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A B S T R A C T

In this article, the increase of the efficiency of second-harmonic generation (SHG) from MoS2 monolayers em-
bedded in different one-dimensional Fibonacci photonic crystal structures is investigated. The systems contain
ZnS, SiO2, and MoS2 layers with the same thickness of ZnS and SiO2 films, which are arranged on the basis of
different Fibonacci sequences. The transfer matrix method is used to calculate the forward and backward SHG
efficiencies in the undepleted pump approximation. The thicknesses of the ZnS and SiO2 films are changed to
obtain the maximum frequency conversion in different structures. Tuning the thicknesses causes the second-
harmonic waves generated in each MoS2 monolayer to interfere constructively. Also, the fundamental and
second-harmonic wavelengths are both located at the photonic band gap edges, where the density of electro-
magnetic modes and the nonlinear interaction time are enhanced. Our results show that the SHG efficiencies
were increased in quasiperiodic photonic crystals with respect to the periodic structure with the same number of
MoS2 layers. In Fibonacci photonic crystal structures there are more geometrical parameters that can be tuned to
obtain the highest efficiencies. Furthermore, we used a Bragg mirror at one side of each structure to control the
propagation direction of the generated second-harmonic waves and to decrease the backward waves, which led
to enhancement of the forward waves.

1. Introduction

Two-dimensional (2D) transition metal dichalcogenides (TMDs)
exhibit enriched electrical and optical properties, which have attracted
much attention in recent years [1–6]. The materials contain one tran-
sition metal atom such as molybdenum or tungsten sandwiched be-
tween two chalcogen atoms such as sulfur, selenium, and tellurium in a
hexagonal structure [1,5–9]. Two-dimensional monolayers of TMDs
behave similarly to semiconductors with a direct band gap without
crystalline inversion symmetry [6,9–12]. In the absence of inversion
symmetry, second-order nonlinear optical effects such as second-har-
monic (SH) generation (SHG) are enhanced [9–12]. Dependent on the
fabrication methods, for instance, mechanical exfoliation, the second-
order susceptibility (χ(2)) can be increased up to 10−7 m/V [11–13].
One of the most investigated TMDs is molybdenum disulfide (MoS2) as
a monolayer [3,4,8,10,12–18]. A few layers of MoS2 show excellent
linear and nonlinear optical effects, such as strong photoluminescence
and saturable absorption [1,3,4]. Also, the radiation of SH waves from
MoS2 monolayers was observed recently when such monolayers were
subjected to Ti:sapphire laser irradiation [10,12–15].

Despite the increased second-order nonlinear optical coefficient in

2D TMDs with respect to the bulk state, an insignificant thickness
(about 0.65 nm) diminishes the SHG efficiency in comparison with
popular nonlinear crystals such as potassium dihydrogen phosphate,
barium borate, and strontium barium niobate. There are some me-
chanisms to enhance the efficiency of SHG from 2D TMDs such as using
them in a microcavity and periodic photonic crystals and excitation at
exciton resonances [9,19,20]. Furthermore, aperiodic and quasiper-
iodic photonic crystals such as those of the Cantor, Thue-Morse, and
Fibonacci types show fascinating optical properties [21–23]. In these
types of photonic crystals there are several structural parameters that
can be tuned to achieve a desirable optical response [22,23].

In this article, we theoretically investigate the increase of the effi-
ciency of SHG from different Fibonacci photonic crystal (FPC) struc-
tures in the form of Si with i=2, 3, 4, 5, where Si represents different
Fibonacci sequences, and with periodicity N. Our FPC structures con-
tain ZnS, SiO2, and MoS2 layers arranged on the basis of different
Fibonacci sequences. We concentrate on the phase matching of SH
waves generated from different MoS2 layers by tuning the thickness of
the dielectric materials between them that are used in different struc-
tures. The study was done by the transfer matrix method [24–27]. Our
results show that the SHG efficiencies are increased in FPCs with
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respect to the periodic structure with the same number of MoS2 layers.
Moreover, we used a Bragg mirror at one side of the FPCs to decrease
the backward SH waves and to enhance the forward ones. We hope
these structures can be used as a component of nanophotonic circuits
and nonlinear light sources.

This article is organized as follows. In Section 2, the one-dimen-
sional (1D) photonic crystal structures and the transfer matrix method
are introduced. Numerical results and a discussion are presented in
Section 3. Finally, we summarize our results in Section 4.

2. Theoretical model

In a Fibonacci sequence the nth term (Sn) is obtained from the two
previous terms following the recurrence relation Sn+1= SnSn−1. As
reported in many experimental studies, MoS2 monolayers are deposited
on SiO2 and ZnS substrates [4,10,12–14,16–18,31]. Therefore, we used
S0= ZnS layer and S1= SiO2/MoS2 bilayers in our structures. The
building blocks of the Si (i=2, 3, 4, 5) FPCs used in our simulations are
shown in Fig. 1.

The complex relative electric permittivity of MoS2 monolayers is
well defined here by the hybrid Lorentz–Drude–Gaussian model with
six resonances as = +ε ε εM M M

GLD [16–18]. The Lorentz–Drude part of the
MoS2 electric permittivity is given by [16–18]
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where ωj, Sj, and Γj are the resonance frequency, oscillator strength, and
damping coefficient of the jth resonance, respectively. The values of
these parameters are given in Table 1. Also, ωP, the plasma frequency of
the MoS2 layer is π

28.3
2

meV and ε∞, the background or DC permittivity, is
4.44 [16–18].

The Gaussian part of the MoS2 electric permittivity contains ima-
ginary and real terms. The imaginary term is as follows [16]:
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where εI=23.224, E=2.7723 eV, and σ=0.3089 eV. By application
of the Kramers–Kronig dispersion relation, the real part of the Gaussian
component of the MoS2 electric permittivity can be calculated as [16]
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where DF(x) is the Dawson function of argument x. The refractive index
and extinction coefficient of the MoS2 monolayer are obtained from the
overall complex electric permittivity as follows:
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The refractive indices of the SiO2 and ZnS films are obtained, re-
spectively, as [29,30]
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where AS=1.28604141, BS=1.07044083, CS=0.10029,
DS=1.10202242, and ES=10, and
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where AZ=8.393, BZ=0.14383, CZ=0.2421, DZ=4430.99, and
EZ=36.72. In Eqs. (6) and (7) λ has the unit of micrometers. Moreover,
the refractive index of surrounding air was set to 1.

The interface of the whole 1D FPC components is assumed to lie in
the xy plane (see Fig. 1). The fundamental wave (FW) of wavelength λ
and with electric field polarization along the x-axis is incident normally
on the 1D nonlinear photonic crystal (NPC) in the z direction.

A MoS2 crystal has D3h symmetry, having a hexagonal structure with
the following nonzero element of the second-order nonlinear suscept-
ibility tensor [10]: = − = − = −′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′χ χ χ χy y y y x x x x y x y x

(2) (2) (2) (2) where x′, y′, z′
are crystalline coordinates. Here x′ is along the armchair direction (see
Fig. 2). The incident beam is linearly polarized along the x direction in
our structures, where the x, y, and z directions are shown in Fig. 1 and
are known as laboratory coordinates. If θ is the angle between the in-
cident electric field (x) and the armchair direction of MoS2 monolayers
(x′), then it was shown that the parallel (x) and perpendicular (y)
components of the SH electric field are proportional to sin 3θ and
cos 3θ, respectively [10]. Therefore, the SH electric field has only a
parallel component if θ=30 is adjusted by rotation of the incident

Fig. 1. Building blocks of different Fibonacci photonic crystals: (a) S2, (b) S3, (c) S4, and (d) S5.

Table 1
Resonance strength, damping coefficient, and resonance frequency for the
Lorentz–Drude part of the MoS2 electric permittivity [16].

j ωj (eV) Γj (eV) Sj

0 0 1.0853×10−2 2.0089×105

1 1.88 5.9099×10−2 5.7534×104

2 2.03 1.1302×10−1 8.1496×104

3 2.78 1.1957×10−1 8.2293×104

4 2.91 2.8322×10−1 3.3130×105

5 4.31 7.8515×10−1 4.3906×106
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light polarization, and, what is more, the scalar equation with an ef-
fective susceptibility for the generated SH wave can be applied.

In the undepleted pump or small signal approximation, where back-
conversion of the SH wave to the FW is negligible, the FW electric field
E z( )i

(1) and the SH electric field E z( )i
(2) in the ith layer satisfy the fol-

lowing equations [24–27]:
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where χi
(2) is the second-order nonlinear optical coefficient of the ith

layer and =k n ki i
(1) (1)

10, =k n ki i
(2) (2)

20, k20= 2k10, and =k ω
c10 , where

ni
(1) and ni

(2) are the refractive indices of the ith layer material at the FW
frequency and the SH frequency, respectively, and c is the speed of light
in a vacuum.

On the basis of Eq. (8), the FW electric field in the ith layer can be
expanded with forward and backward plane waves that propagate in
the z direction as follows:
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where ai
(1) and bi

(1) are the forward and backward FW electric field
amplitudes at the beginning of the ith layer, respectively, and
zi= zi−1+ di (z0 is set to zero), where di is the thickness of the ith layer.
By using the continuous conditions of electric and magnetic fields at
each interface, we obtain
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where ti
(1) is defined as [26]
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In the matrix D0, n0 is the air background refractive index and is set
to 1. The overall transfer matrix (T) of the system, calculated by suc-
cessive products of the individual transfer matrix ti, can be used to
connect the FW electric field amplitude on the left side and the right
side of the structure as [24–27]
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The reflected and transmitted FW electric field amplitudes are ob-
tained as = −E Er

T
T
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0
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and = ∣ ∣E Et
T

T
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022
, respectively, with ∣T∣ the de-

terminant of the overall transfer matrix T. Furthermore, starting from
E0 and Er

(1) and applying the recursion algorithm, one can thoroughly
determine the forward (ai

(1)) and backward (bi
(1)) FW electric field

amplitudes of each layer. For instance, in the S3 structure with five
components in its building block (see Fig. 1), we obtained the following
relations:
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(1) with k=0, 1, 2, 3, 4 denote the forward and back-
ward FW electric field amplitudes, respectively, at the left-hand side of
MoS2 (k=0), SiO2 (k=1), ZnS (k=2), MoS2 (k=3), and SiO2

(k=4) films in the ith segment (see Fig. 1). The subindexes Z, S,M, and
0 refer to ZnS, SiO2, MoS2, and the background medium, respectively. t
is the one-segment transfer matrix and is obtained from

= − − − − −t D P D D P D D P D D P D D P D( )( )( )( )( ).M M M S S S Z Z Z M M M S S S
1 1 1 1 1

After calculating the FWs in each layer, we can investigate the
generation and propagation of SH waves in our structures. The FW acts
as the source of the SH wave (see Eq. (8)). Inserting the FW solution
(Eq. (9)) into Eq. (8), we can obtain the SH electric field amplitude in
the ith layer as follows:
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where ai
(2) and bi

(2) are the forward and backward SH electric field
amplitudes, respectively, at the beginning of the ith layer,
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Applying Maxwell's equation as ∇
→

×
→

=
→

E z H z( ) ik ( )i i
(2)

20
(2)

, we can
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The forward and backward SH electric field amplitudes at the ith
layer and the (i− 1)th layer are connected through the continuous
conditions as follows [24–27]:
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The matrices applied are given by [24–27]

Fig. 2. The lattice structure of the MoS2 monolayer. Black circles represent
sulfur atoms and yellow circles represent molybdenum atoms [20]. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Using the above recursive relation, we can straightforwardly obtain
the SH electric field amplitudes at each layer in all structures. For in-
stance, in the S3 structure, by ignoring the second-order susceptibility of
the SiO2 and ZnS layers in comparison with MoS2 monolayers, we have
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where +Et
(2) and −Er

(2) denote the forward and backward SH electric
fields at the left and right sides, respectively, of different structures,
V1=NM, V2=NMNS, V3=NMNSNZ, V4=NMNSNZNM, and
V5=NMNSNZNMNS.

Also, the theoretical results for the S2, S4, and S5 structures are
calculated in a similar way and we show the numerical results only.
Forward and backward SHG efficiencies are defined as
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3. Numerical results and discussion

The amplitude of the incident FW of wavelength λ=810 nm was
set to |E0|= 1000 V/m to establish the undepleted pump approxima-
tion in all simulations. We assume that the ZnS and SiO2 layers have the
same thickness (dZ= dS= d), which can be changed in all simulations,
while the thickness of MoS2 monolayers was fixed at dM=0.65 nm. The
second-order susceptibility of MoS2 monolayers was set as

= −χ 10M
(2) 7 m/V and the second-order nonlinear optical coefficients of

the ZnS and SiO2 films were negligible in comparison with the MoS2
coefficient [10,12–15].

We calculated the forward and backward SHG efficiencies for the
same thickness of ZnS and SiO2 films to obtain the optimal thickness
with the highest efficiencies. Fig. 3 shows the results for different FPC
structures in which all of them contain M=30 MoS2 monolayers. The
building blocks of the S2, S3, S4 and S5 FPC structures are composed of
one, two, three, and five MoS2 layers, respectively. Fig. 3 demonstrates
that the highest forward and backward efficiencies are 1.27× 10−7

and 1.67×10−7, respectively, in the S2 structure, 1.29× 10−6 and
2.2×10−6, respectively, in the S3 structure, 9.0× 10−8 and
1.17×10−7, respectively, in the S4 structure, and 2.21× 10−7 and
4.91×10−7, respectively, in the S5 structure. The results show that the
highest efficiencies occur for the S3 structure with respect to all struc-
tures. Also, the forward and backward SHG efficiencies in the S3
structure are greater by more than one order of magnitude than those in
the periodic S2 structure.

As already mentioned, the MoS2 monolayers play the role of an SH

wave source in our structures. An SH wave generated in one layer
travels to the other layers and can interfere with the new SH wave
generated from secondary layers. The interference can be constructive
if the phase difference between all SH waves is an integer multiple of
the SH wavelength (Δφ=mλ1/2, m is an integer and λ1/2 is the SH
wavelength). The main origin of the phase difference between two
successive SHG sources (MoS2 monolayers) comes from the optical path
length of the SH wave between the two MoS2 monolayers.

In the S2 FPC, there are ZnS and SiO2 layers between two successive
MoS2 layers, while in the other structures there are SiO2 layers or SiO2/
ZnS bilayers between the nonlinear light source. Therefore, in Si
structures with i≥ 3, there are more geometrical parameters that can
be tuned to obtain higher efficiencies. Also, Fig. 3 shows that the
backward efficiency is higher than the forward efficiency in all struc-
tures. This occur since the material at the left-hand side of the MoS2
nonlinear light source, SiO2 layers, has the same or a lower refractive
index than the right-hand-side materials (ZnS or SiO2) at the SH wa-
velength (nZ(λ=405 nm)= 2.5434, nS(λ=405 nm)=1.5571).

To fully understand the physics behind the enhancement of the SHG
efficiencies, the transmission spectra of different engineered structures
around the FW and SH wavelengths are demonstrated in Figs. 4 and 5 ,
respectively. The transmission spectrum of an FPC contains forbidden
frequency regions called “pseudo band gaps,” which are similar to the
band gaps of a photonic crystal, while in the frequency regime outside
these Fibonacci band gaps, the light waves are critically localized [22].
Figs. 4 and 5 show that the FW and SH wavelengths are both located at
the photonic band gap edges for all engineered structures, where the
density of electromagnetic fields is large and the group velocity is low.
Therefore, the field amplitudes can be enhanced and the nonlinear in-
teraction time becomes much longer.

In the next step, we investigated the optimal structure to obtain the
highest SHG efficiencies by calculating ηF and ηB versus the number of
segments. Fig. 6 shows the results, and shows the highest efficiencies
for each structure are obtained with different numbers of segments. The
highest forward SHG efficiency in the periodic S2 photonic crystal is
1.98×10−6, which is obtained with N=45 segments (M=45 MoS2
monolayers). In the quasiperiodic FPCs, the highest forward SHG effi-
ciencies are 1.95× 10−4 (N=30, M=60), 4.30×10−4 (N=45,
M=135), and 5.27×10−4 (N=15, M=75) in the S3, S4, and S5
structures, respectively. The results show that the location of MoS2
monolayers in 1D photonic crystals affects the SHG efficiencies. In
quasiperiodic structures (Si with i=3, 4, 5) the SHG efficiencies are
much greater than in the perfect periodic structure (S2). Also, we need
to use lower numbers of nonlinear MoS2 monolayers in the S3 structure
(M=60) with respect to the other quasiperiodic photonic crystals
(S4 (M=135) and S5 (M=75)) to obtain the same order of SHG effi-
ciency (ηF≃ 10−4). Furthermore, by our increasing the number of seg-
ments (N) in all structures, the overall thickness of the nonlinear MoS2
light wave source was increased, which destroyed the phase matching
conditions between SH waves and decreased the SHG efficiencies. This
result is similar to that in our previous work [20]. The results shown in
Fig. 6 and in Fig. 3 confirm that the S3 FPC is the optimal structure to
obtain the highest SHG efficiencies for the same number of MoS2
nonlinear light wave sources.

Finally, we tried to control the propagation direction (forward or
backward) of SH waves in our structures. To this end, we designed a
distributed Bragg reflector (DBR) with high reflection coefficient at the
SH wavelength (λ=405 nm) and high transmittance at the FW wave-
length (λ=810 nm). In our design a 15-pair SiO2/HfO2 multilayer
structure was integrated at the left side of all structures. The SiO2 and
HfO2 thicknesses in the DBR were 70 and 48.5 nm, respectively. The
refractive index of HfO2 is described as follows [32]:
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where the wavelength is in micrometers. The reflectance of the DBR is
depicted in Fig. 7, which shows that the SH wavelength is located in the
band gap of the DBR, while the reflection of the FW is negligible. We
used this mirror at the left side of our structures to control and to reduce
the backward SH waves.

Fig. 8 is similar to Fig. 3 but the DBR is located at the left side of the
structures. The results show that in the presence of a Bragg mirror the
backward SHG efficiencies are decreased by up to three orders of

magnitude and the forward efficiencies are increased by up to one order
of magnitude. Therefore, it is possible to control the propagation di-
rection of the generated second-harmonic wave by use of a subtly de-
signed Bragg mirror.

4. Conclusion

The efficiencies of SHG from different engineered 1D FPCs

Fig. 3. Forward and backward second-harmonic generation (SHG) efficiencies versus the same thickness of ZnS and SiO2 layers for (a) the S2 structure (N=30), (b)
the S3 structure (N=15), (c) the S4 structure (N=10), and (d) the S5 structure (N=6).

Fig. 4. Transmission spectra around the fundamental wave wavelength in a one-dimensional nonlinear photonic crystal: (a) S2 structure (N=30), (b) S3 structure
(N=15), (c) S4 structure (N=10), and (d) S5 structure (N=6).
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containing MoS2 monolayers, as 2D TMD structures, ZnS, and SiO2 films
were calculated. The transfer matrix method in the undepleted pump
approximation was used to calculate the forward and backward SHG
efficiencies. The thicknesses of the ZnS and SiO2 films were changed to
obtain the maximum frequency conversion in different structures.
Tuning the thickness causes the SH waves that are generated in each
MoS2 monolayer to interfere constructively, and the FW and SH

wavelengths are both located at the photonic pseudo band gap edges,
where the light localization is enhances and the nonlinear interaction
time is increased. Our results show that the S3 FPC is the optimal
structure among the first four engineered FPCs with regard to the
highest SHG efficiencies for the same number of MoS2 nonlinear light
wave sources. Also, we used a Bragg mirror at one side of our structures
to control the propagation direction of the generated SH waves and to

Fig. 5. Transmission spectra around the second-harmonic wavelength in a one-dimensional nonlinear photonic crystal: (a) S2 structure (N=30), (b) S3 structure
(N=15), (c) S4 structure (N=10), and (d) S5 structure (N=6).

Fig. 6. Forward and backward second-harmonic generation (SHG) efficiencies versus the number of segments (N) on a logarithmic scale for a one-dimensional
nonlinear photonic crystal: (a) S2 structure, (b) S3 structure, (c) S4 structure, and (d) S5 structure.
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decrease the backward waves, which led to enhancement of the forward
waves. This study can be extended to higher FPC generations and other
quasiperiodic photonic crystals.
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