined value. The pseudo-code of the solution algorithm 260 

is given in Fig. 3. 261 

 262 

1. Solve the LP relaxation of the model represented by Equations (4)-(15) and let 𝐿𝐵 be its 263 

optimal value. Initialize the variables 𝜆𝑘
0   with the dual of Constraint (5). 264 

2. Let 𝜃 = 2, 𝑏𝑒𝑠𝑡 = −∞ and 𝑛𝐼𝑚𝑝 = 0 265 

3. While 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 is 𝐹𝐴𝐿𝑆𝐸 do: 266 
a. Solve the Lagrangian relaxation model represented by Equations (16)-(26). Let 267 

𝐿𝐵𝑖 be the value of the objective function at iteration 𝑖 and let 𝑥𝑖 be the current 268 
optimal solution. 269 

b. If (𝐿𝐵𝑖 > 𝑏𝑒𝑠𝑡) then 𝑏𝑒𝑠𝑡 = 𝐿𝐵𝑖 and 𝑛𝐼𝑚𝑝 = 0; else 𝑛𝐼𝑚𝑝 = 𝑛𝐼𝑚𝑝 + 1 and if 270 
(𝑛𝐼𝑚𝑝 > 1)then 𝜃 = 𝜃 + 2 and 𝑛𝐼𝑚𝑝 = 0. 271 

c. Let 𝛾𝑘
𝑖 = 1 − ∑ ∑ 𝑥𝑢𝑣𝑘

𝑖
𝑣∈𝐷𝑢∈𝑆 , for each 𝑘 ∈ 𝐾 272 

d. Let 𝑛𝑜𝑟𝑚 = ∑ √𝛾𝑘
𝑖

𝑘∈𝐾  and let 𝑠𝑡𝑒𝑝 = 𝜃
𝐿𝐵−𝐿𝐵𝑖

𝑛𝑜𝑟𝑚
  273 

e. Let 𝜆𝑘
𝑖−1 = 𝜆𝑘

𝑖  and 𝜆𝑘
𝑖 = max(0, 𝜆𝑘

𝑖 + 𝑠𝑡𝑒𝑝 ∗ 𝛾𝑘
𝑖 ), for each 𝑘 ∈ 𝐾 274 

f. Let Δ = max𝑘 |𝜆𝑘
𝑖−1 − 𝜆𝑘

𝑖 | 275 

g. If (Δ < 𝑔𝑎𝑝) then 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑇𝑅𝑈𝐸 276 
4. End. 277 

Fig. 3 – Lagrangian Relaxation Algorithm for the RMCDP 278 

 279 
In the next section, we implement the above Lagrangian relaxation algorithm and report our 280 
results on a realistic case study. 281 
 282 

5. Case Studies and Computational Results 283 

In this section, we present case studies synthesized from realistic RMC dispatch operations and 284 
compare the performance of the proposed Lagrangian relaxation algorithm with regards to the 285 
initial MIP represented by Equations (4)-(15). Our approach is tested by field data which belong 286 
to an active RMCDP in the region of Adelaide, Australia. Four instances of different sizes (i.e. 287 
number of customers, demand volumes) are tested. Given that we use a node-decomposition 288 

approach based on the demand of each customer, the complexity of the instances is strongly 289 

related to the number of sub-customers and the number of delivery trucks available.  290 



The Lagrangian relaxation algorithm was developed in GAMS, a algebraic modeling system on a 291 

RedHat ® CentOS ® 5.9 Linux server with 8 3.60 GHz Intel ® Xeon ® CPUs with a 188 GB 292 
physical memory; this algorithm uses IBM CPLEX version 12.4.0.1 to solve the LP relaxations 293 

and the MIPs iteratively (21). We use an optimality gap of 0.001%, that is 𝑔𝑎𝑝 = 0.001% in the 294 

Lagrangian relaxation algorithm. The penalty 𝛽𝑢 is set to a large enough number for all 295 
customers. The computational results are summarized in Table 1 which also contains a summary 296 
of the characteristics of each instance tested (number of depots, sub-depots, customers, sub-297 

customers and delivery trucks available). Table 1 describes the computational performance of the 298 
Lagrangian relaxation algorithm presented in Fig. 3 as well as the one obtained when the initial 299 

MIP is solved directly. 300 

 301 

Table. 1 – Summary of the computational results 302 

Problem Instance 
Algorithm run time 

(seconds) 
Objective value (km) 

ID 
nb 

Depots 

nb sub-

depots 

nb 

customers 

nb sub-

customers 

nb 

trucks 
MIP Lagrangian MIP Lagrangian 

1 2 106 26 40 17 5.57 4.54 27.137327 27.137327 

2 4 230 33 63 29 37.15 36.89 37.156975 37.156975 

3 4 320 39 112 31 246.43 239.98 62.829725 62.829725 

4 4 320 55 153 33 7086.8  3428.87  90.636275 90.636275 

 303 

For all the instances tested, the Lagrangian relaxation algorithm found the same solutions as the 304 
initial MIP, hence all the solutions obtained are feasible and optimal. In each instance, all the 305 
customers are fully serviced. The Lagrangian approach is found to be always faster than solving 306 

the initial MIP directly with an improvement of the run time varying from 1% (Instance 2) to 307 

almost 51% (Instance 4). The results obtained suggest that the improvement rate tends to 308 
increase with the size of the instance, although the improvement for Instance 1 is inferior to the 309 
one for Instance 2. Instance 4 is reported to be more difficult to solve than other instances as run 310 

time increases significantly for both the initial MIP and the Lagrangian relaxation algorithm. 311 

 312 

To further illustrate the model behavior, we give the location and demand data for Instance 3 313 
which is representative of a regular RMCDP, in Tables 2 and 3; and plot the optimal solution 314 
obtained by the Lagrangian relaxation algorithm for this instance in Fig. 4 as well as the optimal 315 
schedule of the trucks in Fig. 5. In this instance among the 31 trucks available 25 have a capacity 316 
of 7.6 m3 and 6 have a capacity of 6.2 m3. 9 start nodes and 9 final nodes are used to organize 317 

the journey of the RMC delivery trucks and sub-depots are available to load RMC into trucks. 318 

The service time is 15 minutes and the maximum haul time is 90 minutes. The operations period 319 

is from 4am to 6pm but most of the depots are only available later in the day. Some of the trucks’ 320 
start and final nodes are existing depots, hence the schedule for these trucks is shown to start and 321 
end at depots nodes. Due to the scheduling conflicts for loading RMC at depot nodes and 322 

unloading at customer nodes, a variable amount of idle time is observed. 323 

 324 

Table 2 – Location of depots for Instance 3 325 



Depot x coordinate y coordinate 
1 138.502 -35.1183 

2 138.7034 -34.927 

3 138.7189 -34.6505 

4 138.5225 -34.8394 

 326 

Table 3 – Location and demand of customers for Instance 3 327 

 328 

 329 

Customer Demand (in m3) x coordinate y coordinate 
1 3.6 138.618973 -35.030293 

2 7.2 138.649551 -34.855896 

3 1 138.71077 -34.842735 

4 41.8 138.502533 -35.140484 

5 7.1 138.596481 -34.92733 

6 3.2 138.755905 -34.60482 

7 11 138.668945 -34.937206 

8 5.4 138.521423 -35.095875 

9 24.6 138.665482 -34.933838 

10 5.7 138.504166 -35.156281 

11 5 138.682953 -34.863651 

12 4 138.520737 -35.03788 

13 4.6 138.548233 -34.938145 

14 105.4 138.701111 -34.873985 

15 2.4 138.534256 -34.927444 

16 3 138.517944 -34.869549 

17 5.1 138.601013 -34.720016 

18 15.8 138.539276 -34.935966 

19 9.9 138.653519 -34.967152 

20 5.2 138.58194 -34.892113 

21 4.6 138.542847 -35.132805 

22 2.7 138.602371 -34.982914 

23 1.0 138.702927 -34.836113 

24 2.5 138.59906 -34.907127 

25 2.4 138.601318 -34.83226 

26 6.0 138.552429 -34.875774 

27 1.0 138.66188 -34.687962 

28 1.2 138.615326 -34.941086 

29 2.0 138.661392 -34.688042 

30 24.2 138.577606 -34.892906 

31 4.8 138.491425 -35.102406 

32 4.8 138.537745 -34.976188 

33 1.1 138.577911 -34.920647 

34 2.4 138.546844 -34.836704 

35 14.0 138.646454 -34.791466 

36 83.0 138.598944 -34.696476 

37 16.4 138.539932 -34.873688 

38 1.5 138.592926 -34.995338 

39 134.5 138.627487 -34.726559 



6. conclusion 330 

The application of a Lagrangian relaxation algorithm to solve the RMCDP has been examined in 331 
this paper. The RMCDP is a logistics and planning problem arising in many real-world 332 
applications where readymade concrete must be delivered from a set of loading depots to a set of 333 
demand customers. The problem can be represented using MIP and is closely related to the VRP 334 

with the difference that depot and customer nodes may be visited more than once during the 335 
operations period. We have implemented a novel Lagrangian relaxation algorithm on realistic 336 
instances representative of an active RMCDP in the region of Adelaide, Australia and report 337 
promising results. Namely the computational tractability of the model has been improved due to 338 
the dualization of a set of flow constraints and the dualized MIP was able to find the global 339 

optimum. Further, there is scope to fine tune the proposed solution approach by implementing 340 
different methods for solving the Lagrangian dual (piecewise linear function) other than a 341 
generic sub-gradient optimization method. Besides, there is always scope to further refine by 342 

experimenting with multiple constraints and also by using a nested Lagrangian relaxation 343 

approach. 344 



 345 

Fig. 4. – Optimal solution obtained with the Lagrangian Relaxation Algorithm for the RMCDP in 346 

the region of Adelaide, Australia. 347 

 348 



 349 

Fig. 5 – Optimal schedule of the RMC delivery trucks 350 
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