Synthesis, spectroscopic characterization and crystal structure of a new chiral amidophosphoester

emina

28,29 Aug 2019

Inorganic Chemistry

5131815

170.

emic

Conference

Negin Lal Zakaria^a, Mehrdad Pourayoubi^{a*}, Michal Dušek^b, Erika Samolova^b

^aDepartment of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

^bInstitute of Physics of theCzech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic

Correspondence email: pourayoubi@um.ac.ir

Iranian Inorganie

Iranian Chemical Society

Abstract:

The chiral amidophosphoester families have found widespread use in the preparation of different classes of drugs, and for processing of biologically active compounds [1]. We report here the synthesis of single-enantiomer amidophosphoester (C₆H₅O)₂P(O)[(R)-(+)- $NHCH(CH_3)(C_6H_4-4-CH_3)$ (I) and its characterization by IR, NMR, mass, optical rotation and single crystal X-ray diffraction. The compound crystallizes in monoclinic system with chiral space group $P2_1$. The asymmetric unit is composed of two independent molecules. The P atoms have a distorted tetrahedral $(O)_2P(O)(N)$ configuration. In the crystal, chiral one-dimensional hydrogen-bonded architecture, formed along b axis, is mediated by classical N-H...O(P) and weak C-H...O(P) hydrogen bonds. This architecture includes $D_1^1(2)$, $R_2^2(10)$, $C_2^2(8)$ and $C_2^1(8)$ graph-set motifs. In the IR spectrum, the band centered at 3174 cm⁻¹ is attributed to the NH stretching frequency. The melting point of title structure (393 K) is a few lower than the closely related analogous compound $(C_6H_5O)_2P(O)[(R)-(+)NHCH(CH_3)(C_6H_5)]_2$ (408 K) [2]. The phosphorus signal appears at -0.07 ppm, in comparison with the signal at -0.81 ppm for this analogous compound noted [2]. The two diastereotopic phenyl groups reveal two sets of signals in ¹H- and ¹³C{¹H}-NMR spectra. The specific optical rotation is measured as $[\alpha]_D^{20} = 51^\circ (c \ 0.009, \text{MeOH}).$

References:

Warren, T. K., *et al.* (2016). *Nature*, **531**, 381–385.
Sabbaghi, F., Pourayoubi, M., Nečas, M., Damodaran, K. (2019). *Acta Cryst.* C**75**, 77–84.