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a b s t r a c t

Concrete delivery dispatching suffers from a lack of practical solutions and therefore, in the absence of
automatic solutions, experts are hired to handle this task. In addition, the concrete delivery dispatching
problem can be modelled mathematically but it can only solve up to medium sizes of this problemwithin
a practical time. This paper attempts to answer the question of how much we can rely on experts' de-
cisions. First, the concrete delivery problem is presented. Second, a benchmark for the problem is
achieved; two heuristic methods are used for those instances that their exact solutions are not available.
Finally, the experts' decisions are compared with the obtained benchmarks to assess the optimality gap
of the experts. A field dataset which belongs to an active Ready Mixed Concrete (RMC) is used to evaluate
the proposed idea. The results show that experts' decisions are near to optimum, with an average ac-
curacy of 90%. However, after comparing individual decisions between optimisation models and the
experts' decisions, we can conclude that optimisation models only try to achieve the lowest cost, while
the expert prefers a more stable dispatching system at slightly higher cost.

& 2015 Published by Elsevier Ltd.

1. Introduction

In order to assess the experts' decisions in concrete delivery
dispatching we need to compare their decisions with the best
possible decisions. Optimisation is used to find the best solution
but obtaining the optimum solution for a large scale Ready Mixed
Concrete Dispatching Problem (RMCDP) with available computing
facilities is computationally intractable as RMCDP is characterized
as being NP-hard [26,9,23,28,29]. In the literature, the main chal-
lenge for implementing optimisation and also the automating
RMCDP process have been discussed, such as [1,5,21,23,28,30],
which can be summarised into two issues [16]: (i) a large number
of variables, (ii) dealing with an uncertain and dynamic environ-
ment. In the absence of fast and optimum solutions, in practise
experts are hired to handle concrete delivery resource allocation
tasks [7,14]. In this paper, for the purposes of acquiring an exact
solution two models are used: (i) IP (hard time window), (ii) MIP
(soft time window). Two heuristic approaches are used in the
absence of optimum solutions and then best the obtained solu-
tions are set as a benchmark and are used to assess the experts'
decisions.

2. Problem formulation

In the past decade, a few attempts have been made to effec-
tively model the RMCDP which is a generalised Vehicle Routing
Problem (VRP). The main differences between RMCDP and VRP can
be summarized as follows:

1. In RMCDP in each trip a truck can haul concrete to only one
customer.

2. In RMCDP a truck can not travel longer than a specific time
because fresh concrete is a perishable material.

A few RMCDP formulations have been introduced, such as
[1,4,5,15,21,23,28,29]. To simplify the formulation, in some meth-
ods [1,28,29] the depots and customers are divided into sets of
sub-depots and sub-customers, each based respectively on the
number of loads at depots and the number of required deliveries.
The compact formulation of RMCDP can be stated as follows [1,18]
if we assume RMCDP to be a graph G¼(V,E) in which V is the set of
vertices belonging to start points, customers, depots and end
points { }V u C D vs f= ∪ ∪ ∪ . Additionally, E is the set of edges
delineating the distance between vertices.
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The objective function (Eq. (1)) forces optimisation to find
feasible solutions for all customers and penalises if a feasible so-
lution for customer (c) cannot be found by applying zero to yc.
Therefore, due to the value of M which is a large constant, opti-
misation attempts to avoid unsupplied customers. Eq. (2) ensures
that a truck at the start of the day must leave once from its base,
and similarly Eq. (3) necessitates the return of a truck just once to
the depot by the end of day. In reality, a truck arrives at either a
depot or a customer then leaves that node after loading/unloading.
This concept is called conservation of flow and Eq. (4) ensures this
issue if u C∈ then u D∈ and j C∈ but if u D∈ then v D∈ and
j D vf∈ ∪ . In this formulation a depot is divided into a set of sub-
depots based on the number of possible loadings at that depot.
Similarly, a customer is divided into a set of sub-customers
according to the number of required deliveries. Therefore,

Eqs. (5) and (6) respectively certify the sending only of one truck to
each customer and only one depot supplies each customer. Eq. (7)
checks the demand satisfaction of customers. Eqs. (8) and (9) are
designed to control timing issues. Eq. (8) ensures that concrete will
be supplied to customers within the specified time, and similarly
Eq. (9) ensures that fresh concrete is not hauled more than a
specific time which varies according to the type of concrete, be-
cause the fresh concrete is a perishable material and its hardening
process will be started γ minutes after the loading. Due to the
uncertainties in real delivery situations, RMCs are not able to
guarantee supplying concrete at precise fixed times. Therefore,
typically there is flexibility in most deliveries, which can occur
either a little earlier or a little later than the times requested by
customers. This issue is modelled in Eq. (10); Uu and Lu define the
boundaries of the time window for each customer (u).

3. Heuristic approaches

Heuristic methods have been widely used in the literature to
tackle RMCDP. The implementation of Genetic Algorithm (GA) has
been highlighted more than other heuristic methods. Garcia et al.
[6] modelled the RMC for a single depot and solved it via opti-
misation and GA. However, their approach relaxes some realistic
constraints and only considered small instances. Feng et al. [4] also
modelled a single depot RMC and assumed some parameters
such as loading/unloading times as fixed parameters. Further, the

Notations

Symbol Description
C set of customers
D set of depots
K set of vehicles
us set of starting points
vf set of ending points
Su service time at the depot u
t (u,v,k) travel time between u and v with vehicle k
qk maximum capacity of vehicle k
qc demand of customer c

Wo time at location o
βc penalty of unsatisfying the customer c
M a big constant
ϒ maximum time that concrete can be hauled
Uu Upperbond of time winodow for node u
Wu Lowerbond of time winodow for node u
xuvk 1 if route between u and v with vehicle k is selected,

0 otherwise
yc 1 if total demand of customer c is supplied,

0 otherwise
Z(u,v,k) cost of travel between u and v with vehicle k

Table 1
Comparing IP, MIP, Robust-GA, Sequential-GA and experts' decisions in the test domain in terms of cost.

Instance code Number of deliveries in day Operating cost (km)

IP (hard time window) MIP (soft time window) Robust-GA Sequential-GA Experts' decisions

D1 63 572 565 807 575 642
D2 112 963 954 1241 978 1021
D3 153 1381 1373 1704 1561 1597
D4 197 2098 NA 2535 2380 2207

Table 2
Comparing IP, MIP, Robust-GA, Sequential-GA and experts' decisions in the test
domain in terms of optimialty gap.

Instance
code

Number of
deliveries in
day

Best solu-
tion ob-
tained by

Gap between best solution and

IP MIP Robust-
GA (%)

Sequential-
GA (%)

D1 63 MIP 0.24% 0 42.83 1.77
D2 112 MIP 0.94% 0 30.08 2.52
D3 153 MIP 0.58% 0 24.11 13.69
D4 197 IP 0 NA 20.83 13.44
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instances that have been considered by them are much smaller
than the instances that are used in this paper. Naso et al. [21]
modelled a more realistic RMC problem by considering multi-de-
pots and penalising the waiting times (loading/unloading) in the
objective function. They also introduced a GA algorithm which is
very similar to the methods that were presented earlier by Garcia
et al. [6] and Feng et al. [4]. However, the instances that Naso et al.
have tested are larger than in previous research [8,9] developed a
software package called HKCONSIM to deal with real RMC pro-
blems. It mainly concerned the discrete event simulation (DES)
tool but in its recent versions was coupled with heuristic solvers
such as GA [2,11,20], Particle Swarm Optimisation (PSO) [12,27]
and real GPS (Global Positioning System) data of trucks [10] in

order to make a more powerful tool. Feng and Wu [5] and Cheng
and Yan [3] had a similar approach by integrating DES with a fast
messy GA algorithm. Silva et al. [24] compared GA with Ant Colony
Optimisation (ACO) and suggested a GA-ACO method for solving
RMC problems. Pan et al. [22] proposed an improved Discrete
PSO (DPSO) for solving RMC dispatching problems and re-
cently Srichandum and Rujirayanyong [25] compared Bee Colony
Optimisation (BCO) and Tabu Search (TS) with GA in this context.
Despite developments in this area, the solution structure among
most introduced methods is pretty much same, especially in the
GA based method where the chromosome structure consists of
two merged parts: the first part defines the sources of deliveries;
the second part expresses the priorities of customers. The solution

Table 3
Comparing the best solutions with experts' decisions in the test domain.

Instance code Number of deliveries
in day

Best solution
obtained by

Operating cost (km) Gap between best solution and
experts' decisions (%)

Gap between experts' decisions
and Sequential-GA (%)

Best solution Experts'
decisions

D1 63 MIP 565 642 13.63 �10.44
D2 112 MIP 954 1021 7.02 �4.21
D3 153 MIP 1373 1597 16.31 �2.25
D4 197 IP 2098 2207 5.2 7.84

Fig. 1. Graphic summary of Sequential-GA, Robust-GA, IP, MIP and experts' decisions for D1 instances with 63 deliveries.
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structure in these techniques is quite simple and easy to under-
stand. However, a cumbersome computing process must be com-
pleted in each iteration to check the constraints after achieving a
premature solution. Most recently Maghrebi et al. [14] introduced
a Bender decomposition solution for RMCDP and also Maghrebi
et al. [13] evalutionary compared GA and Column Generation in
this context.

In this paper we selected two of the more recent heuristic
methods that are able to solve RMCDP more quickly and accurately
without any need for post-processing of the initial solutions, un-
like in most of the introduced methods.

The first selected heuristic method is Robust-GA [17] which
was inspired by optimisation where some scholars such as [1]
divide depots and customers into sets of depots and customers,
based respectively on the number of available loading times and
the number of required deliveries. Robust-GA proposed a solution
structure for an RMCDP that supposes to supply i customers
consisting of a chromosome with 2� i gens. The gens 1 to i are
intended to find depot allocations for customers 1 to i and gens
iþ1 to 2� i are dedicated to finding a proper way to allocate
trucks for customers 1 to i.

The second selected method is Sequential-GA [19] which sug-
gests separating the RMCDP into two detached problems that are
solved separately although they are looking to find one solution.
This technique consists of two one-dimensional arrays with a
length of i in which i is equal to the number of customers. The first
array is designed for finding a solution for the supplier depot of
each customer, and the second array provides a solution for

allocating a truck to each customer.

4. Comparative analysis and discussion

The instances that are used in this paper are obtained from a
field dataset belonging to an active RMC in Adelaide (Australia).
The test domain is limited to these instances because a huge
computing effort is needed for solving the RMCDP optimisation (IP
and MIP). Moreover, it cannot solve large scale RMCDP in a poly-
nomial time. The operating cost is selected as the main compar-
ison metric in this paper due to its capacity to reflect the efficiency
of the resource allocation. Travelled distances by trucks have a
direct impact on the operating cost in normal situations [18]. Eq.
(1) is used to calculate the total travelled distances as well as the
operating cost. This equation is used for all approaches and the
achieved results are reported in the following section.

In this section five different solutions obtained from IP, MIP,
Robust-GA, Sequential-GA and experts' decisions are compared in
terms of operating cost. These comparisons are made for all in-
stances included in the test domain.

According to Table 1, the difference between IP and MIP for the
first three instances (D1, D2 and D3) is around 0.5%. However, the
MIP solution for the fourth instance (D4) is not available. There-
fore, this instance (D4) is compared to the other available solu-
tions: Robust-GA and Sequential-GA. The summary of comparisons
between IP, MIP, Robust-GA and Sequential-GA is shown in Table 2,
which is used in the following for finding the best available

Fig. 2. Graphic summary of Sequential-GA, Robust-GA, IP, MIP and experts' decisions for D2 instances with 112 deliveries.
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solution for each instance in the test domain.
According to Table 2, MIP obtained the best solutions for the

first three test instances (D1, D2 and D3) and IP acquired the best
solution for the last instance (D4). The gap between the best so-
lutions and Robust-GA solutions is around 25% on average, which
is a considerable difference. However, the gap between the best
solution and Robust-GA is decreased when the size of the in-
stances is increased. From this behaviour it can be seen that Ro-
bust-GA tends to find a feasible solution rather than finding a near
optimum solution. The Sequential-GA has a better performance
than Robust-GA. In contrast to Robust-GA, increasing the size of
the instances results in the quality of the Sequential-GA solutions
decreasing. In general there is around 10% gap between the best
possible solutions and the Sequential-GA solutions. Although there
is a considerable gap between the IP/MIP and Robust-GA/Se-
quential-GA, the computation time required for IP and MIP is up to
100 times greater than the heuristic methods. It is possible that
the IP solution for a larger instance than D4 is computationally
intractable when the need for heuristic methods is more evident.

Now, the best obtained solutions are compared with the ex-
perts' decisions to determine the quality of decisions made by the
experts. Table 3 is a summary of these comparisons.

The gap between experts' decisions and optimisation models is
not negligible but significant (Table 3). This gap amounts to 14%
(D1-MIP) and in the best case is 5% (D4). On average, experts'
decisions are 90% accurate within the sizes of the tested RMC
problems. This accuracy is important for RMCs because, on the one
hand, there is a lack of practical solutions in this context and they

must trust the experts. On the other hand, there is a concern for
RMCs as to the extent to which an expert's decisions are the best
possible ones. Daily calculation of the accuracy rate for experts, as
has been stated before, is computationally intractable. Moreover,
the expert performance is defensible because experts can handle
RMCDP with few cancelled orders. Investigations through the
available database show that the number of unsupplied orders on
most of the days is zero, which means that experts have almost
found a way to supply the customers with available resources
within the specified day. In other words, the experts' main ob-
jective is to find a way to match the supply and the demand at a
low cost if they are unable to find the optimum solution. The ex-
perts' second goal is to keep customers satisfied. However, opti-
mization models seek to find a match between available resources
and demand at lowest cost. Optimization models only prioritise
given constraints and nothing beyond such conditions. Therefore,
it is possible that this gap between optimization models and the
experts is the result of differences between their goals [18].

Additionally, during comparisons of IP, MIP, Robust-GA, Se-
quential-GA and the experts' decisions for each single delivery
(Figs. 1–4), an interesting point was found: generally, an expert's
decision is more similar to MIP than it is to IP. In these figures, the
red dots are the depots and the blue dots are the customers; the
size of the blue dots reflects the number of required deliveries.
The travel distance between a depot and a customer is shown by
an arc with its thickness representing the number of times the
route is repeated. This means that the expert understands the
importance of the flexible time window, which assists them in

Fig. 3. Graphic summary of Sequential-GA, Robust-GA, IP, MIP and experts' decisions for D3 instances with 153 deliveries.
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handling resource allocation more smoothly. The other interesting
issue that can be seen in this chapter is that the performances
of experts are very similar to Sequential-GA. In terms of cost
(Table 3), by increasing the size of the test instances the gap be-
tween the experts' decisions and Sequential-GA is decreased, on
average the difference being only 0.5%. When idle resources exist
during small instances the experts are less likely to prioritise cost
and are only concerned about serving the customers on time. But
in larger instances, when there are overcapacity concerns, it seems
that the experts try to find near optimum decisions at least cost.
The similarity between the experts' decisions and Sequential-GA
can be seen in Figs. 1–4, as well as and especially in D3 and D4.

5. Conclusion

Ready Mixed Concrete Dispatching Problem (RMCDP) still suf-
fers from a lack of practical solutions and in the absence of auto-
mated solutions, experts are hired to handle this task. This paper
has tried to assess the experts' decisions in concrete delivery
dispatching rooms. First, the RMCDP was modelled mathemati-
cally with IP (hard time window) and MIP (soft time window).
However, this problem cannot be solved for large scale RMCDP and
is characterized as NP-hard. Two heuristic methods were used
when the exact solution of RMCDP was computationally in-
tractable. The best obtained solutions have been set as a bench-
mark as well for assessing experts' decisions. We can thus con-
clude that experts' decisions are near to optimum, with an average

accuracy of 90%. However, after comparing individual decisions
between optimization models and the experts' decisions, we can
say that optimization models only attempt to achieve the lowest
cost while the experts prefer a more stable dispatching system at
slightly higher cost. This is a significant consequence for any fur-
ther studies in terms of trying to reconstruct experts' decisions
with machine learning techniques to decrease the dependency of
human resources on RMCs.
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