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a b s t r a c t 

This study introduces an efficient method for safety evaluation of the structures with small 

failure probability. The proposed approach reformulates basic failure probability formula 

based on control variates method and suggests to firstly substitute the nonlinear limit state 

function with a linear limit state function for taking the advantages of linear problems 

during reliability process. Reliability analysis of linear problems would be fully accurate 

and dimension insensitive. Subsequently, the control variates method imposes the effect 

of limit state function nonlinearity on the obtained first-order failure probability by using 

a very small sampling size simulation. The result is a new reliability formulation that is 

highly suitable for solving nonlinear and high dimension problems. The capabilities of the 

method examined by solving several benchmarks numerical/engineering problems involv- 

ing non-normal random variables, complex/noisy limit state functions, and nonlinear high 

dimension problems. Compared with mainstream reliability methods, for all solved prob- 

lems, it is demonstrated that the proposed approach presents accuracy close to Monte 

Carlo simulation while the required number of performance function valuation is close to 

first-order reliability method. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In recent years, accurate safety evaluation of existing structures and engineering systems become a topic with great

importance [1] . A number of new methods have been suggested to estimate the structural reliability and the application

of these approaches in safety factor calibration and design optimization has been highlighted in recent works of literature

[2,3] . The structural reliability analysis approaches can be arranged into five types as follows: (1) Based on Most Probable

Point (MPP) methods; (2) expansion methods; (3) approximate integration methods; (4) simulations methods; (5) surro-

gated based approximate methods. Among them, simulation methods are the most accurate that are suitably developed for

analysis and design of systems [4,5] . Considering Monte Carlo Simulation (MCS) and Importance Sampling (IS) as the main-

stream simulation methods in the last century, some other significant advances in simulation approaches may find in the

later. New approaches such as Subset Simulation (SS) [6–8] , Line Sampling (LS) [9] , asymptotic simulation [10] , and weighted

average simulation [11–13] have been developed to reduce the computational cost of MCS and increase the robustness of IS.

However, it should be mentioned that the applicability range of these methods is fewer than MCS. They involve parameters

that should select properly. Otherwise, they may compute improper results. Furthermore, some of them are only suitable
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for small size problems and generally, the computational cost of these simulation methods is often huge for many complex

reliability problems (i.e., nonlinear problems that their performance valuation requires finite element analysis). 

As well as simulation methods, powerful computer-based prediction methods, surrogates, and Meta-models also devel-

oped and adapted for application in reliability analysis. Artificial Neural Network (ANN), Anfis, Kriging [14–16] and Support

Vector Machine (SVM) [15] may consider as the newly developed computer-based prediction approaches that often present

more efficiency compared to the formerly developed classical Polynomial Response Surface Method (PRSM) [17–19] . Proper

use of these approaches highly improves the efficiency of reliability process. However, these methods are often facing dif-

ficulties for nonlinear and high dimension reliability problems. Moreover, the application of these approaches increases the

operating parameters of the reliability process and employing them improperly may lead to erroneous results. Therefore,

when the direct application of a reliability method is possible, the employment of such predictive methods in reliability

process would be a risk. 

By considering a few assumptions, Cornell in 1969 and accordingly Hasofer and Lind in 1974 have introduced an efficient

method that still competes with the newly developed computer-based methods for reliability analysis [20,21] . The proposed

approach that is named “First Order Reliability Method” (FORM) does not require complex calculations and, it computes

reliability results without the usage of computers. Nonetheless, the application of computer-based methods in the FORM

has been developed [16,22,23] . 

FORM maps the problem from original design space to standard normal space and assumes that the Limit State Function

(LSF) is linear. The method then computes the so-called reliability index β as the minimum distance of LSF to the origin. In

the reliability community, the obtained reliability index is known as Hasofer-Lind index ( βHL ), and the point on LSF with the

minimum distance from the origin is referred to as design point. Subsequently, FORM approximates the failure probability

as P f = �( −β), where �(.) is the Cumulative Distribution Function (CDF) of the standard normal random variable. When the

LSF is linear, the proposed procedure computes the accurate failure probability with the minimum computational cost that

is the major advantages of the method. This approach works well for many engineering problems, but it is not accurate for

the problems with highly nonlinear LSFs. Some other approaches such as the hybrid chaos control [24] , directional stability

transformation method of chaos control for first-order reliability analysis [25] and target performance approach [26] have

been proposed to reduce the number of function evaluations and also to overcome the convergence difficulties. 

Second-order reliability methods (known as the main attempt to reduce the error of FORM) [27] , newly developed First

Order Saddle Point Approximation (FOSPA) [28] and Dimension Reduction Method (DRM) have also been developed to com-

pute the reliability results with suitable precision [29,30] . These approaches may show more efficiency compared to the

simulation methods, but the inaccuracy of estimation for highly nonlinear problems affected their application in many en-

gineering problems. 

The aim of this study is to provide a solution to solve the reliability problems with small failure probability and high

dimension nonlinear LSF with the same accuracy as MCS and the efficiency close to FORM. 

2. The basic idea of the proposed method 

This study firstly suggests substituting a nonlinear LSF with a linear LSF, to take advantages of reliability analysis of

linear problems. For a linear problem, the predicted failure probability would be exact. Furthermore, the number of random

variables and also the value of failure probability do not affect the accuracy of the results. To consider the effect of the

LSF nonlinearity on the obtained first-order failure probability, Control Variates Method (CVM) is introduced for application

in structural reliability. CVM is a variance reduction technique that has been primarily presented for the approximation

of integrals [31] . By assuming the index function of linearized LSF as the control variates of original index function and

performing a small sampling size simulation, this study shows that CVM has the capability of imposing the LSF nonlinearity

effects on the first-order failure probability to approximate the correct failure probability. 

The idea of proposed First Order Control variates Method (FOCM) becomes more attractive knowing that FORM also uses

a linear LSF in reliability process. It provides the opportunity of linking FORM to the proposed FOCM formulation to take

the advantages of both FORM and simulations in a reliability process. Consequently, the mathematically exact first-order

failure probability of the problem may compute by using Hasofer-Lind index and accordingly a small sample size simulation

imposes the LSF nonlinearity effect to the proposed first-order probability. 

3. FOCM procedure 

In the reliability theory, the basic failure probability formula is expressed as follows: 

P f = 

∫ 
X 

I g≤0 ( x ) f X ( x ) dx , (1) 

where f X is joint Probability Density Function (PDF) of random variables X and I g≤0 defined as the index function as follows:

I g≤0 

(
x 

( j ) 
)

= 

{
0 if g 

(
x 

( j ) 
)

> 0 

1 if g 
(
x 

( j ) 
)

≤ 0 

. (2) 
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Considering g L as the linearized LSF, CVM may use to rewrite the probability integral as follows: 

P f = 

∫ 
X 

I g L ≤0 ( x ) f X ( x ) dx + 

∫ 
X 

(
I g≤0 ( x ) − I g L ≤0 ( x ) 

)
f X ( x ) dx , (3)

where I g L ≤0 is the index function of the linearize function g L : 

I g L ≤0 

(
x 

( j ) 
)

= 

{
0 if g L 

(
x 

( j ) 
)

> 0 

1 if g L 
(
x 

( j ) 
)

≤ 0 

. (4)

In the proposed basic equation, the first term estimates the failure probability resulted from linearizing LSF, and the

second integral term removes the errors raised from LSF linearization. It should be noticed that the proposed formulation

accurately estimates the failure probability and is not involving any simplification and assumptions. 

Two efficient frameworks are presented in this study for solving Eq. (3) . Firstly, the sampling-based FOCM is discussed in

the following subsections. Then, in the following section, the perceptions of Hasofer-Lind FORM are linked to the proposed

FOCM formulation to take the advantages of both FORM and simulations in the reliability process. 

3.1. Sampling process 

According to the proposed approach, Eq. (3) may easily express as the following regressed form: 

P f = λ. 

∫ 
X 

I g L ≤0 ( x ) f X ( x ) dx + 

∫ 
X 

(
I g≤0 ( x ) − λ. I g L ≤0 ( x ) 

)
f X ( x ) dx , 

≈ λ. E f 

(
I g L ≤0 ( x ) 

)
+ 

∫ 
X 

(
I g≤0 ( x ) − λ. I g L ≤0 ( x ) 

)
f X ( x ) dx , 

= λ. P f | L + 

∫ 
X 

(
I g≤0 ( x ) − λ. I g L ≤0 ( x ) 

)
f X ( x ) dx , (5)

where E f ( I g L ≤0 (x ) ) = P f | L is representative of the failure probability resulted from linearizing g , and λ is the regression

constant. 

To simplify the proposed failure probability formulation, one may regulate λ such that the remained integral term of

Eq. (5) becomes zero. To meet this aim, Eq. (5) reads: 

P f = λ. P f | L , (6)

∫ 
X 

(
I g≤0 ( x ) − λ. I g L ≤0 ( x ) 

)
f X ( x ) dx = 0 . (7)

Estimation of the first-order failure probability P f | 
L is discussed in the next subsection. To obtain λ based on Eq. (7) , one

may break the integral term and compute λ using the following formulation: ∫ 
X 

I g≤0 ( x ) f X ( x ) dx − λ

∫ 
X 

I g L ≤0 ( u ) f X ( x ) dx = 0 , (8)

λ = 

∫ 
X 

I g≤0 ( x ) f X ( x ) dx ∫ 
X 

I g L ≤0 ( x ) f X ( x ) dx 
, (9)

where sampling based on f and performing simulation would lead to estimate λ as follows: 

λ ≈
E f 

(
I g≤0 ( x ) 

)
E f 

(
I g L ≤0 ( x ) 

) . (10)

However, measuring λ in the current form requires sampling based on f (x), and that is the main challenge of MCS for

problems with small failure probability. For efficiently computing λ, it is proposed to perform a simulation by introduc-

ing sampling PDF k involving specifications of f but having a higher standard deviation [ μk = μf , σ k = n . σ f ]. Accordingly,

employing k as a new sampling PDF would lead to the following results: 

λ = 

∫ 
X 

I g≤0 ( x ) f X ( x ) dx ∫ 
X 

I g L ≤0 ( x ) f X ( x ) dx 

= 

∫ 
X 

I g≤0 ( x ) f X ( x ) 
k X ( x ) 
k X ( x ) 

dx ∫ 
X 

I g L ≤0 ( x ) f X ( x ) 
k X ( x ) 

k X 
dx 

≈
E k 

(
I g≤0 ( x ) 

f X ( x ) 
k X ( x ) 

)
E k 

(
I g L ≤0 ( x ) 

f X ( x ) 
k X ( x ) 

) , (11)

In which using PDF k instead of f would lead to estimating λ requiring small sample size. 
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Fig. 1. Estimation of correction factor λ by using simulation: (A) generation of samples based on k(x) and separating failed/safe samples, (B) distinguishing 

MPP, (C) updating MPP and (D) linearizing LSF around MPP. 

 

 

 

 

 

 

 

 

 

 

 

Remark 1. The simulation shows that the increase in the dimension of the problem would lead to a decrease in the correla-

tion of the index functions and weighting term 

f X (x ) 
k X (x ) 

of Eq. (11) . In such cases, by accepting very small errors and assuming

two terms to be uncorrelated, Eq. (11) may rewrite using the mathematics of expectation: 

λ1 ≈
E k 

(
I g≤0 ( x ) 

f X ( x ) 
k X ( x ) 

)
E ik 

(
I g L ≤0 ( x ) 

f X ( x ) 
k X ( x ) 

) = 

E k 

(
I g≤0 ( x ) 

)
E k 

(
f X ( x ) 
k X ( x ) 

)
E k 

(
I g L ≤0 ( x ) 

)
E k 

(
f X ( x ) 
k X ( x ) 

) = 

E k 

(
I g≤0 ( x ) 

)
E k 

(
I g L ≤0 ( x ) 

) . (12) 

The proposed implementation means that in high dimensions, λ is almost insensitive to the standard deviation of

sampling PDF (See Eq. (10) ). Therefore, failure probability may accurately estimate using the following equation for

small/moderate dimension problems: 

P f = P f | L . 
E k 

(
I g≤0 ( x ) 

f X ( x ) 
k X ( x ) 

)
E k 

(
I g L ≤0 ( x ) 

f X ( x ) 
k X ( x ) 

) , (13) 

And a high dimension problem may solve by the following equation: 

P f = P f | L . 
E k 

(
I g≤0 ( x ) 

)
E k 

(
I g L ≤0 ( x ) 

) . (14) 

3.2. First-order approximation of LSF and computing index functions 

Estimation of index function I g L ≤0 in the proposed formulation requires employing the first-order approximation of LSF.

To linearize LSF, one may easily use the results of a simulation for determining Most Probable Point of failure (MPP) and

consequently employ first-orders Taylor expansion around MPP. To obtain more accurate results, this study recommends

considering the MPP of the simulation as the starting search point and improving the accuracy of MPP: 

Max 
∥∥ f ( X ) 

∥∥, 

Subject to : g ≤ 0 . (15) 

As soon as the MPP is determined, a linear approximation for the original function g ( x ) = g (x 1 ,x 2 ,…, x n ) may obtain by

using the first-order term of Taylor polynomial around MPP x ∗: 

g L = g L ( x ) = g ( x 

∗) + Dg ( x 

∗) ( x − x 

∗) , (16) 

where Dg( x ∗) is the matrix of partial derivatives. Accordingly, the index function I g L ≤0 (x ) (and subsequently correction factor

λ) may easily compute. 

For illustrative purpose, Fig. 1 shows the four required steps for computing λ. By considering λ1 = 

E k ( I g≤0 (x ) ) 

E k ( I g L ≤0 
(x ) ) 

as the correc-

tion factor, it may simply compute as λ1 = 

8 
13 for regulating the failure probability (as previously stated, for low dimension

problems, λ = 

E k ( I g≤0 (x ) 
f X (x ) 

k X (x ) 
) 

E k ( I g L ≤0 
(x ) 

f X (x ) 

k X (x ) 
) 

should be used to obtain accurate results). 

3.3. First-order failure probability approximation 

Estimation of the first integral term of Eq. (3) by MCS requires sampling based on f (x) as follows: 

P f | L MCS = 

∫ 
I g L ≤0 ( x ) f X ( x ) dx = E f 

(
I g L ≤0 ( x ) 

)
. (17) 
X 
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However it does not need additional performance function evaluation, but in the current form, it requires huge compu-

tational time for small values of P f | 
L . 

To approximate the proposed integral, especially for high dimension problems, this study offers to use an n-Sigma

approach. 

Suppose a one-dimension reliability problem involving a normal random variable and linear LSF. According to the ba-

sic first-order perceptions proposed by Cornell, the reliability index and failure probability of the problem may accurately

compute as: 

β = 

μ

σ
, (18)

P f = �( −β) , (19)

where μ and σ are the mean value and standard deviation of performance function, respectively. Now, suppose that the

problem is mapped to a so-called n-sigma space with the standard deviation of σ ( n ) = n . σ (similar to that was performed in

simulation using σ k = n . σ f ). Since the mean value has no change, the relation between the original and n-sigma reliability

index ( β and β ( n ) , respectively) may express as follows by using Eq. (18) : {
μ = β.σ
μ = β( n ) . σ ( n ) 

β.σ= β( n ) . σ ( n ) 

��������⇒ β = 

σ ( n ) 

σ
β( n ) = 

n.σ

σ
β( n ) = n. β( n ) , (20)

And the corresponding failure probability may present as P f = �( −β) = �( − n . β ( n ) ). 

The proposed implementation may easily extend to high dimension linear LSFs involving M random variables by linearity

properties. 

According to the proposed implementations and for the case of FOCM, the reliability index β ( n ) may be simply approxi-

mated by using the samples generated by simulation and linearized performance function g L as: 

β( n ) = −�−1 
(
E k 

(
I g L ≤0 ( x ) 

))
. (21)

Consequently, since P f | 
L = �( −β), an estimation for first-order failure probability may present as follows: 

P f | L n −Sigma = �
(
n. �−1 

(
E k 

(
I g L ≤0 ( x ) 

)))
. (22)

The main advantage of the proposed approach is that the proposed estimation does not require evaluating the original

performance function g and the accuracy of this procedure would be insensitive to the dimension of the problem. 

3.4. Original FOCM formulation 

Once the first-order failure probability and correction factor being estimated by simulation, FOCM provides an estimation

of failure probability as follows: 

P f F OCM 

= λ. P f | L = λ. �
(
n. �−1 

(
E k 

(
I g L ≤0 ( x ) 

)))
. (23)

In the proposed FOCM, the number of performance function evaluation would be equal to the required samples for

performing simulation in addition to the required function valuation for updating MPP. 

The proposed procedure should be performed in normal space. For the problems involved in non-normal random vari-

ables, a sample may be generated in standard normal space (U) and then be transferred from U- Space into the original

X-Space. By this approach, the index function corresponds to each sample may simply compute in original space. 

4. Linking FORM to FOCM 

In the proposed approach, the first-order failure probability may compute by sampling noting that the estimation does

not require any additional g call. However, thanks to suitable FORM perceptions introduced by Hasofer and Lind, the exact

value of first-order failure probability may compute by Hasofer-Lind reliability index. Rewriting the basic failure probability

as Eq. (3) provides the opportunity to determine the first-order failure probability accurately as follows: 

P f | L = P f | L HL = 

∫ 
X 

I g L ≤0 ( x ) f X ( x ) dx 

= �( −βHL ) , (24)

where βHL may compute by employing the following familiar FORM formulation: 

Min βHL = ‖ 

u 

∗‖ 

, 

Subject to : g = 0 . (25)
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Accordingly, the failure probability of the problems with small/moderate dimensions may be approximated as: 

P f F OCM 

∼= 

�( −βHL ) . 
E k 

(
I g≤0 ( x ) 

f X ( x ) 
k X ( x ) 

)
E k 

(
I g L ≤0 ( x ) 

f X ( x ) 
k X ( x ) 

) (26) 

And the following equation may be used for high dimension problems: 

P f F OCM 

∼= 

�( −βHL ) . 
E k 

(
I g≤0 ( x ) 

)
E k 

(
I g L ≤0 ( x ) 

) . (27) 

The proposed approach would show to be highly efficient and accurate for reliability analysis of structures. 

4.1. Variance of estimation 

Linking FORM and FOCM not only increases the accuracy of results (by precise approximation of first-order failure prob-

ability) but also reduces the variance of original FOCM. The reason is that in contrast with the failure probability estimated

by simulation ( P f | L = �( n. �−1 ( E k ( I g L ≤0 ( x ) ) ) ) ), employing P f | 
L = �( −βHL ) has no variance. Therefore, once the failure prob-

ability is approximated by the proposed approach, the variance of estimation may present as: 

V ar 
(
P f F OCM 

)
= �( −βHL ) 

2 
.V ar ( λ) . (28) 

Supposing E k ( I g≤0 (x ) ) and E k ( I g L ≤0 (x ) ) as a and b , respectively, the variance of correction factor Var ( λ) may be calculated

as: 

V ar ( λ) = V ar 

(
a 

b 

)
= 

( μa ) 
2 

( μb ) 
2 

[
σ 2 

a 

( μa ) 
2 

+ 

σ 2 
b 

( μb ) 
2 

− 2 . 
Cov ( a, b ) 

μa . μb 

]
, (29) 

where σ 2 
a = 

Var(a ) 
N and σ 2 

b 
= 

Var(b) 
N . 

Accordingly, the coefficient of variation of estimation ( δP F F OCM 
) may be approximated as: 

δP F FOCM 
= 

√ 

V ar 
(
P f 

)
E 

(
P f 

) = 

�( −βHL ) 
( μa ) 
( μb ) 

√ [ 
σ 2 

a 

( μa ) 
2 + 

σ 2 
b 

( μb ) 
2 − 2 . 

Cov ( a,b ) 
μa . μb 

] 
E 

(
�( −βHL ) 

( μa ) 
( μb ) 

)
= 

√ [
σ 2 

a 

( μa ) 
2 

+ 

σ 2 
b 

( μb ) 
2 

− 2 . 
Cov ( a, b ) 

μa . μb 

]

= 

√ [
δ2 

a + δ2 
b 

− 2 . 
Cov ( a, b ) 

μa . μb 

]
< 

√ 

δ2 
a + δ2 

b 
. (30) 

4.2. Implementations procedure 

For a given reliability problem, the steps to perform the FOCM is shown in Fig. 2 . Herein, the minimum required failed

samples for determining initial MPP is set to 15 to ensure that determined MPP is a good approximation of original MPP.

For high dimension problems, λ = 

E k ( I g≤0 (u ) ) 

E k ( I g L ≤0 
(u ) ) 

should be used instead of λ = 

E k ( I g≤0 (u ) 
f U (u ) 

k U (u ) 
) 

E k ( I g L ≤0 
(u ) 

f U (u ) 

k U (u ) 
) 
. 

5. Illustrative examples 

5.1. Numerical/engineering reliability test problems 

Case 1. Each of current reliability approaches is suitable for just some groups of problems. So from the perspective of

accuracy and time, to compare the efficiency of some famous methods with the proposed one, a set of widely used reliability

test problems representing a broad range of possible limit states that can occur in practice are gathered from the literature

and tabulated in Appendix . The engineering states for some of the proposed problems and their respective LSF are illustrated

in Fig. 3 . The effect of nonlinearity properties of engineering systems has been considered in the LSF of these problems.

Problems are solved by common reliability methods. The results presented in Table 1 , demonstrate the inaccuracy of FORM

and LS for the case of problems with nonlinear/non-normal LSFs. However, these methods presented high efficiency for

solving linear and moderate-nonlinear LSF. Because of the huge computational cost of MCS and SS compared to FORM,

application of these approaches would be insensible for reliability analysis. 



M. Ghalehnovi, M. Rashki and A. Ameryan / Applied Mathematical Modelling 77 (2020) 829–847 835 

Fig. 2. The proposed FOCM steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast with FORM, IS, LS and SS, the proposed FOCM computed the accurate result for all presented LSFs with the

number of g call close to FORM. 

Besides the efficiency, FOCM presents another superiority to SS. Similar to MCS, the accuracy level of FOCM is in the

control of the researcher. According to the proposed approach, the researcher may perform sampling until a target coefficient

of variation ( δPF ) being satisfied. However, the variance of SS may calculate after performing the simulation. Therefore, there

is no control over the accuracy of SS. 

If δPF is large, a new SS with a new initial sample size should perform for ensuring the accuracy of the result. Therefore,

the results of former SS sampling would be useless. 

Case 2. The effect of the statistical parameters of random variables on the performance of reliability methods is examined

by analysis the LSF# 12 as follows: 

g ( X ) = X 

3 
1 + 2 X 

2 
1 X 2 + X 

3 
1 − 18 , (31)

where, X 1 and X 2 are normal variables with random parameters with the mean and standard deviations of [10.0, 9.9] and

[5.0, 5.0], respectively. 

The standard deviation of the first random variable has changed in the interval of [0.0, 11.0] and the obtained result is

illustrated in Fig. 4 . The result shows that FORM and LS present instability in results when the standard deviation of the first

example is in the range of [3.8, 10.0]. However, the proposed FOCM, SS and IS computed results with the same accuracy as

MCS. 

Case 3. Reliability analysis of the performance function #1 with an island failure region is examined (See Appendix and

Fig. 3 , Case 1 ): 

g ( X ) = 7 −
(
8 . exp (−( ( X 1 + 1 ) 

2 + ( X 2 + 1 ) 
2 
)
) + 2 . exp (−( ( X 1 − 5) 2 + ( X 2 − 4) 2 )) + 1 + ( X 1 X 2 ) / 10) (32)

For this problem, the mean value of the first random variable is changed in the interval of [0.0, 4.0] and the corresponded

reliability results are presented in Fig. 5 . Results show that both FORM and SS present sensitivity to the mean value of

random variables. As illustrated in Figs. 3 ( Case 1 ) and 6 , the nonlinearity of LSF would led to improper results for the
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Fig. 3. Engineering states and LSF representations for some of the problems in Section 5.1 . 
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Fig. 4. Reliability indices with respect to various standard deviations of the variable x 1 . 

 

 

 

 

 

FORM/LS and, the geometry of performance function also misconducts SS samples to find proper failure region when the

mean value of random variable X 1 is higher than 2.5. For this problem, SS requires a sample size close to crude MCS for

properly solving the problem. In contrast with SS and FORM that present sensitivity to the values of statistical parameters

of PDFs, the proposed FOCM -similar to the former example- presents efficiency for the problem. 

Case 4. This problem investigates the reliability analysis of road-holding safety of a passive vehicle suspension that was

appeared as the probabilistic constraint of a design optimization problem in Ref. [55] . The mechanical system is modeled



M. Ghalehnovi, M. Rashki and A. Ameryan / Applied Mathematical Modelling 77 (2020) 829–847 837 

Table 1 

Results of benchmark reliability problems. 

No. MCS SS IS LS FORM FOCM 

β g call β g call β g call β g call β g call β g call 

1 4.01 10 7 3.98 23,891 3.91 9.0 × 10 3 Failed 500 Failed 28 4.02 23 + 1796 

2 2.704 10 5 2.69 2139 2.66 8.0 × 10 3 2.72 100 2.688 134 2.69 134 + 62 

3 2.24 10 4 2.21 3514 2.18 3.0 × 10 3 2.24 150 2.348 85 2.27 85 + 69 

4 1.39 10 4 1.41 1295 1.32 7.0 × 10 3 Failed 50 Failed 50 1.40 50 + 671 

5 3.99 10 7 21.38 305,628 4.06 4.0 × 10 3 Failed 460 79.17 45 4.01 529 

6 2.07 10 4 2.12 1849 2.02 2.0 × 10 3 2.16 160 2.226 24 2.09 24 + 28 

7 2.76 10 5 2.73 4017 2.81 4.0 × 10 3 2.75 110 2.50 35 2.76 35 + 1047 

8 2.53 10 5 2.58 4319 2.58 8.0 × 10 3 2.53 120 2.226 33 2.53 33 + 395 

9 2.52 10 6 2.45 4611 2.56 2.0 × 10 3 2.56 90 3.41 16 2.52 16 + 248 

10 3.73 10 7 3.71 10,039 3.67 3.0 × 10 3 3.74 100 4.6 67 3.94 67 + 1984 

11 2.23 10 4 2.21 5081 2.19 7.0 × 10 3 2.24 80 1.90 27 2.27 27 + 296 

12 2.52 10 4 2.55 7237 2.55 1.0 × 10 4 2.51 85 2.30 30 2.55 30 + 314 

13 2.90 10 5 2.85 7319 2.88 8.0 × 10 3 2.78 160 2.36 42 2.96 42 + 796 

14 5.14 3 × 10 8 5.31 13,841 5.14 7.0 × 10 3 5.24 100 5.428 200 5.16 200 + 1052 

15 5.22 10 9 5.28 23,519 5.35 9.0 × 10 3 5.21 100 5.21 21 5.21 21 + 29 

16 2.183 10 4 2.16 7633 2.16 1.1 × 10 4 2.17 110 2.19 44 2.19 44 + 36 

17 2.28 10 4 2.27 7353 2.30 6.5 × 10 3 3.82 115 3.0 19 2.28 19 + 407 

18 3.57 10 6 3.55 13,811 3.62 8.8 × 10 3 1.74 410 3.0 38 3.54 38 + 671 

19 2.13 10 5 2.12 1846 2.30 1.4 × 10 4 Failed 90 Failed 27 2.11 89 + 185 

20 1.44 10 5 1.43 3785 1.43 1.3 × 10 4 2.89 190 0.48 18 1.42 18 + 2017 

21 1.82 10 4 1.91 2918 1.77 1.0 × 10 3 1.91 100 2.0 46 1.80 46 + 305 

22 1.25 10 4 1.32 2611 1.31 2.2 × 10 3 1.43 300 3.0 9 1.29 9 + 527 

23 1.71 10 5 1.73 5184 1.70 8.0 × 10 3 3.82 500 2.5 21 1.74 21 + 1174 

24 3.15 10 5 3.19 8647 3.20 5.0 × 10 3 3.16 100 3.22 26 3.13 26 + 93 

25 4.15 10 7 4.17 15,730 4.11 1.1 × 10 4 4.12 110 4.03 15 4.11 5 + 316 

26 3.42 10 7 3.35 11,984 3.36 9.0 × 10 3 3.41 100 3.0 36 3.44 36 + 3613 

27 2.686 10 5 2.72 7414 2.67 7.0 × 10 3 2.68 90 2.71 27 2.70 27 + 124 

28 3.381 10 6 3.36 11,883 3.38 8.4 × 10 3 3.39 120 3.35 27 3.38 27 + 142 

29 3.711 10 6 3.71 14,102 3.72 1.8 × 10 4 3.74 110 3.705 53 3.71 53 + 682 

30 4.44 10 7 4.46 26,971 4.53 9.0 × 10 3 4.51 120 4.32 18 4.46 18 + 894 

31 0.849 10 3 0.891 1420 0.86 1.0 × 10 4 1.32 420 1.683 178 0.831 178 + 618 

32 2.35 10 5 2.33 4715 2.38 1.1 × 10 4 2.34 110 2.35 48 2.35 48 + 37 

33 1.85 10 5 1.87 2459 1.81 1.0 × 10 4 1.84 120 1.83 78 1.835 78 + 63 

34 3.62 10 6 3.62 6940 3.57 7.5 × 10 4 3.65 130 3.65 127 3.63 127 + 83 

35 3.045 10 6 3.62 6940 3.13 1.0 × 10 4 3.09 150 3.03 11,726 3.09 105 + 658 

36 2.323 10 6 2.35 4816 2.30 1.2 × 10 4 Failed 130 Failed 89 2.32 46 + 162 

37 2.731 10 6 2.69 4682 2.76 9.0 × 10 3 2.73 140 2.73 37 2.73 37 + 49 

38 2.74 10 6 2.71 9417 2.77 6.0 × 10 3 2.74 80 2.73 56 2.74 35 + 61 

39 4.78 10 8 4.79 16,838 5.00 1.1 × 10 4 4.79 120 4.79 120 4.79 120 + 148 

40 2.41 10 4 2.41 3715 2.43 1.1 × 10 4 2.42 110 2.41 27 2.41 27 + 39 

41 2.59 10 5 0.65 9638 2.63 2.2 × 10 4 2.61 90 2.34 89 2.61 59 + 1071 

42 2.29 10 5 2.30 3792 2.28 3.0 × 10 4 2.66 300 3.41 74 2.31 21 + 1573 

43 3.50 10 6 3.61 20,728 3.66 1.15 × 10 4 Failed 500 Failed 89 3.56 106 + 12,470 

44 2.05 10 5 2.02 7418 2.00 1.1 × 10 4 2.06 100 2.06 49 2.06 49 + 74 

45 3.49 10 6 3.50 13,471 3.53 1.2 × 10 4 3.49 110 3.50 75 3.50 75 + 136 

∗g call (FOCM) = g call #1 (Design point search) + g call #2 (simulation). 

 

 

 

 

 

 

 

 

 

 

as presented in Fig. 7 and the performance function is formulated as in Eq. (33) . For the proposed problem, c (kg/cm), tire

stiffness c k (kg/cm) and damping coefficient k (kg/cm s) were considered as random variables with the mean and standard

deviation of [424.0,1480.0,47.0] and [10.0,10.0,10.0], respectively. The following parameter values were selected as well: 

A = 1.0 cm 

2 /cycle m, b 0 = 0.27, V = 10.0 m/s, M = 3.2633 kg s 2 /cm, G = 981 cm/s 2 and m = 0.8158 kg s 2 /cm. 

g = 

(
πAV m 

b 0 G 

2 

)((
c k 

M + m 

− c 

M 

)2 

+ 

c 2 

Mm 

+ 

c k k 
2 

m M 

2 

)
− 1 , (33)

The problem is solved by four reliability methods, and results are presented in Table 2 . It could be found that similar

to the previous example, the geometry of performance function misconducts SS, LS and FORM to find the important fail-

ure domain of the problem. The SS failed to approximate the proper failure probability even by using 7.5 × 10 4 samples.

Common FORM algorithms also were unable to find the accurate design point. However, by employing the implementa-

tions presented in Section 3.2 , the proposed FOCM efficiently approximated the failure probability with high accuracy by

linearizing performance function around the MPP obtained by the simulation. 

In contrast with SS that presents a performance similar to an optimization problem, as illustrated in Fig. 8 , the proposed

simulation approach would generate samples at the vicinity of LSF ( g = 0.0) and therefore when FORM fails to determine
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Fig. 5. Reliability indices with respect to various mean values of variable X 1 . 
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Fig. 6. Representation of performance function #1 and the convergence of SS samples. 

Fig. 7. Passive vehicle suspension model [55] . 
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Table 2 

Reliability results of passive vehicle suspension model. 

FORM MCS SS IS LS FOCM 

P f 4.38 × 10 −11 1.45 × 10 −6 4.91 × 10 −10 1.05 × 10 −6 Failed 1.17 × 10 −6 

δPF − 0.16 0.10 0.10 – 0.15 

g call 4994 2 × 10 7 7.5 × 10 4 5 × 10 4 – 4617 

Table 3 

Reliability results of the high dimension linear reliability problem. 

β( P F ) FORM MCS CW- SS IS LS FOCM 

2.0 (2.28 × 10 −2 ) P F 2.28 × 10 −2 2.44 × 10 −2 2.28 × 10 −2 Failed 2.28 × 10 −2 2.28 × 10 −2 

δPF – 0.09 0.09 – 0 0.12 

g call 202 5 × 10 3 4 × 10 3 – 221 202 + 24 

3.0 (1.35 × 10 −3 ) P F 1.35 × 10 −3 1.42 × 10 −3 1.13 × 10 −3 Failed 1.35 × 10 −3 1.35 × 10 −3 

δPF – 0.11 0.1 – 0 0.09 

g call 202 5 × 10 4 9 × 10 3 – 218 202 + 38 

4.0 (3.17 × 10 −5 ) P F 3.17 × 10 −5 3.19 × 10 −5 3.49 × 10 −5 Failed 3.17 × 10 −5 3.17 × 10 −5 

δPF – 0.08 0.11 – 0 0.11 

g call 202 5 × 10 7 16 × 10 3 – 225 202 + 29 

5.0 (2.87 × 10 −7 ) P F 2.87 × 10 −7 3.48 × 10 −7 2.03 × 10 −7 Failed 2.87 × 10 −7 2.87 × 10 −7 

δPF – 0.12 0.12 – 0 0.06 

g call 202 5 × 10 8 27.5 × 10 3 – 228 202 + 76 

6.0 (9.87 × 10 −10 ) P F 9.87 × 10 −10 Infeasible by g call less than 10 10 2.03 × 10 −10 Failed 9.87 × 10 −10 9.87 × 10 −10 

δPF – 0.12 – 0 0.07 

g call 202 49 × 10 3 – 215 202 + 71 
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Fig. 8. Normal probability plot for MCS with 2.0 × 10 7 samples (red dots), and FOCM simulation with 4617 samples (green dots). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

proper design point, one may use the obtained MPP of the simulation to approximate the required first-order failure prob-

ability. 

5.2. Dimensionality test problems 

Case 1. A linear hyper-plane LSF with standard normal random variables is expressed as follows [56] : 

g ( U ) = β − 1 √ 

D 

D ∑ 

i =1 

U i , (34)

where U i is considered as standard normal random variables, β is the exact reliability index of the problem and D is the

number of random variables. To examine the efficiency of reliability methods, the number of variables is fixed at D = 100,

and the problem has been solved for a variety of β . Results are presented in Table 3 . Due to the results, LS easily solves the
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Table 4 

Reliability results of the high dimension nonlinear reliability problem. 

Reliability Index (g call) 

k D FORM 

a MCS CW- SS b IS LS FOCM B Exact 

0.2 2 (6) 3.82(10 7 ) 3.83(16) 3.84(2 × 10 3 ) 3.85(100) 3.83(6 + 68) 3.83 

10 (30) 3.84(10 8 ) 3.84(16) 3.7(1.1 × 10 4 ) 3.78(250) 3.84(30 + 92) 

50 (102) 3.84(10 8 ) 3.84(16) 5.77(5 × 10 4 ) 3.80(200) 3.83(102 + 163) 

100 (202) 3.83(10 8 ) 3.82(16) Failed 3.86(550) 3.85(202 + 157) 

0.6 2 (6) 3.01(10 6 ) 3.00(12) 3.03(1.8 × 10 3 ) 3.19(250) 2.98(46 + 194) 2.99 

10 (30) 3.02(10 6 ) 2.97(12) 2.89(1.4 × 10 4 ) 3.16(500) 2.99(127 + 159) 

50 (102) 2.99(10 6 ) 3.01(12) 4.86(6 × 10 4 ) 3.07(400) 3.01(175 + 181) 

100 (202) 3.01(10 6 ) 2.97(12) Failed 2.91(650) 3.01(416 + 195) 

1.0 2 (6) 2.37(10 5 ) 2.37(6) 2.34(2.1 × 10 3 ) 2.45(550) 2.37(30 + 107) 2.37 

10 (30) 2.37(10 5 ) 2.34 (6) 2.43(2 × 10 4 ) 2.24(500) 2.39(261 + 92) 

50 (102) 2.37(10 5 ) 2.36 (6) 3.72(7 × 10 4 ) 2.45(600) 2.42(317 + 168) 

100 (202) 2.38(10 5 ) 2.35 (6) Failed 2.49(550) 2.45(487 + 157) 

−1.0 2 (6) 4.22(10 8 ) 4.23(27) 4.19(3 × 10 3 ) 4.16(100) 4.18(6 + 1514) 4.19 

10 (22) 4.21(10 8 ) 4.19(27) 4.27(3 × 10 3 ) 4.19(300) 4.22(22 + 1284) 

50 (102) 4.17(10 8 ) 4.20(27) 6.51(7 × 10 4 ) 4.23(250) 4.22(102 + 1578) 

100 (202) 4.19(10 8 ) 4.20(27) Failed 4.21(650) 4.19(202 + 1471) 

−5.0 2 (6) 4.39(10 8 ) 4.35(27) 4.47(4 × 10 3 ) 4.33(350) 4.37(6 + 1574) 4.36 

10 (22) 4.41(10 8 ) 4.35 (27) 4.06(2.2 × 10 4 ) 4.29(300) 4.37(22 + 1462) 

50 (102) 4.38(10 8 ) 4.36(27) 6.42(9 × 10 4 ) 4.30(250) 4.39(102 + 1247) 

100 (202) 4.33(10 8 ) 4.35 (27) Failed 4.38(600) 4.36(202 + 1277) 

−10.0 2 (6) 4.49(10 8 ) 4.35(27) 4.52(7 × 10 3 ) 4.40(450) 4.45(6 + 1381) 4.45 

10 (22) 4.46(10 8 ) 4.35 (27) 4.96(1.8 × 10 4 ) 4.41(200) 4.43(22 + 1074) 

50 (102) 4.46(10 8 ) 4.36(27) 6.44(5 × 10 4 ) 4.43(550) 4.47(102 + 1631) 

100 (202) 4.41(10 8 ) 4.35 (27) Failed 4.46(700) 4.47(202 + 1679) 

a FORM Reliability Index = 4. 
b g call × 10 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

problem. However IS fails to provide any suitable answer. It also could be found that the increase in reliability index β has

no effect on the efficiency of FORM and the proposed FOCM, while it significantly decreases the efficiency of MCS and SS.

It is evident that the result of FOCM always would be accurate for such d -dimension problems because of the linearity of

original LSF. 

Case 2. A high dimension nonlinear LSF with normal random variables is taken from Ref. [56] as follows: 

g ( u ) = β0 − 1 √ 

D 

D ∑ 

i =1 

U i −
k 

4 

( U 1 − U 2 ) 
2 
, (35) 

where k is a curvature parameter to control the nonlinearity of the function. For the proposed problem, the failure probabil-

ity of the problem has an analytical solution that is independent of the dimension. The problem is solved by the proposed

reliability methods for β0 = 4.0 and a sequence of k values and dimensions D . Due to the results presented in Table 4 , the IS

method is unable to find any suitable answer in dimensions above 50. The results also show that for the proposed problem,

FORM fails to provide proper results because of the nonlinearity of LSF. However, the proposed FOCM provided an accurate

result with high efficiency compared to MCS and SS and LS. It is not presentedin in the table, but simulation has shown

that δPF of SS is highly under the effect of selected initial probability and sample size. Herein, employing improper param-

eters would lead to improper reliability results for the problem. For the case of FORM, the common used gradient-based

algorithms often fail to find the correct design point of the problem. For all presented curvatures, as shown in Fig. 9 by a

red dot, they determine a point with the location of [2.8285, 2.8284] as the design point that is not a suitable design point

when k = 0.6 and 1. For such cases, the strategy presented in Section 3.2 , would lead to obtaining suitable results for the

problem. 

Case 3. Reliability of a problem with lognormal random variables and the following LSF is investigated [57] : 

g ( X ) = 

(
D + 3 σ

√ 

D 

)
−

D ∑ 

i =1 

X i , (36) 

where U i are considered as lognormal random variables with unit means and standard deviations of σ= 0.2. The problem

is solved for D = 40, 100 and the obtained results are presented in Table 5 . 
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Table 5 

Reliability results of the high dimension non-normal reliability problem. 

Method D g call δP F P F 

FORM 40 205 – 5.36 × 10 −5 

100 505 – 2.76 × 10 −4 

MCS 40 25 × 10 4 0.09 6.41 × 10 −4 

100 9.0 × 10 4 0.04 7.33 × 10 −3 

CW- SS 40 7.10 × 10 3 0.14 6.41 × 10 −4 

100 4.32 × 10 3 0.11 7.25 × 10 −3 

IS 40 – – Failed 

100 – – Failed 

LS 40 150 0.07 6.48 × 10 −3 

100 100 0.05 7.26 × 10 −3 

FOCM 40 205 + 1781 0.12 5.88 × 10 −4 

100 505 + 1319 0.09 2.87 × 10 −3 

−6 −4 −2 0 2 4 6−6

−4

−2

0
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k=1 k=0.6 k=0.2
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Fig. 9. The 2-D representation of the curvature governed by the parameter k . (For interpretation of the references to color in this figure, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

For such problems involving non-normal random variables, transferring random variable form original X-space to stan-

dard normal U-space would produce nonlinearity for LSF in U-space. As it is presented in Table 4 , the obtained nonlin-

earity would lead to huge errors in FORM results. Also, IS is not able to converge to any proper results in high dimen-

sion problems. However, the proposed FOCM presented suitable results with suitable efficiency compared to MCS, SS, and

LS. 

The results obtained for the proposed three cases confirm the efficiency and accuracy of the method for solving high

dimension problems with nonlinear LSFs. 

6. Conclusion 

A novel method presented for reliability analysis of structures with small failure probability and high dimension nonlin-

ear LSF. The proposed approach adaptively takes the advantages of FORM and simulation methods for solving problems. By

successfully solving of widely used numerical/engineering reliability problems, it has shown that the proposed approach is

almost insensitive to the PDF and statistical parameters of random variables, the value of failure probability, the dimension

of problem and nonlinearity of LSF. For all solved examples, FOCM has presented the same accuracy as MCS with the effi-

ciency close to FORM. In the proposed approach, it is possible to approximate and also control the variance of estimation

during the simulation process. However, for the case of SS, the variance may be calculated after the procedure, and the

researcher has no control over the accuracy of the results during the process. These advantages confirm the high potential

of the method for application in reliability analysis of structures. 
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Appendix 

LSF significance Case No. Limit state function (s) Stochastic variables β Ref. 

Benchmark problems 

with different 

probability density 

functions 

Iceland shape (1) g(X ) = 7 − (8 . exp ( −( X 1 + 1 ) 
2 + ( X 2 + 1 ) 

2 
) 

+ 2 . exp ( −( ( X 1 − 5 ) 
2 + ( X 2 − 4 ) 

2 
) ) + 1 + 

X 1 X 2 
10 

) 

X 1 : N(2.0,1.0) X 2 : N(2.0,1.0) 4.0 [11] 

-Non-Normal - Highly 

Nonlinear 

(2) g(X ) = X 1 X 2 X 3 X 4 − X 5 X 
2 
6 

8 
X 1 : W(4.0,0.1) 

X 2 : LN(2.5 × 10 4 ,2.0 × 10 3 ) 

X 3 : G(8.75 × 10 −2 ,0.1) 

X 4 : Un(20.0,0.1) 

X 5 : Ex(100.0,100.0) 

X 6 : N(150.0,10.0) 

2.70 [35] 

With high-frequency, 

artificial noise term 

(3) g(X ) = X 1 + 2 X 2 + 2 X 3 + X 4 − 5 X 5 − 5 X 6 + 0 . 0 01 
6 ∑ 

i =1 

sin ( 10 0 X i ) X 1…4 : LN(120.0,12.0) 

X 5 : LN(50.0,15.0) 

X 6 : LN(40.0,12.0) 

2.247 [23,34,37,43,46,49] 

-Non-Normal -Nonlinear (4) g(X ) = 1 . 1 − 0 . 00115 X 1 X 2 + 0 . 00157 X 2 2 + 0 . 00117 X 2 1 

+ 0 . 0135 X 3 X 2 − 0 . 0705 X 2 − 0 . 00534 X 1 − 0 . 0149 X 1 X 3 
− 0 . 0611 X 4 X 2 + 0 . 0717 X 1 X 4 − 0 . 226 X 3 + 0 . 0333 X 2 3 

− 0 . 558 X 3 X 4 + 0 . 998 X 4 − 1 . 339 X 2 4 

X 1 : EX-II(10.0,5.0) 

X 2 : N(25.0,5.0) 

X 3 : N(0.8,0.2) 

X 4 : LN(6.25 × 10 −2 ,6.25 × 10 −2 ) 

1.39 [22,33,34,40] 

Highly Nonlinear (5) g(X ) = 

120 
X 1 

− X 2 
X 1 

− 1 X 1 : N(4.0,1.0) 

X 2 : N(4.0,1.0) 

4.0 [36] 

Cubic performance 

function 

(6) g(X ) = 2 . 2257 − 0 . 025 
√ 

2 
27 

( X 1 + X 2 − 20 ) 3 + 

33 
140 

( X 1 − X 2 ) X 1 : N(10.0,3.0) 

X 2 : N(10.0,3.0) 

2.07 [30,49] 

Quartic performance 

function 

(7) g(X ) = 

5 
2 

+ 

1 
216 

( X 1 + X 2 − 20 ) 4 − 33 
140 

( X 1 + X 2 ) X 1 : N(10.0,3.0) 

X 2 : N(10.0,3.0) 

2.76 [30,49] 

Highly Nonlinear (8) g(X ) = X 3 1 + X 3 2 − 18 X 1 : N(10.0,5.0) 

X 2 : N(9.9,5.0) 

2.53 [32,38,40,49,51] 

-Non-Normal -with 

positive curvature failure 

surface 

(9) g(X ) = ±
2 ∑ 

i =1 

X i ∓ 6 . 6384 X 1 : Ex (0.0,1.0) 

X 2 : Ex (0.0,1.0) 

2.52 [39] 

-Non-Normal -with 

positive curvature failure 

surface 

(10) g(X ) = ±
10 ∑ 

i =1 

X i ∓ 26 . 193 X 1…10 : Ex (0.0,1.0) 3.72 [39] 

Highly Nonlinear (11) g(X ) = X 3 1 + X 3 2 − 67 . 5 X 1 : N(10.0,5.0) 

X 2 : N(9.9,5.0) 

2.23 [40] 

Highly Nonlinear (12) g(X ) = X 3 1 + X 2 X 
2 
1 + X 3 2 − 18 X 1 : N(10.0,5.0) 

X 2 : N(9.9,5.0) 

2.52 [22,41,49] 

Highly Nonlinear (13) g(X ) = X 4 1 + 2 X 4 2 − 20 X 1 : N(10.0,5.0) 

X 2 : N(10.0,5.0) 

2.90 [8,12,41,49] 

With Multiple failure 

points 

(14) g ( X ) = X 1 X 2 − 146.14 X 1 : N(7.80644 × 10 4 ,1.17097 × 10 4 ) 

X 2 : N(0.0104,0.00156) 

5.11 [36] 

-Non-Normal-Nonlinear (15) g ( X ) = X 1 X 2 − 1140 X 1 : LN(38.0,3.8) 

X 2 : LN(54.0,2.7) 

5.21 [42] 

-Non-Normal -Nonlinear (16) g ( X ) = X 1 X 2 − 2000 X 3 X 1 : N(0.32,0.032) 

X 2 : N(1.4 × 10 6 ,7.0 × 10 4 ) 

X 3 : LN(100.0,40.0) 

2.184 [40] 

Benchmark problems 

with standard normal 

variables 

Circle Shape (17) g(X ) = 9 − X 2 1 − X 2 2 X 1 : N(0.0,1.0) 

X 2 : N(0.0,1.0) 

2.28 [36] 

( continued on next page ) 
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( continued ) 

LSF significance Case No. Limit state function (s) Stochastic variables β Ref. 

Highly Nonlinear (18) g ( X ) = 3 − X 2 + (4 X 1 ) 
4 X 1 : N(0.0,1.0) 

X 2 : N(0.0,1.0) 

3.57 [54] 

Nonlinear (19) g(X ) = 2 + 0 . 015 
9 ∑ 

i =1 

X 2 
i 

− X 10 X 1…10 : N(0.0,1.0) 2.13 [16] 

Highly nonlinear with 

non-convex domains 

(20) g(X ) = 10 −
2 ∑ 

i =1 

( X 2 
i 

− 5 cos ( 2 πX i ) ) X 1 : N(0.0,1.0) 

X 2 : N(0.0,1.0) 

1.45 [44] 

Nonlinear LS with saddle 

point 

(21) g(X ) = 2 − X 2 − 0 . 1 X 2 1 + 0 . 06 X 3 1 X 1 : N(0.0,1.0) 

X 2 : N(0.0,1.0) 

1.819 [37] 

Nonlinear Concave LS (22) g(X ) = −0 . 5 ( X 1 − X 2 ) 
2 − ( X 1 + X 2 ) √ 

2 
+ 3 X 1 : N(0.0,1.0) 

X 2 : N(0.0,1.0) 

1.255 [45] 

Nonlinear (23) g(X ) = 25 − 2 ( X 1 − X 2 ) 
2 − 2( X 2 1 − X 2 2 ) X 1 : N(0.0,1.0), 

X2: N(0.0,1.0) 

1.705 [30] 

Nonlinear (24) g(X ) = − 4 
25 

( X 1 − 1 ) 2 − X 2 + 4 X 1 : N(0.0,1.0), 

X 2 : N(0.0,1.0) 

3.156 [19] 

Highly Nonlinear (25) g ( X ) = −0.16( X 1 − 1) 3 − X 2 + 4 − 0.04cos ( X 1 X 2 ) X 1 : N(0.0,1.0), 

X 2 : N(0.0,1.0) 

4.16 [49,47] 

Highly Nonlinear (26) g(X ) = 

1 
40 

X 4 1 + 2 X 3 3 + X 3 + 3 X 1 : N(0.0,1.0), 

X 2 : N(0.0,1.0), 

X 2 : N(0.0,1.0) 

3.43 [19] 

Highly Nonlinear (27) g ( X ) = exp [0.4( X 1 + 2) + 6.2] − exp [0.3 X 2 + 5] − 200 X 1 : N(0.0,1.0), 

X 2 : N(0.0,1.0) 

2.709 [49,48] 

Highly Nonlinear (28) g ( X ) = exp [0.2 X 1 + 1.4] − X 2 X 1 : N(0.0,1.0), 

X 2 : N(0.0,1.0) 

3.385 [12,18,48] 

Highly Nonlinear (29) g(X ) = X 3 + ( X 1 −1 . 1 
1 . 5 

) 2 − ( X 2 −. 2 
3 . 0 

) 2 + 3 . 6 X 1 : N(0.0,1.0), 

X 2 : N(0.0,1.0), 

X 3 : N(0.0,1.0) 

3.7050 [49] 

Highly Nonlinear (30) g ( X ) = exp [.2(1 + X 1 − X 2 )] − exp [.2(5 − 5 X 1 − X 2 )] − 1 X 1 : N(0.0,1.0) 

X 2 : N(0.0,1.0) 

4.44 [49] 

Nonlinear (31) g(X ) = 

−0 . 5( X 2 1 + X 2 2 + X 2 3 − 2 X 1 X 2 − 2 X 3 X 2 − 2 X 3 X 1 ) − ( X 1 + X 2 + X 3 ) √ 
3 

+ 3 

X 1 : N(0.0,1.0) 

X 2 : N(0.0,1.0) 

X 3 : N(0.0,1.0) 

0.849 [30] 

Nonlinear (32) g ( X ) = exp [0.2 X 1 + 6.2] − exp [0.47 X 2 + 5.0] X 1 : N(0.0,1.0), 

X 2 : N(0.0,1.0) 

2.35 [30] 

Engineering problems SDOF (33) g(X ) = 3 X 4 − 2 X 5 
X 2 + X 3 × sin ( X 6 

2 
. 

√ 

X 2 + X 3 
X 1 

) X 1 : LN(1.0,0.05) 

X 2 : LN(1.0,0.1) 

X 3 : LN(0.1,0.01) 

X 4 : LN(0.5,0.05) 

X 5 : LN(1.0,0.2) 

X 6 : LN(1.0,0.2) 

1.85 [49,44] 

Fatigue (34) g(X ) = 2 − e 
( 

X 5 X 3 
X 1 

) + 

e X 5 −2 
e −X 6 −1 

( e 
−( 

X 6 X 3 
X 1 

) − 1 ) − X 4 
X 2 

X 1 : LN(5490.0,1098.0) 

X 2 : LN(17,100.0,3420.0) 

X 3 : LN(549.0,109.8) 

X 4 : LN(4.0 × 10 3 ,8.0 × 10 2 ) 

X 5 : N(0.42,0.084) 

X 6 : N(6.0,1.2) 

3.633 [30] 

( continued on next page ) 
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( continued ) 

LSF significance Case No. Limit state function (s) Stochastic variables β Ref. 

Burst margin of a disk (35) g(X ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

X 1 X 2 

X 3 ( X 4 
2 π

60 
) 

2 

( X 3 5 − X 3 6 ) 

3( 385 . 82 )( X 5 − X 6 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

1 
/ 2 

− 0 . 37473 X 1 : W(0.9377,4.59 × 10 −2 ) 

X 2 : N(2.2 × 10 5 ,5.0 × 10 3 ) 

X 3 : Un(0.29,5.8 × 10 −3 ) 

X 4 : N(2.1 × 10 4 ,1.0 × 10 3 ) 

X 5 : N(24.0,0.5) 

X 6 : N(8,0.3) 

3.045 [30] 

Steel joint (36) g(X ) = X 1 − 10 4 ×
[ 

X 2 ( X 4 X 5 ) 
1 . 71 

X 3 
+ 

( 1 −X 2 ) ( X 4 X 5 ) 
1 . 188 

X 6 

] 
X 1 : LN(1.044,0.31320) 

X 2 : N(0.7,0.07) 

X 3 : LN(0.2391,0.09564) 

X 4 : LN(1.0110,0.15165) 

X 5 : Ex(5.0 × 10 −4 ,8.0 × 10 −5 ) 

X 6 : LN(1.8020,0.72080) 

2.323 [36] 

Beam/ Bending (37) g ( X ) = X 1 X 2 − 10 6 X 3 X 1 : LN(275.52,34.44) 

X 2 : LN(8.19 × 10 −4 , 4.1 × 10 −5 ) 

X 3 : EX-I (1.13 × 10 5 , 2.26 × 10 4 ) 

2.721 [30] 

Retaining wall/ 

Overturning 

(38) g(X ) = 27 . 668 X 1 + 18 . 595 X 3 − 121 . 5 X 1 tan 2 ( 45 − X 2 
2 

) X 1 : N(16.0,1.12) 

X 2 : N(30.0,3.0) 

X 3 : N(25.0,1.0) 

2.74 [50] 

Conical structure (39) g(X ) = 1 −
√ 

3( 1 −0 . 3 2 ) 

πX 1 X 
2 
2 

cos 2 X 3 
× ( X 6 

0 . 66 
+ 

X 5 
0 . 41 X 4 

) X 1 : N(7.0 × 10 10 ,3.50 × 10 9 ) 

X 2 : N(2.50 × 10 −3 ,1.25 × 10 −4 ) 

X 3 : N(0.524,0.010480) 

X 4 : N(0.90,0.0225) 

X 5 : N(8.0 × 10 4 ,6.4 × 10 3 ) 

X 6 : N(7.0 × 10 4 ,5.6.0 × 10 3 ) 

4.78 [23] 

Cantilever beam (40) g(X ) = 18 . 461 − 7 . 477 × 10 10 X 1 
X 3 

2 

X 1 : N(0.001,0.00002) 

X 2 : N(250.0,37.5) 

2.41 [48] 

Roof truss 

(41) g(X ) = 0 . 03 − ( 
X 1 X 

2 
2 

2 
)( 3 . 81 

X 4 X 6 
+ 

1 . 13 
X 3 X 5 

) X 1 : N(2.0 × 10 4 ,1.4.0 × 10 3 ) 

X 2 : N(12,0.12) 

X 3 : N(9.82 × 10 −4 ,5.9852 × 10 −5 ) 

X 4 : N(0.04, 4.8 × 10 −3 ) 

X 5 : N(1.0 × 10 11 , 1.0 × 10 9 ) 

X 6 : N(2.0 × 10 10 , 1.2 × 10 9 ) 

2.59 [32,55] 

Tuned vibration absorber (42) g(X ) = 27 −
| 1 − ( 

1 

X 2 
) 

2 

| √ 

[ a ] 
2 + 4 ( 0 . 01 ) 

2 
[ ( 

1 

X 1 
) 

2 

− 1 

X 1 X 2 
] 

2 

, 

a = 1 − 0 . 01 ( 
1 

X 1 
) 2 − ( 

1 

X 1 
) 2 − ( 

1 

X 2 
) 2 + ( 

1 

X 1 X 2 
) 2 

X 1 : N(1.0,0.025) 

X 2 : N(1.0,0.025) 

2.29 [8] 

( continued on next page ) 
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( continued ) 

LSF significance Case No. Limit state function (s) Stochastic variables β Ref. 

Reinforced concrete beam (43) g(X ) = X 2 X 3 X 4 −
X 5 X 

2 
3 X 

2 
4 

X 6 X 7 
− X 1 X 1 : EX-1(0.01,3 × 10 −3 ) 

X 2 : N(0.3,1.5 × 10 −2 ) 

X 3 : N(360.0,36.0) 

X 4 : LN(226 × 10 −6 ,11.3 × 10 −6 ) 

X 5 : N(0.5,0.05) 

X 6 : N(0.12,6 × 10 −3 ) 

X 7 : LN(40,6.0) 

3.50 [12,33,49] 

Front Axle (44) g = 460 −
√ 

( Sb ) 
2 + 3 ( T s ) 

2 
, 

Sb = 

X 5 

X 1 ( X 4 − 2 X 3 ) 
3 

6 X 4 
+ 

X 2 
6 X 4 

( X 4 
3 − ( X 4 − 2 X 3 ) 

3 
) 

, 

T s = 

X 6 

0 . 8 X 2 X 3 
2 + 0 . 4( 

X 1 
3 ( X 4 − 2 X 3 ) 

X 3 
) 

X 1 : N(12.0,0.06) 

X 2 : N(65.0,0.325) 

X 3 : N(14.0,0.07) 

X 4 : N(85.0,0.425) 

X 5 : N(3.5 × 10 6 ,1.75 × 10 5 ) 

X 6 : N(3.1 × 10 6 ,1.55 × 10 5 ) 

2.05 [52] 

Tower of a cable-stayed 

bridge 

(45) g = X 5 − 5 X 3 X 4 ( 47 . 4 ) 
3 

3( 5 X 1 X 2 − 2 X 3 ( 47 . 4 ) 
2 
) 

− 5( 1170 × 47 . 4 ) X 4 ( 0 . 4 ) 
2 

3( 5 X 1 X 2 − 2 X 3 ( 47 . 4 ) 
2 
) 

− 47 . 4 X 4 

X 1 : N(17.6,1.76) 

X 2 : N(4.0 × 10 7 ,3.2 × 10 6 ) 

X 3 : N(9.01 × 10 4 ,9.01 × 10 3 ) 

X 4 : N(2120,318) 

X 5 : N(2.6 × 10 5 ,3.90 × 10 4 ) 

3.50 [53] 

Note: N = normal; LN = log-normal; Un = Uniform; G = Gumbel; EX-II = Extreme II; EX- I = Extreme I; Ex = exponential; W = weibull. 
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