# Iranian Inorganic <br> Chemistry Seminar 

# Synthesis, spectroscopic characterization and crystal structure of a new chiral amidophosphoester 

Negin Lal Zakaria ${ }^{\text {a }}$, Mehrdad Pourayoubi ${ }^{\text {a* }}$, Michal Dušek ${ }^{\text {b }}$, Erika Samolovab
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
${ }^{\mathrm{b}}$ Institute of Physics of theCzech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic

Correspondence email: pourayoubi@um.ac.ir



#### Abstract

: The chiral amidophosphoester families have found widespread use in the preparation of different classes of drugs, and for processing of biologically active compounds [1]. We report here the synthesis of single-enantiomer amidophosphoester $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right){ }_{2} \mathrm{P}(\mathrm{O})[(\mathrm{R})-(+)-$ $\mathrm{NHCH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{CH}_{3}\right)$ ] (I) and its characterization by IR, NMR, mass, optical rotation and single crystal X-ray diffraction. The compound crystallizes in monoclinic system with chiral space group $P 2_{1}$. The asymmetric unit is composed of two independent molecules. The P atoms have a distorted tetrahedral $(\mathrm{O})_{2} \mathrm{P}(\mathrm{O})(\mathrm{N})$ configuration. In the crystal, chiral one-dimensional hydrogen-bonded architecture, formed along $b$ axis, is mediated by classical $\mathrm{N}-\mathrm{H} . . \mathrm{O}(\mathrm{P})$ and weak $\mathrm{C}-\mathrm{H} \ldots \mathrm{O}(\mathrm{P})$ hydrogen bonds. This architecture includes $D_{1}^{1}(2), R_{2}^{2}(10), C_{2}^{2}(8)$ and $C_{2}^{1}(8)$ graph-set motifs. In the IR spectrum, the band centered at $3174 \mathrm{~cm}^{-1}$ is attributed to the NH stretching frequency. The melting point of title structure ( 393 K ) is a few lower than the closely related analogous compound $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O})\left[(\mathrm{R})-(+) \mathrm{NHCH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}(408 \mathrm{~K})$ [2]. The phosphorus signal appears at -0.07 ppm , in comparison with the signal at -0.81 ppm for this analogous compound noted [2]. The two diastereotopic phenyl groups reveal two sets of signals in ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra. The specific optical rotation is measured as $[\alpha]_{D}^{20}=51^{\circ}(c 0.009, \mathrm{MeOH})$.


## References:

[1] Warren, T. K., et al. (2016). Nature, 531, 381-385.
[2] Sabbaghi, F., Pourayoubi, M., Nečas, M., Damodaran, K. (2019). Acta Cryst. C75, 77-84.

