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Abstract 

 

In some engineering applications like moving ships the axially moving FG structures have to be investigated. In this 

paper, the nonlinear response and stability of an axially moving porous FGM plate under a local concentrated load are 

studied. The plate is made of materials whose properties are assumed to be graded in the thickness direction. To take the 

effect of porosity into account, the modified rule of mixture is chosen to calculate the effective material properties. The 

kinetic dynamic relaxation method along with the implicit Newmark integration are used to solve the nonlinear dynamic 

equations. Finally, the effect of material gradient index, porosity volume fraction and boundary conditions on dynamic 

deflection and instability of plate are discussed.     
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1. INTRODUCTION 

In recent years, functionally graded materials 

(FGMs) have been practiced in industry, particularly 

in environments with very high temperatures as well 

as high mechanical loads such as turbines and com-

ponents of powerful machines. Due to the unique 

characteristics of these materials, it is anticipated 

that their industrial applications will be developed 

over the coming years. These materials for the first 

time were introduced in 1984 in the laboratory of the 

Japan Aerospace. Then they have attracted intensive 

research interests, which were mainly focused on 

their static, dynamic and vibration characteristics of 

FG structures (Golmakani & Kadkhodayan, 2013; 

Fallah & Aghdam, 2012). To produce FGMs, there 

are different methods such as Powder Metallurgy 

(Kieback et al., 2003), multi-step sequential infiltra-

tion technique, non-pressure sintering technique and 

self-propagating high temperature synthesis tech-

nique (Wang & Zu, 2017). However, porosities or 

micro-voids can happen inside the FGMs due to the 

existence of some technical issues during the pro-

cess. Porosity gradients may be formed either by the 

deposition of powder mixtures with different particle 

shape or by varying the deposition parameters in-

cluding the use of space holders (Kieback et al., 

2003). Wattanasakulpong et al. (2012) reported that 

when the multi-step sequential infiltration technique 

is applied, porosities happen mainly in the middle 

zone of the FGMs. The reason is that the penetration 

of the secondary material into the middle zone is 

difficult. Nevertheless, infiltrating the material into 

the top and bottom zones is easier, leading to less 

porosities in these two zones. Furthermore, porosi-

ties can occur within the materials during the pro-

cess of sintering. This is because of the large differ-

ence in solidification temperatures between material 

constituents (Wattanasakulpong & Ungbhakorn, 

2014).  

Some studies have been performed on the static 

and dynamic behavior of porous structures. Among 
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them, Biot (1964) proposed the poroelasticity theory 

by introducing the bulk dynamic and kinematic vari-

ables. In another study, Jabbari et al. (2013) ana-

lyzed buckling of radially solid circular plate made 

of porous material. They assumed a function for 

changes of porosity distributions through the thick-

ness of the plate. Joubaneh et al. (2014) studied on 

thermal buckling analysis of porous circular plate 

bounded with piezoelectric sensor-actuator patch. 

Wattanasakulpong and Chaikittiratana (2015) modi-

fied the rule of mixture to take porosities into con-

sideration in their investigation of free vibration of 

FG beams. On the basis of Timoshenko theory, 

Chen and Jang (2015) studied the effect of porosity 

on buckling of shear beam. To do this, the Ritz 

method was employed to obtain the critical buckling 

loads and transverse bending deflections. Recently, 

Atmane and Tounsi (2015) studied the effect of 

thickness stretching and porosity on mechanical 

response of a functionally graded beam resting on an 

elastic foundation. They found the fundamental fre-

quencies by solving the results of eigenvalue prob-

lems. Newly, Ebrahimi et al. (2016) analytically 

investigated the thermal effects on vibration behav-

ior of temperature-dependent porous functionally 

graded Euler beams. 

Axially moving plates can be met in many in-

dustrial applications such as moving ships, aircrafts, 

automobiles, production of paper, steel, or textiles, 

and also printing process. Because of its great im-

portance, vibration and dynamic stability of axially 

moving plates have received considerable attention 

in recent years. The first dynamic analysis of the 

plate model of the band saw blade was reported by 

Ulsoy and Mote (1982). Shin et al. (2005) studied 

the stability of out-of-plane vibrations of axially 

moving rectangular membranes. Marynowski and 

Kapitaniak (2002) studied the effects of axially trav-

elling speed and the internal damping on dynamical 

stability of two-dimensional axially moving web in 

details. Nonlinear free vibration of an axially mov-

ing beam was investigated by Chen and Yong 

(2007). They obtained the nonlinear frequencies of 

two models by the method of multiple scales modes. 

Hatami and Ronagh (2008) analyzed numerically the 

free vibration of axially moving viscoelastic plates. 

They used the rheological models to model the vis-

coelastic behavior of material. By investigating the 

instability of an axially moving rectangular plate, 

Banichuk et al. (2010) depicted that the onset of 

instability occurred in a divergence form for some 

critical value of the transport velocity when the fre-

quency of the plate vibrations was equal to zero. The 

steady laminar boundary layer flow over a moving 

plate in a moving fluid with convective surface 

boundary condition and in the presence of thermal 

radiation was investigated by Ishak et al. (2011). 

Yang et al. (2012) investigated the stability and non-

linear vibration of an axially moving plate using the 

finite difference method. Based on Kirchhoff-Love 

plate theory and linear potential follow model, Yao 

et al. (2016) investigated dynamics and stability of 

an axially moving plate interacting with surrounding 

airflow. 

To the best of knowledge of authors, there are no 

previous studies endeavored to perform the dynamic 

response of a moving functionally graded porous 

plate subjected to a concentrated load. In this work, 

elastic properties of FGM plate are supposed to 

vary through the thickness direction according to 

the modified mixture-law form. The nonlinear equa-

tions of motion are formulated through the Hamil-

ton’s principle on the basis of von Karman relations 

as well as classic plate theory and then, they are 

solved by hybrid kinetic dynamic relaxation-

Newmark method. As a final point, the effect of 

different parameters such as boundary conditions, 

the velocity of plate, the material gradient property 

(p) and also the porosity volume fraction on transi-

ent deflection and stability of the plate are investi-

gated. 

2. FGM PLATES WITH POROSITIES 

A porous plate of thickness h, width b and length 

a in a Cartesian coordinate system is shown in figure 

1. As depicted, the plate is moving with axial speed, 

vp, in the opposite direction of x  and a fixed con-

centrated force, F, is applied on the mid-width of the 

plate in the transverse direction. Furthermore, the 

Cartesian coordinate is assumed to lie on the mid-

plane of the plate and the effective material proper-

ties vary functionally from bottom (metal) to top 

(ceramic).  

When porosities are distributed evenly among the 

metal and ceramic phases of FGM structures, the 

modified rule of mixture can be proposed as 

(Wattanasakulpong & Ungbhakorn, 2014) 

2 2

p p

m m c cP P V P V
    

      
   

  (1) 
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In equation (1) and hereafter,
p , subscripts c 

and m  are used to indicate the porosity volume 

fraction, ceramic and metal, respectively. It should 

be noticed that 1p   (Wattanasakulpong & 

Ungbhakorn, 2014). Moreover, Vc and Vm are the 

ceramic and metal volume fractions, respectively, 

which are related by  

 

Fig. 1. Geometry of a FGM plate with porosities. 

1m cV V    (2) 

The ceramic volume fraction Vc is assumed to 

follow a power law distribution as 

2

2

p

c

z h
V

z

 
  
 

  (3) 

where z is the distance from the mid-plane of the FG 

plate and volume fraction index or power law p dic-

tates the variation of the constituents through the 

plate thickness. Therefore, all properties of the po-

rous FGM can be written as: 

   
1

2 2

p

p

c m m c m

z
P P P P P P

h

 
      

 
 (4) 

Thus, the elastic modulus, E, and material density, ρ, 

equations of the porous FGM plate can be obtained 

as 

   

   

1
( )

2 2

( )
2

1

2

p

p

c m m c m

p

p

mc m c m

z
E z E E E E E

h

z
z

h




    

     

  

 
 
 

 
   

 

 (5) 

The Poisson’s ratio, , is assumed to be constant. 

 

 

3. DERIVATION OF THE GOVERNING 

EQUATIONS  

In accordance with the von-Karman large deflec-

tion theory, strain-displacement relations for the 

classical thin plate can be expressed as follows 

2

, , ,

2

, , ,

, , , ,, 2

2

2

x x

y

xx

yy

xyxy

xx

y yy

y x x y

u w zw

v w zw

u v w w zw







   
   

   
   

 

 

 


  

 (6) 

where u, v and w are the displacement of the mid-

plane in the direction of x, y and z, respectively, and 

the subscript (,) shows the derivative operator with 

respect to the displacement. Based on Hook’s law, 

the relationships between stress and strain for porous 

FG plates may be achieved as 

 

( ) ( ) 0

( ) ( ) 0

( )
0 0

2(1 )

xx xx

yy yy

xy xy

E z E z

E z E z

E z

 

  

 



 
    
    

     
    
    

  

 (7) 

Using the Hamilton’s principle, the equations of 

motion in the fixed coordinate (x, y, and z) can be 

derived as 

 
0

0

T

kU W T dt      (8) 

where U is the total potential energy of the system, 

𝑇𝑘 is kinetic energy of the system, W is the work 

performed by external forces and 𝛿 is the variation 

operator. Also, the virtual potential (strain) energy 

can be written in terms of stress and strain as 

ij ij

V V

U udV dV       (9) 

The velocity vector of the axially moving thin 

plate can be given as (Swope & Ames, 1963) 

V

u u v v w w
C C i C j C k

x t x t x t



          
          

          

 (10) 

in which C is a constant velocity of the plate equal to 

-vp.  

Because the influence of the angles (w,x) and 

(w,y) on the velocity vector are negligible, the total 

kinetic energy 𝑇𝑘 is obtained as: 
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 
2 2 2

1

2

k

V

u u v v w w
C C C C

x t x t

T

z
x

dV
t




     

   
    



      
       

        


 
(11) 

and the virtual work is 

  0 0

A

W F x x y y wdA      (12) 

The term 𝛿̅ is Dirac delta function, integral of which 

is equal to unity in any neighborhood of  0 0,x y  and 

zero elsewhere (Taheri & Ting, 1989). Moreover, 

𝛿𝑤 and F can be considered as an admissible virtual 

displacement in z direction and a concentrated con-

stant force subjected on the plate, respectively. The 

final forms of equilibrium equations are presented as 

 

2

, , 0 2

2

, , 0 2

2

, , , 0 0 0 2

, , ,

2 ( )( )

2

xx x xy y

xy x yy y

xx xx xy xy yy yy

xx xx xy xy yy yy

D u
N N I

Dt

D v
N N I

Dt

D w
M M M F x x y y I

Dt

N w N w N w



 

 

      

  

 

(13) 

where:  

2

0

2

( )               

h

h

I z dz


   (14) 

2 2 2 2
2

2 2 2
2

D
C C

Dt t x t x

  
  
   

 (15) 

 

3.1 Plate boundary conditions 

The boundary conditions used in present study 

are presented as follows 

a) For simply supported boundary condition 

(SSSS): 

0 0

0 0

xx

yy

x ,a u v w M

y ,b u v w M

     


     
  (16) 

 

b) For clamped boundary condition (CCCC): 

0 0

0 0

,x

,y

x ,a u v w w

y ,b u v w w

     


     
  (17) 

 
c) For SCSC (parallel edges are in the same condi-

tions): 

0 0

0 0

xx

,y

x ,a u v w M

y ,b u v w w

     


     
  (18) 

4. SOLUTION OF THE PROBLEM 

In this section, the Newmark method has been 

used to discretize the equations in time domain. To 

solve the dynamic equations, however, the Newmark 

method needs to be combined by a common nonlin-

ear solver such as Newton-Raphson or dynamic 

relaxation. In this study, due to simplicity, efficiency 

and unique procedure for both linear and nonlinear 

systems, the kinetic dynamic relaxation method has 

been adopted. 

4.1 Implicit Newmark method 

According to the Newmark approach, the real 

acceleration and velocity at the next time step (j+1) 

can be computed by equations (19) and (20) (Clough 

& Penzien, 1993) as 

1 2

1 1 1
Δ 1

(Δ ) Δ 2j jβ t β t β


 
    

 
j j j jx a aa  (19) 

1 Δ 1 1 Δ
Δ 2

j

j

γ γ γ
t

β t β β


   
       

   
j j j jv x v a  (20) 

 

in which
jx  shows the displacement field of the 

plate and Δt represents the time interval. Moreover, 

the constancy and precision of Newmark’s responses 

can be guaranteed by appropriate quantities, namely 

𝛽 and 𝛾. By substituting equations (19) and (20) into 

equation (13), the dynamic equations can be con-

verted into a static system as 

1 1 1{ }j j j  
   K x P

 
(21) 

where 
1j

  K  and  1jP  are equivalent stiffness 

matrix and equivalent load vector, respectively 

(Rezaiee-Pajand & Alamatian, 2008) and are 

formulated as 

1 1 1 12

1

(Δ ) Δ
j j j

j j

γ

β t β t
   

                jK M C K

  (22) 

 
1 2

1 1

1

1 1 1
1

(Δ ) Δ 2
t

γ
1 1 Δ

Δ β 2

j j

j j

j j

j j j j j

j

β t β t β

γ γ
t

β t β



 



   
         

    
   

     
           

      

j jM x v

P

a

P

C x v a

 

(23) 

where 1 1 1, ,j j j  
         M C K are, respectively, the 

mass, damping and stiffness matrices and also 

 1
( )

j
t


P  represents the external force vector. Then 
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equation (21) may be solved by dynamic relaxation 

method with kinetic damping technique. 

4.2 Kinetic dynamic relaxation method 

In this method, to solve the nonlinear equations, 

equation (21) is transferred to fictitious dynamic 

space by adding fictitious mass matrix  
DR

M . 

Thus, equation (21) is improved as 

    1 1 1

nn n n

j j jDR   
   

n

M x K x P        (24) 

in which  x  and symbol n  are fictitious 

acceleration vector and the iteration number, 

respectively. The mass matrix should be defined 

in order to guarantee the stability and conver-

gence of the procedure. Based on the Gershgörin 

theorem, the fictitious mass matrix elements are 

obtained by following equation (Alamatian, 2012) 

 
 2

1

]1
| |,   , ,       

2

[N
l n l

ii ij ij

n

j

n

τ l
x

x




  


m v

K
k u w k  (25) 

By introducing residual force from 

1 1 1{ }n n n

j j  
    

n

jR P K x  (26) 

nodal velocity and displacement vectors at the next 

step of fictitious time  nτ can be calculated as 

 
 

 
1/2 1/2

nτ  
n nn

DR

x x R
M

 (27) 

 

     
1

1
2

nτ
 
 

n n n
x x x  (28) 

Using following equation, the kinetic energy of 

whole system can be achieved as 

2
1

1 2

i 1

1

2

N






 
  

 


n
n n

ii i
KE m v  (29) 

where, N is the number of degrees of freedom. 

The kinetic energy of the system is traced through 

the time domain and once a peak is distinguished the 

current velocities are set to zero (Lee et al., 2011; 

Alic & Persson, 2016). After that, the new iteration 

of K-DR starts with a new nodal displacement and 

velocity as (Topping & Ivanyi, 2007) 

  

   
1

2

2

n

( )




n n

n

DR ii

v R
m

   (31) 

Understandably, the values of velocity vector 

approach zero at the steady state situation. The K-

DR procedure is continued until 
1 910n KE or 

  810n R . These steps are iterated for each time 

increment of implicit numerical integration. 

5. NUMERICAL RESULTS 

The transient responses of the moving porous 

FG plate are obtaiend here by means of the hybrid 

KDR-Newmark technique. To do this, firstly, the 

convergence and accuracy of the method is 

demonstrated by a few samples and  then a 

comprehensive parametric study is presented. 

5.1 Validation of present study 

Sample 1. As a first example to verify the pre-

sent formulation and numerical method, the large 

transient central deflection and moment of a simply 

supported isotropic rectangular plate subjected to 

various distributed pulse loads, q, are investigated, 

figure 2. The assumed properties, dimensions and 

load are assumed as 

3

2

3

969 10 ,  2496 ,

2.43

0.25

47.87           

8 , 6.35 10

kg
E Pa ρ

m

N
q

a b m h m

m

 
 
   


  


  
 
 

 
 



 (32) 

 

Fig. 2a Dynamic responses at the center of a SSSS rectangular 

plate, Deflection. 
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Fig. 2b. Dynamic responses at the center of a SSSS rectan-

gular plate, Moment. 

The obtained results by KDR are compared with 

those reported by Akey (1979) and a good 

agreement between them is observed, figure 2.  

Sample 2. In this case, the accuracy and 

workability of KDR method for moving structures 

is verified. For this purpose, the obtained numerical 

results are compared with those achieved by Chen et 

al. (2011). They investigated dynamic responses of 

an axially moving beam (b<<a) along with the fol-

lowing dimensionless equations 

22 (1 ) 0tt xt xx xxxxw vw v w ξw      

0

2 2

0

,
PEI

T t
P a a




    

(33) 

where v is the dimensionless velocity, P0 the ax-

ial tension, EI the flexural rigidity,  the mass densi-

ty of the beam and a the beam length. Furthermore, t 

and T are time and dimensionless time, respectively. 

As seen, figure 3 demonstrates the truthfulness 

of KDR method for obtaining dimensionless transi-

ent responses of a beam moving with the dimension-

less velocity of 1 at the center of the moving beam, 

W(x=1/2), for fully clamped boundary condition. 

Sample 3. In the third case study, the validity of 

kinetic dynamic relaxation for the plate under a local 

force, is investigated. It is presumed that the motion-

less plate (𝑣𝑝 = 0) is subjected to a moving concen-

trated load (𝑣𝑓); then the KDR results for CCCC 

and SSSS boundary conditions are compared with 

those obtained by Eftekhari (2014). Figures 4 and 5 

illustrate the time history of deflection at the center 

of the plate subjected to a moving load. A close 

agreement can be seen between the present results 

and the reference (Eftekhari, 2014). 

 

 

Fig. 3. Dimensionless deflection at the center of a clamped 

moving beam in different velocities, 𝜉 = 0.1. 

 

Fig 4. Comparison of KDR results for central deflection of a 

CCCC square plate under moving load. 

 

Fig 5. Central deflection of a SSSS square plate under moving 

load. 
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5.2 Parametric study 

An axially moving plate with aspect ratio of 

a/h=20 (a = 0.1m) is assumed, figure 1. The FGM 

plate is made from alumina (Al2O3) as ceramic and 

aluminum (Al) as metal; whose material properties 

are given in table 1. 

Table 1. The mechanical properties of composed materials of 

FGM plate. 

Material 
Elastic 

module (GPa) 

Density 

(kg/m3) 
Poisson’s ratio 

Al2O3 380 3960 0.3 

Al 70 2702 0.3 

 

As aforementioned, the moving plate is subject-

ed to a local concentrated load with amplitude of 

100 kN on mid-width of the plate (y = b/2), indeed 

the fixed load moves on the plate with the velocity 

of -vp. 

Effect of velocity on the moving plate can be 

clarified by comparing transient central deflections 

of a fully clamped pure alumina square plate due to 

a moving load, vp =0, with those of a moving plate 

subjected to a local load for the velocities of 2m/s 

and 6m/s, figure. 6. When the velocity is low, there 

is no significant difference between the deflection 

results obtained from the moving load and moving 

plate. However, the differences between them be-

come more as the velocity increases. 

Figure 7 shows the effect of the material gradi-

ent property (index p) on the dynamic responses of a 

moving porous FGM plate, 0.1
p

  , with vp = 6 m/s 

in SSSS and CCCC boundary conditions. As depict-

ed, the magnitude of deflection is influenced by the 

type of boundary conditions and also the value of 

material gradient property, p. It means that reducing 

the boundary condition constrains or raising p can 

increase the magnitude of deflection. 

Tables 2 and 3 provide the influence of the FGM 

index as well as the velocity of the non-porous plate 

on maximum central deflection and instability for 

simply supported and clamped boundary conditions, 

respectively. It can be clearly seen that when the 

velocity of the plate increase, the central maximum 

deflection increases initially; however, by increasing 

the speed of the plate, this deflection decreases until 

the plate becomes unstable (the deflection approach-

es to infinity) at critical velocity. 

 

 

(a) 

 

(b) 

Fig. 6. Deflections of the fully clamped square plate for concen-

trated moving load and moving plate, (a) velocity = 2m/s, (b) 

velocity = 6m/s. 

As demonstrated, the value of critical velocity 

can be reduced by softening the FG plate and the 

growth of degrees of freedom, as well. For example, 

the non-porous FG plate with p = 0.5 becomes un-

stable at 21 m/s in CCCC, while it becomes unstable 

at 20 m/s in SSSS boundary conditions. 

The dynamic centroidal deflection of FG plate 

with various porosity volume fractions and velocity 

with p = 4 is proposed in tables 4 and 5 for simply 

supported and clamped boundary conditions, respec-

tively. Comparing the obtained results, it can be 

found that the dynamic deflection as well as the 

critical velocity of the plate are strongly influenced 

by the porosity volume fractions. For instance, the 

critical velocity of the SSSS plate with 0.1pα   is 

15 m/s while it is 14 m/s for 0.2pα  . 
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The influence of plate width reduction on dy-

namic response of the porous plate is shown in fig-

ure 8. The velocity of this porous FG plate with p = 

1 is 5m/s when SCSC boundary conditions are used. 

As depicted, by reducing the value of width from 

0.1m to 0.075m, the amount of maximum dynamic 

response decreases as 39.1%, 38.1%, 36.5% and 

34% for αp=0, αp=0.1, αp=0.2, αp=0.3, respectively. 

a)  b)  

Fig. 7. Time history of the centroidal defelction of the moving FG square plate subjected to local force, (a) SSSS, (b) CCCC. 

Table 2. The effect of value of exponent p and velocity of the FG square plate on central maximum deflection  (10-3 m) for SSSS bound-

ary condition.  

 

Table 3. The effect of value of exponent p and velocity of the FG square plate on central maximum deflection (10-3 m) for CCCC 

boundary condition. 

 

Table 4. The effect of value of p and velocity of the FG square plate on central maximum deflection (10-3 m) for SSSS boundary condi-

tion )p = 4). 
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Table 5. The effect of value of p and velocity of the FG square plate on central maximum deflection (10-3 m) for CCCC boundary 

condition )p = 4(. 
 

 
 

a)  b)  

c)  d)  

Fig 8. The effect of width change on dynamic response of the SCSC porous FG plate, vp = 5m/s, P = 1 (a) αp = 0, (b) αp = 0.1, (c) αp = 

0.2 (d) αp = 0.3. 

6. CONCLUSIONS 

In this study, the dynamic responses and stability 

for an axially porous FG plate for various boundary 

conditions are investigated. Under classic hypothesis 

and von-Karman large deflection theory, the nonlin-

ear dynamic equations were derived. The modified 

rule of mixture covering porosity phases was used to 

describe and approximate material properties of the 

porous FGM plates.  

Using the new method, kinetic dynamic relaxa-

tion technique modified along with Newmark inte-

gration, these equations were solved. The effects of 

the material gradient constant, porosity volume frac-

tion, the velocity of plate, boundary conditions and 

the width of the plate were investigated in details. 
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Some vital inferences obtained from parametric 

study are mentioned as bellow: 

 There is no major difference between the results 

of a moving load and a moving plate, once the 

velocity of the plate is low. Increasing this ve-

locity; however, the difference between these 

two results becomes greater which is because of 

the influence on inertia of the plate.  

 Porosity plays a crucial role in instability of 

moving FG structures. The critical velocity can 

occur faster by raising porosity volume fraction. 

 The influence of width variation on amount of 

transient response can be increased or de-

creased by reduction or increasing of p, re-

spectively. 
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NIELINIOWA DYNAMICZNA ANALIZA 

POROWATEJ PŁYTY FG PORUSZAJĄCEJ 

SIĘ OSIOWO I PODDANEJ DZIAŁANIU 

LOKALNEJ SIŁY WYKORZYSTUJĄC 

METODĘ KINETYCZNO DYNAMICZNEJ 

RELAKSACJI 

Streszczenie 

 

Niektóre inżynierskie problemy, jak na przykład porusza-

jący się okręt, wymagają zastosowania analizy prze-

mieszczających się osiowo struktur gradientowych (ang. 

Functionally graded materials FGM). W niniejszym arty-

kule opisano badania nieliniowej odpowiedzi i stabilności 

poruszającej się osiowo porowatej płyty FGM poddanej 

działaniu lokalnej siły. Płyta była wykonana z materiału, 

którego własności zmieniały się wzdłuż grubości. Aby 

uwzględnić wpływ porowatości zastosowano zmodyfiko-

waną regułę mieszanin, za pomocą której obliczono efek-

tywne własności materiału. Nieliniowe równania dyna-

miczne zostały rozwiązane za pomocą kinetyczno dyna-

micznej metody relaksacji połączonej z niejawnym cał-

kowaniem metodą Newmark. W pracy omówiono wpływ 

gradientu własności, ułamka objętości pustek oraz warun-

ków brzegowych na dynamiczne odkształcenie i niesta-

bilność płyty. 
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