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Abstract In this paper, we apply a numerical scheme for the solution of a second order partial
integro-differential equation with a weakly singular kernel. In the time direction,
the backward Euler method time-stepping is used to approximate the differential
term and the cubic B-splines is applied to the space discretization. Detailed discrete

schemes, the convergence and the stability of the method is demonstrated. Next, the
computational efficiency and accuracy of the method are examined by the numerical
results.
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1. Introduction

In this paper, we consider the following second order partial integro-differential
equation with a weakly singular kernel

ut(x, t) = µuxx(x, t) +

∫ t

0

(t− s)−
1
2uxx(x, s)ds, x ∈ [a, b], t ≥ 0, (1.1)

where µ ≥ 0 and subject to the initial condition

u(x, 0) = ν(x), (1.2)

with the boundary conditions

u(a, t) = 0, u(b, t) = 0, t ≥ 0. (1.3)
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Such a problem can be appeared in mathematical modeling of some engineering
and scientific systems that leads to a model by partial integro-differential equa-
tions(PIDEs). The equations (1.1)-(1.3) can be appeared in the applications such
as heat conduction in materials with memory [10, 22], population dynamics and vis-
coelasticity [5, 27].

Of course, some numerical methods have been applied for partial integro- differen-
tial equations with weakly singular kernel. These methods are including finite-element
methods [43]-[39], finite difference methods [33, 35], orthogonal spline collocation
methods [1, 8], spectral collocation methods [9, 16], Galerkin methods [15] and quasi
wavelet methods [17, 42].
Because of the singularity of the kernel, inducing sharp transitions in the solution,
there is a challenge in developing accurate numerical methods for solving the partial
integro-differential equations. Thus, applying the collocation method by using the
B-splines functions in handling the sharp transitions is caused by the singularities of
the kernel is an effective way. Because there are two useful and important features of
B-splines in numerical work. One is that the continuity conditions are inherent. Com-
pared with other piecewise polynomial interpolation functions, the B-spline functions
are the smoothest interpolation functions. Second feature is each B-spline function
is only non-zero over a few mesh subintervals, i.e, B-splines have small local support
property. Therefore, the resulting matrix is sparse. Because of having smoothness
and capability to handle local phenomena, B-splines have been offered with special
advantage. In the case it combined with the collocation, these advantages can signifi-
cantly simplify the solution procedure of the differential equations. For example, the
cubic B-splines have been used to compute the numerical solution of the Klein-Gordon
equation [13]. The Regularized Long Wave RLW equation [28] can be solved by qua-
dratic B-splines and the quantic B-splines has been used to build up the numerical
solution of the Burgers equation in [30], the KdVB equation [44], the RLW equation
[6], the Kuramoto-Sivashinsky equation [23] and cubic spline quasi-interpolation and
multi-node higher order expansion have been used to solve the Burgers equation in
[41]. Caglar [2, 3] used the B-splines to solve the boundary value problems. RLW
equation can be solved by B-splines in [28, 29]. Most recently, the quantic B-spline
collocation method is applied to obtain the numerical solution of fourth order partial
integro-differential equations in [45].
The rest of the paper is organized as follows. In section 2, a detailed description
about the cubic B-Splines is explained. In section 3, a numerical scheme for solving
the problem (1.1)-(1.3) is discussed. The convergence analysis of the method is de-
scribed in section 4. The stability analysis is carried out via Von-Neumann stability
as given in section 5. In section 6, numerical experiments are tested to demonstrate
the viability of the proposed method and this paper ends with a conclusion in section
7.

2. The cubic B-Splines

Consider a mesh a = x0 < x1 < . . . < xN−1 < xN = b as a uniform partition of the
solution domain a ≤ x ≤ b by the knots xj with equally step length h = xj+1 − xj =
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b−a
N , j = 0, 1, . . . , N − 1. The cubic B-splines Bj(x) for j = −1, 0, · · · , N + 1 at the
knots are given as follows [24, 25]:

Bj(x) =
1

h3



(x− xj−2)
3, x ∈ [xj−2, xj−1)

(x− xj−2)
3 − 4(x− xj−1)

3, x ∈ [xj−1, xj)

(xj+2 − x)3 − 4(xj+1 − x)3, x ∈ [xj , xj+1)

(xj+2 − x)3, x ∈ [xj+1, xj+2)

0, otherwise,

(2.1)

where, {B−1, B0, B1, . . . , BN−1, BN , BN+1} form a basis over the region a ≤ x ≤ b.
Each cubic B-Spline covers four elements, so that each element is covered by four
cubic B-splines. The values of Bj(x) and its first and second derivatives are given as
in Table 1.

Table 1. Coefficients of cubic B-splines and its derivatives at knots xj .

xj xj−2 xj−1 xj xj+1 xj+2

Bj(x) 0 1 4 1 0
B′

j(xj) 0 3
h 0 − 3

h 0

B′′
j (xj) 0 6

h2 − 12
h2

6
h2 0

Our numerical scheme for problem (1.1)-(1.3) using the collocation method with the
cubic B-splines is to compute an approximate solution UN (x, t) to the exact solution
u(x, t) in the following form

UN (x, t) =
N+1∑
j=−1

Cj(t)Bj(x), (2.2)

where, Bj(x) are the cubic B-splines in our proposed method, and Cj(t) are time
dependent quantities to be determined by the boundary conditions and collocation
form of the partial integro-differential equation.

3. Numerical scheme

In this section, we propose the numerical scheme for the solution of the problem
Eqs. (1.1)-(1.3) in which the time derivative is dealt with the second order backward
finite difference method and cubic B-splines are applied to the spacial derivative.
First, we let the time level is denoted by tn = n∆t, n = 0, 1, . . ., where ∆t is the time
step. To apply the proposed method on Eq. (1.1) at time point t = tn+1, the first
expression in the left of Eq. (1.1) is approximated by

ut(x, tn+1) ≈
un+1(x)− un(x)

∆t
, a ≤ x ≤ b, n ≥ 1. (3.1)

Therefore, for every x ∈ [a, b], we have

un+1(x)− un(x)

∆t
= µuxx +

∫ tn+1

0

(tn+1 − s)−
1
2uxx(x, s)ds. (3.2)
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For approximating the second expression in the right side of Eq. (3.2), we get∫ tn+1

0

(tn+1 − s)−
1
2uxx(x, s)ds =

∫ tn+1

0

s−
1
2uxx(x, tn+1 − s)ds

=
n∑

j=0

∫ tj+1

tj

s−
1
2uxx(x, tn+1 − s)ds

≈
n∑

j=0

uxx(x, tn−j+1)

∫ tj+1

tj

s−
1
2 ds

= 2∆t
1
2

n∑
j=0

uxx(x, tn−j+1)
[
(j + 1)

1
2 − j

1
2

]
. (3.3)

By substituting Eq. (3.3) into Eq. (3.2) and rearranging, the Eq.(3.2) is become as
follows

un+1(x)− µ∆tuxx(x, tn+1)− 2∆t
3
2uxx(x, tn+1)

= un(x) + 2∆t
3
2

n∑
j=1

νjuxx(x, tn−j+1), (3.4)

where νj = (j + 1)
1
2 − j

1
2 , j = 0, 1, . . . , n.

Next, the spacial discretization of Eq. (3.4) is carried out by using Eq. (2.2) and
the collocation method is implemented by identifying the collocation points as nodes.
Therefore, for i = 0, 1, . . . , N , yields

N+1∑
j=−1

Cn+1
j Bj(xi)− µ∆t

N+1∑
j=−1

Cn+1
j B′′

j (xi)− 2∆t
3
2

N+1∑
j=−1

Cn+1
j B′′

j (xi)

= un
i + 2∆t

3
2

n∑
k=1

νk

N+1∑
j=−1

Cn−k+1
j B′′

j (xi), (3.5)

where Cn+1
j = Cj(tn+1), U

n+1
i is the approximate solution of u(xi, tn+1) in Eq. (3.2)

and B′′
j (xi) is the second order partial derivative with respect to the space variable x

of Bj at xi. Let

Di = un
i + 2∆t

3
2

n∑
k=1

νk

N+1∑
j=−1

Cn−k+1
j B′′

j (xi), i = 0, 1, . . . , N. (3.6)

Therefore, we can rewrite Eq. (3.5) as follows

N+1∑
j=−1

[
Bj(xi)− (µ∆t+ 2∆t

3
2 )B′′

j (xi)
]
Cn+1

j = Di, i = 0, 1, . . . , N. (3.7)

The system (3.7) consists of N+1 linear equations with N+3 unknowns, Cn+1
−1 , Cn+1

0 ,

. . . , Cn+1
N+1. To compute the unique solution to this system, the parameters Cn+1

−1 and

Cn+1
N+1 are eliminated by imposing the boundary conditions. From Eq. (1.3), we
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expand u in terms of the cubic B-splines formula Eq. (2.2) at x0 = a and xN = b,
yield {

C−1 + 4C0 + C1 = 0,

CN−1 + 4CN + CN+1 = 0.
(3.8)

By solving the Eq. (3.8), we get the values of C−1 in terms of C0 and C1 and similarly
CN+1 in terms of CN−1 and CN . Thus, the system (3.7) is reduced to a tridiagonal
system of N +1 linear equations and N +1 unknowns. For the sake of simplification,
the system (3.7) is denoted by the following matrix form

AC = D, (3.9)

where, the matrices A, C and D read as follow

A =



γ − 4β 0 0 0 · · · 0
β γ β 0 · · · 0

0 β γ β
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 β γ β
0 · · · 0 0 0 γ − 4β


,

C = [Cn+1
0 , Cn+1

1 , . . . , Cn+1
N ]T , n = 0, 1, 2, . . . , D = [D0, D1, . . . , DN ]T ,

where,

β = 1− 6∆t

h2
(µ+ 2∆t

1
2 ), γ = 4(1 +

3∆t

h2
(µ+ 2∆t

1
2 )). (3.10)

Next, from the initial condition given in Eq. (1.2) and the collocation form (2.2), we
deduce

u(x, 0) = UN (x, 0) =
N+1∑
j=−1

C0
jBj(x), x ∈ [a, b].

By partitioning [a, b] into N + 1 points, namely x0, x1, · · · and xN , the initial vec-
tor C0 = [C0

−1, C
0
0 , · · · , C0

N , C0
N+1] can be obtained and next the initial numerical

solution U0
N = [UN (x0), UN (x1), · · · , UN (xN )] results at the first step t = 0, easily.

4. Convergence analysis

In this section, we prove the convergency of the proposed numerical scheme in the
spatial and temporal directions, respectively.
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4.1. The convergence in the spacial direction. Let Ûexact(x) be the exact solu-

tion of Eq. (1.1)-(1.3) and Ŝ(x) be the cubic B-splines collocation approximation to

Û(x). Then

Ŝ(x) ≈ Ûexact(x) =
N+1∑
j=−1

Ĉj(t)Bj(x), (4.1)

where Ĉ = (Ĉ−1, Ĉ0, . . . , ĈN+1).

Also, suppose that S̃(x) be the computed cubic B-splines approximation to Ŝ(x),
namely

S̃(x) =
N+1∑
j=−1

C̃j(t)Bj(x), (4.2)

where C̃ = (C̃−1, C̃0, . . . , C̃N+1). To estimate the error ∥ Ûexact(x)− Ŝ(x) ∥∞, we

must approximate the error ∥ Ûexact(x)− S̃(x) ∥∞ and ∥ s̃(x)− ŝ(x) ∥∞ separately.

According to Eq. (3.7), to compute S̃(x) and Ŝ(x), we have to obtain the values of

vectors Ĉ and C̃ from two systems of linear equations as follows

AĈ = D̂, (4.3)

and

AC̃ = D̃. (4.4)

By subtracting Eqs. (4.3) and (4.4), we obtain

A(C̃ − Ĉ) = D̃− D̂. (4.5)

Furthermore, A is a strictly diagonally dominant matrix. Thus, it is nonsingular and
we have

C̃ − Ĉ = A−1(D̃− D̂). (4.6)

Taking infinity norm from both sides of Eq. (4.6), we obtain

∥ C̃ − Ĉ ∥∞≤∥ A−1 ∥∞∥ D̃− D̂ ∥∞ . (4.7)

Now consider that λi(0 ≤ i ≤ N) is the summation of the ith row of matrix A =
[aij ](N+1)(N+1). Therefore, we get

λ0 =
N∑
j=0

a0j = γ − 4β, (4.8)

λi =
N∑
j=0

aij = γ + 2β, i = 1, . . . , N − 1, (4.9)

λN =

N∑
j=0

aNj = γ − 4β. (4.10)
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Due to the theory of matrices

N∑
i=0

a−1
ki λi = 1, k = 0, 1, . . . , N, (4.11)

where a−1
ki are the entries of A−1. Thus,

∥ A−1 ∥∞=

N∑
i=0

|a−1
ki | ≤

1

λ
, (4.12)

where λ = min0≤i≤N λi = min{γ− 4β, γ+2β} = min{η, 6} and η = 36∆t
h2 (µ+2∆t

1
2 ).

Substituting Eq. (4.12) into Eq. (4.7) we can find

∥ C̃ − Ĉ ∥∞≤ 1

λ
∥ D̃− D̂ ∥∞ . (4.13)

For computing the upper bound of ∥ D̃ − D̂ ∥∞, from Eq. (3.6) for all values of
0 ≤ i ≤ N , we conclude

|D̃i − D̂i| ≤ |Ũi − Ûi|

+
12∆t

3
2

h2

n∑
k=1

|νk|(|C̃n−k+1
i−1 − Ĉn−k+1

i−1 |

+ 2|C̃n−k+1
i − Ĉn−k+1

i |+ |C̃n−k+1
i+1 − Ĉn−k+1

i+1 |). (4.14)

Now, we need to recall the following theorem.

Theorem 4.1. If f(x) ∈ c4[a, b], |f (4)(x)| ≤ L, ∀x ∈ [a, b] and

∆ = {a = x0 < x1 < · · · < xN = b}
be the equally spaced partition of [a, b] with step size h and s(x) is the unique spline
function interpolate f(x) at knots x0, x1, . . . , xN , then there exits a constant λj such
that,

||f (j) − s(j)||∞ ≤ λjLh
4−j , j = 0, 1, 2, 3.

Proof. See [7]-[11].
According to the above theorem, we have

|Ũi − Ûi| = |S̃(xi)− Ŝ(xi)| ≤ λ0Lh
4. (4.15)

In addition, {νk}nk=1 is a sequence of positive terms descending and νk ≤ 1 for 1 ≤
k ≤ n. Thus, from Eq. (4.15) we can rewrite Eq. (4.14) as follows

||D̃− D̂||∞ ≤ λ0Lh
4 +

12∆t
3
2

h2

n∑
k=1

mk, (4.16)

where

(|C̃n−k+1
i−1 − Ĉn−k+1

i−1 |+ 2|C̃n−k+1
i − Ĉn−k+1

i |+ |C̃n−k+1
i+1 − Ĉn−k+1

i+1 |) ≤ mk.

By assuming
∑n

k=1 mk = Mn and λ0Lh
4 + 12∆t

3
2

h2 Mn = Kn, we get

||D̃− D̂||∞ ≤ Kn. (4.17)
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Using Eq. (4.17), from Eq. (4.13) we come up with

∥ C̃ − Ĉ ∥∞≤ Kh2, (4.18)

where Kh2 = 1
λKn = max( 16 ,

1
η )Kn.

To proceed the rest, we note the following theorem.

Theorem 4.2. The B-splines {B−1, B0, B1, . . . , BN−1, BN , BN+1} satisfy the follow-
ing inequality

|
N+1∑
j=−1

Bj(x)| ≤ 1, 0 ≤ x ≤ 1. (4.19)

Proof. See [26].
Now, by subtracting (4.2) from Eq. (4.1), we have

S̃(x)− Ŝ(x) =
N+1∑
j=−1

(C̃j − Ĉj)Bj(x). (4.20)

Using the above theorem and taking norm from (4.20), we obtain

∥ S̃(x)− Ŝ(x) ∥∞ =
∥∥∥ N+1∑

j=−1

(C̃j − Ĉj)Bj(x)
∥∥∥
∞

≤
∣∣∣ N+1∑
j=−1

Bj(x)
∣∣∣ ∥ C̃j − Ĉj ∥∞

≤ Kh2. (4.21)

Theorem 4.3. Let Û(x) be the exact solution of Eq. (1.1)-(1.3) and Ŝ(x) be the

B-spline collocation approximation to Û(x), then the method has second order con-
vergence and

∥Û(x)− Ŝ(x)∥∞ ≤ ωh2, (4.22)

where ω = λ0Lh
2 +K is finite constant.

Proof. From Theorem 4.2 we have

∥ Û(x)− S̃(x) ∥∞≤ λ0Lh
4. (4.23)

Therefore, from Eqs. (4.21) and (4.23) we get

∥ Û(x)− Ŝ(x) ∥∞ ≤∥ Û(x)− S̃(x) ∥∞ + ∥ S̃(x)− Ŝ(x) ∥∞
≤ λ0Lh

4 +Kh2

= ωh2, (4.24)

where ω = λ0Lh
2 +K.
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4.2. The convergence in the temporal direction. To get the estimate the con-
vergence in temporal direction, we applied Taylor expansion to Eq. (3.4). Therefore,(

un(x) + ∆tun
t +

∆t2

2!
un
tt + · · ·

)
− (µ∆t+ 2∆t

3
2 )

(
uxx(x, tn) + ∆tuxxt(x, tn) +

∆t2

2!
uxxtt(x, tn) + · · ·

)
= un(x) + 2∆t

3
2

n∑
j=1

bjuxx(x, tn−j+1), (4.25)

and from rearranging Eq. (4.25), we get

∆t (un
t − µuxx(x, tn))

− 2∆t
3
2

uxx(x, tn) +
n∑

j=1

bjuxx(x, tn−j+1)

+
∆t2

2!
un
tt + · · · = O(∆t). (4.26)

Finally, if we let u(x, t) is the exact solution of the Eq. (1.1)-(1.3) and uN (x, t) is the
numerical approximation to this solution by applying the numerical method, we will
have

∥ u(x, t)− uN (x, t) ∥≤ ρ(k + h2), (4.27)

where ρ is finite constant.

5. The stability of the method

By Von-Neumann stability, we prove the stability of the proposed method. Using
Table 1 and Eq. (3.7), for any xi, i = 0, 1, . . . , N , we get

βCn+1
i−1 + γCn+1

i + βCn+1
i+1 = Di, (5.1)

where

Di = (Cn
i−1 + 4Cn

i + Cn
i+1) +

12∆t
3
2

h2

n∑
l=1

νl(C
n−l+1
i−1 − 2Cn−l+1

i + Cn−l+1
i+1 ).

We suppose that the solution of Eq. (3.7) is presented as

Cn
i = ξnekiηh,

where ξ represents the time dependence of the solution, the exponential function
shows the spatial dependence such that ηh represents the position along the grid and
k is

√
−1. By substituting Cn

i into Eq. (5.1), we have

pξn+1ekiηh = qξnekiηh +
12∆t

3
2

h2

n∑
l=1

νlrξ
n−l+1ekiηh, (5.2)
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where 
p = β(ekηh + e−kηh) + γ,

q = ekηh + e−kηh + 4,

r = ekηh + e−kηh − 2.

(5.3)

Furthermore, by substituting the values of γ and β from Eq. (3.10) into Eq. (5.3)
and using ekηh + e−kηh = 2cosηh, Eq. (5.3) becomes as follows:

p = 2(1− 6∆t
h2 (µ+ 2∆t

1
2 ))cosηh+ 4(1 + 3∆t

h2 (µ+ 2∆t
1
2 )),

q = 2cosηh+ 4,

r = 2cosηh− 2.

(5.4)

Now, dividing both sides of Eq. (5.2) by Pξeikηh and after rearranging the results
equation, we have

ξn − (
q

p
+

12∆t
3
2

h2

r

p
ν1)ξ

n−1 − 12∆t
3
2

h2

r

p

n∑
l=2

νlξ
n−l = 0. (5.5)

We choosea1 = −( qp + 12∆t
3
2

h2
r
pν1),

al = −12∆t
3
2

h2
r
pνl, l = 2, . . . , n.

(5.6)

Using Eq. (5.6), Eq. (5.5) becomes as follows

ξn + a1ξ
n−1 + a2ξ

n−2 + · · ·+ an−1ξ + an = 0. (5.7)

It is easy to see that in Eq. (5.4) q > 0 and r > 0(h ̸= 0). If β ≥ 0, we have p > 0.
In the rest of the procedure, we also need to use the following theorem:

Theorem 5.1. For all values of roots xi of an arbitrary polynomial as

P (x) = a0x
n + a1x

n−1 + · · ·+ an,

we have

|ξi| ≤ max{1,
n∑

j=1

|aj
a0

|}. (5.8)

Proof. For the proof see [32].
For the stability, it should be proved that all roots ξi of the Eq. (5.7) satisfy |ξi| ≤ 1.
According to the Theorem 5.1, we have

n∑
j=1

|aj
a0

| =
q + 12∆t

3
2

h2 r
∑n

j=1 νj

p
=

q + 12∆t
3
2

h2 r[(n+ 1)
1
2 − 1]

p
, (5.9)

where
n∑

j=1

νj =

n∑
j=1

[(j + 1)
1
2 − j

1
2 ] = (n+ 1)

1
2 − 1. (5.10)
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Now, by using Theorem 5.1, from Eq. (5.9) we obtain

q +
12∆t

3
2

h2
r[(n+ 1)

1
2 − 1] < p. (5.11)

By using Eq. (5.4), we get

cosηh <
γh2 + 24∆t

3
2 [(n+ 1)

1
2 − 1]

12∆t(3∆t
1
2 + µ)

. (5.12)

Therefore, for conditional stability of the method, Eq. (5.12) must be valid.

6. Numerical experiments

In this section, we present some numerical results to demonstrate the efficiency
and accuracy of the proposed method. All calculations are run with Matlab R2014a
software on a Pentium PC Laptop with Core i3-350M Processor 2.26 GHz of CPU
and 4G RAM. We have solved the problem based on a variety of temporal and spatial
divisions. In numerical experiments, we have used the variablesM andN for temporal
and spatial divisions, respectively.
Furthermore, because of conditionally stability, we have applied the stability condition
for temporal and spatial divisions and obtained the Errors of computations in L2 and
L∞ error norms as follows

L2 =∥ uexact − unum ∥2=

(
N∑
i=0

| uexact
i − unum

i |2
)1/2

,

L∞ =∥ uexact − unum ∥∞= max
0≤i≤N

| uexact
i − unum

i |,

Example 6.1. Consider the following weakly singular partial integro-differential equa-
tion in case of µ = 0 in Eq. (1.1) [19, 34].

ut(x, t) =

∫ t

0

(t− s)−
1
2uxx(x, s)ds, x ∈ [0, 1], t ≥ 0,

with the boundary and initial conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

u(x, 0) = sin(πx), 0 ≤ x ≤ 1.

The exact solution is u(x, t) = M(π
5
2 t

3
2 ) sin(πx), where M denotes the series M(z) =∑+∞

0 (−1)nΓ( 32n+ 1)−1zn.

We have solved the problem based on a variety of temporal and spatial divisions
and applied the stability condition for temporal and spatial divisions. The errors of
computations are obtained in L2 and L∞. The numerical and exact solutions are
shown for a case of divisions as M = 50 and N = 100 in Figures 1 and 2.

In Figure 3, the error norm is shown for the case of M = 100 and N = 50.
In Table 2, the L∞ error norm is shown for some cases of divisions of N and M as

follows
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Figure 1. The numerical solution for M = 100 and N = 50.
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Figure 2. The exact solution for M = 100 and N = 50.
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Figure 3. The error for M = 100 and N = 50.
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7. Conclusion

In this article, the cubic B-splines collocation is implemented for computing the
numerical solution of a PIDE with a weakly singular kernel successfully. The results
which obtained in this research indicated that the discrete schemes are developed
in this study and the convergence and stability of the method is confirmed by the
analysis. The numerical results have indicated the accuracy of the method. The
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Table 2. The L∞ error norm for some cases of divisions of N and M .

N = 10 N = 25 N = 50 N = 100
M = 50 0.0795 0.0768 0.0766 0.0765
M = 100 0.0475 0.0452 0.0450 0.0449
M = 200 0.0274 0.0252 0.0250 0.0249
M = 400 0.0159 0.0137 0.0133 0.0133
M = 800 0.0097 0.0073 0.0070 0.0070

results have also demonstrated that the proposed computational method is efficient
for these type of problems.
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