Crystal structure and Hirshfeld surface analysis of [S-()($\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NP}(\mathbf{S}) \mathrm{NH}(\mathrm{S})-(-) \mathrm{CH}_{\left.\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}, \mathrm{H}_{2} \mathrm{O}}$

Mahsa Eghbali Toularoud, ${ }^{a}$ Mehrdad Pourayoubi, *a Michal Dušek, ${ }^{\text {b }}$ Václav Eigner ${ }^{\text {b }}$

${ }^{\text {a}}$ Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
${ }^{\mathrm{b}}$ Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic

Correspondence email: pourayoubi@um.ac.ir

Abstract

: The cyclic compound $\left[\mathrm{S}-(-)-\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NP}(\mathrm{S}) \mathrm{NH}(\mathrm{S})-(-)-\mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}, \mathrm{H}_{2} \mathrm{O}$, or $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{2}, \mathrm{H}_{2} \mathrm{O}$ is a member of a class of molecules that may be used for extraction of metals. The literature shows many studies of the bidentate phosphorus ligands $\mathrm{HN}\left[\mathrm{P}(\mathrm{E}) \mathrm{R}_{2}\right]_{2}$ (E: O, S) [1] and $\operatorname{RN}\left[P(E) R_{2}\right]_{2}[2]$. The title compound was characterized in the solid state by IR and X-ray crystallography and in the solution with calculation of the specific optical rotation. The compound crystallizes in the chiral space group $P 2_{1} 2_{1} 2_{1}$ and the asymmetric unit of the structure consists of four symmetry-independent cyclodiphosphazanes and four water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ molecules. In the molecular structure, each phosphorus atom is bonded to one sulfur and three nitrogen atoms. The $\mathrm{P}-\mathrm{N}$ bond distances in the ring are longer than the $\mathrm{P}-$ N_{H} distances, and the P-S distances are in the range of 1.9376 (9) to 1.9434 (9) A. These geometric parameters are in agreement with those observed in related compounds [3]. In the crystal structure, molecules are linked through $\mathrm{N}-\mathrm{H} . . . \mathrm{O}_{\mathrm{w}}$ hydrogen bonds in a tape arrangement along the c axis (O_{w} is the oxygen of $\mathrm{H}_{2} \mathrm{O}$ molecule). This pattern includes an $R_{2}^{1}(8)$ graph-set motif, formed through ($\mathrm{NH} \ldots$...) $\mathrm{NH} \ldots$...) O_{w} grouping. The prevalence of these interactions is illustrated by an analysis of the three-dimensional Hirshfeld surface (HS) and by two-dimensional fingerprint plots (FP) for one of the cyclodiphosphazane molecules in the asymmetric unit. The relative contributions of different interactions in the HS are: H...H 69.0\%, C...H/H...C 17.4% and S...H/H...S 10.6%.

References:

[1] Cristurean, A., Irisli, S., Marginean, D., Rat, C. \& Silvestru, A. (2008). Polyhedron, 27, 21432150.
[2] Peulecke, N., Aluri, B. R., Wöhl, A., Spannenberg, A. \& Al-Hazmi, M. H. (2009). Acta Cryst. E65, o1084.
[3] Alamdar, A., Pourayoubi, M., Saneei, A., Dušek, M., Kučeráková, M. \& Henriques, M. S. (2015) Acta Cryst. C71, 824-833.

