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Abstract- This study presents a nonlinear observer design for noisy 

discrete Nonlinear Stochastic State-Space Systems using the Discrete 

Extended Kalman Filter to provide accurate Trajectory Tracking. 

This goes through using system’s Jacobian linearization along the 

current best estimate of its trajectory. The efficiency of Discrete 

Extended Kalman Filter is implemented on a Trajectory Tracking 

Problem with sufficiently sampling periods. Here, it is shown that 

changing principal diagonal of the Initial Estimation Error 

Covariance Matrix, the trajectory tracking is can be improved.  
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I. INTRODUCTION 

Extended Kalman Filter (EKF) is applied to decrease the noise 

in corrupted measurements. According to the theory of 

estimation, the EKF is the nonlinear version of the Kalman Filter 

which linearizes about an estimate of the current mean and 

covariance. Sine in the real world, most systems are nonlinear, 

some attempt was immediately done to apply this method of 

filtering to nonlinear systems. EKF is used in several systems 

such as Trajectory Tracking problem and are generally preferred 

due to its advantages such as accurate target tracking and low cost. 

In this paper, we simulated a noisy discrete nonlinear stochastic 

plant model applying Discrete Extended Kalman Filter (DEKF)  

to track a specific position of autonomous car landmark even if 

measurement is corrupted by noise(1). 

In the real world, controllers typically receive measurements 

that are corrupted by noise. Moreover, we typically do not or 

cannot measure all state values. If we want to calculate state 

values, the only information we have 

is these noisy measurements and the known inputs. In this 

situation, we can use a Kalman filter to estimate the state values 

given noisy sensor measurements. 

Accordingly, we implement a DEKF for a noisy discrete 

nonlinear stochastic state-space model. DEKF calculates the 

filtered state estimate using only known inputs and noisy 

measurements of the plant(2).  

The DEKF returns the filtered state estimate, which is defined 

as �̂�(𝑘|𝑘). This notation translates as the estimated state vector at 

time 𝑘 given all measurements up to and including 𝑘. We 

calculated the filtered state estimate applying a gain matrix 𝑀(𝑘) 

to the difference between the measured output and the estimated 

output. The DEKF calculates and returns the value of 𝑀(𝑘) that 

minimizes the covariance of the estimation error. This covariance 

is a matrix 𝑃(𝑘|𝑘). The DEKF also calculates the predicted state 

estimate �̂�(𝑘 + 1|𝑘). 

Moreover, with the DEKF, we calculated the predicted state 

estimate applying a gain matrix 𝐿(𝑘) to the difference between 

the measured output and the estimated output. DEKF calculates 

and returns the value of 𝐿(𝑘) that minimizes the covariance of the 

prediction estimation error. This covariance is a matrix          

𝑃(𝑘 + 1|𝑘). 

We can assist the DEKF by specifying the Initial State 

Estimate xhat(0|–1). This parameter specifies the state values we 

think the stochastic model returns at the first time step 𝑘 =  0. 

Providing this function with initial state estimates helps this 

function converge on the true state values quickly. 

We also can specify the Initial Estimation Error Covariance 

P(0|–1). This parameter defines the covariance of the estimation 

error at the first time step. A low value of this parameter indicates 

we have a high degree of confidence in any Initial State Estimate 

xhat(0|–1) we provide, and vice versa.  

II. METHODS 

First, we simulate a nonlinear stochastic state-space plant with 

noise on the states and outputs. Then, we use the DEKF to 

estimate the position of landmark in distance and angle from the 

tip of autonomous car. The autonomous car has the reference at 

the front and, as it moves, the fixed landmark changes position 

related to the car. Noise corrupts the measurement of the sensors, 

which in this case affects localization. We use the DEKF to track 
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the landmark position. Since DEKF can give a more accurate 

measurement of the landmark location (3). 

A. Stochastic System Models 

Stochastic system models represent the effects of noise on the 

plant, actuators, and/or sensors. In addition to the state-space 

matrices A, B, C, and D, stochastic models contain the following 

variables: Vectors w and v represent process noise and 

measurement noise, respectively. Matrices G and H relate w to the 

states and outputs, respectively. The following equations define 

discrete stochastic state-space models: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐺𝑤(𝑘)        (1) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) + 𝐻𝑤(𝑘) + 𝑣(𝑘) 

Moreover we specify the mean vectors 𝐸{𝑤} and 𝐸{𝑣}, the 

auto-covariance matrices 𝑄 =  𝐶𝑜𝑣{𝑤, 𝑤} , 𝑅 =  𝐶𝑜𝑣{𝑣, 𝑣}, and 

the cross-variance matrix 𝑁 =  𝐶𝑜𝑣{𝑤, 𝑣}. 

𝑄 = 𝐸{𝑤.𝑤𝑇} − 𝐸{𝑤}. 𝐸𝑇{𝑤}

 𝑅 = 𝐸{𝑣. 𝑣𝑇} − 𝐸{𝑣}. 𝐸𝑇{𝑣}

𝑁 = 𝐸{𝑤. 𝑣𝑇} − 𝐸{𝑤}. 𝐸𝑇{𝑣}



B. Simulating Nonlinear Stochastic Models 

Before we deploy a controller to a Real Time target, we can 

test that the controller performs as expected in the presence of 

noise. To perform this test, we use the Second-Order Statistics 

Noise Model to generate values of 𝑤(𝑘) and 𝑣(𝑘) to simulate the 

behavior of a noisy nonlinear stochastic state-space model. In this 

situation, we can use the Correlated Gaussian Random Noise to 

generate Gaussian-distributed values of 𝑤(𝑘) and 𝑣(𝑘). 

 

C. Using DEKF to Estimate Model States 

In the real world, controllers typically receive measurements 

that are corrupted by noise. Also, we typically cannot measure 

state values (�̂�). If we want to calculate all state values, we can 

use a DEKF. DEKF linearize the nonlinear system around the 

current estimate by computing a matrix of partial derivatives 

called a Jacobian matrix. The DEKF evaluates the Jacobian 

matrix with the current estimated states at each time step (4). The 

function 𝑓(𝑥, 𝑢, 𝑘) can be used to compute the predicted state 

from the previous estimate and similarly the function ℎ(𝑥, 𝑢, 𝑘) 

can be used to compute the predicted measurement from the 

predicted state that defined by the following equations: 

𝑥(𝑘 + 1) = 𝑓(𝑥, 𝑢, 𝑘) + 𝑤(𝑘) (3) 

𝑦(𝑘) = ℎ(𝑥, 𝑢, 𝑘) + 𝑣(𝑘) 

The following equations illustrate the computations that the 

DEKF performs to produce the estimated states �̂�(𝑘|𝑘) of the 

plant (5). 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝑀𝑘[𝑦𝑘 − �̂�𝑘] (4) 

�̂�𝑘 = ℎ(�̂�𝑘|𝑘−1, 𝑢𝑘 , 𝑘) 

�̂�𝑘+1|𝑘 = 𝑓(�̂�𝑘|𝑘 , 𝑢𝑘, 𝑘) 

𝑀𝑘

= 𝑃𝑘|𝑘−1𝐻𝑥
𝑇(�̂�𝑘|𝑘−1, 𝑢𝑘 , 𝑘)[𝐻𝑥(�̂�𝑘|𝑘−1, 𝑢𝑘 , 𝑘)𝑃𝑘|𝑘−1𝐻𝑥

𝑇(�̂�𝑘|𝑘−1, 𝑢𝑘 , 𝑘)]
−1

 

𝑃𝑘+1|𝑘 = 𝐹𝑥(�̂�𝑘|𝑘−1, 𝑢𝑘 , 𝑘)𝑃𝑘|𝑘−1𝐹𝑥
𝑇(�̂�𝑘|𝑘−1, 𝑢𝑘, 𝑘) + 𝑄𝑘  

−[𝐹𝑥(�̂�𝑘|𝑘−1, 𝑢𝑘, 𝑘)𝑃𝑘|𝑘−1𝐻𝑥
𝑇(�̂�𝑘|𝑘−1, 𝑢𝑘, 𝑘) + 𝑁𝑘] 

[𝐻𝑥(�̂�𝑘|𝑘−1, 𝑢𝑘, 𝑘)𝑃𝑘|𝑘−1𝐻𝑥
𝑇(�̂�𝑘|𝑘−1, 𝑢𝑘, 𝑘) + 𝑅𝑘]

−1
 

[𝐹𝑥(�̂�𝑘|𝑘−1, 𝑢𝑘, 𝑘)𝑃𝑘|𝑘−1𝐻𝑥
𝑇(�̂�𝑘|𝑘−1, 𝑢𝑘, 𝑘) + 𝑁𝑘]

𝑇  

𝐹𝑥(�̂�𝑘|𝑘−1, 𝑢𝑘, 𝑘) =
𝜕𝑓(𝑥𝑘 , 𝑢𝑘, 𝑘)

𝜕𝑥𝑘

|
𝑥𝑘=𝑥𝑘|𝑘−1

 

𝐻𝑥(�̂�𝑘|𝑘−1, 𝑢𝑘, 𝑘) =
𝜕ℎ(𝑥𝑘 , 𝑢𝑘, 𝑘)

𝜕𝑥𝑘

|
𝑥𝑘=𝑥𝑘|𝑘−1

 

Where 

 �̂�(𝑘|𝑘) is the current estimated state at time k 

 �̂�(𝑘) is the estimated output at time k 

 �̂�(𝑘 + 1|𝑘) is the predicted state estimate calculated 

at time k for the next time step k+1 

 𝑃(𝑘 + 1|𝑘) is the prediction error covariance matrix 

calculated at time step k+1 

 𝑀(𝑘) is the Kalman Filter gain 

 𝐹𝑥(�̂�(𝑘|𝑘 − 1), 𝑢, 𝑘) is the Jacobian matrix of 

𝑓(𝑥, 𝑢, 𝑘) with respect to 𝑥 evaluated at �̂�(𝑘|𝑘 − 1) 

 𝐻𝑥(�̂�(𝑘|𝑘 − 1), 𝑢, 𝑘) is the Jacobian matrix of 

ℎ(𝑥, 𝑢, 𝑘) with respect to 𝑥 evaluated at �̂�(𝑘|𝑘 − 1) 
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Fig. 1, is show that the block diagram a DEKF. 

 

Fig. 1. The DEKF algorithm represented by a block diagram. 

To use the DEKF, first we define the Discrete Nonlinear 

Stochastic Model whose states we want to estimate (6). For 

instance, consider a plant model of a vehicle moving with 

constant velocity and whose acceleration is slightly perturbed. 

Also, assume a sensor measures the range 𝑟 and the bearing angle 

𝜃 of the vehicle, both corrupted by additive noise. The following 

equations describe this plant model. 

[

𝑥1(𝑘 + 1)

𝑥2(𝑘 + 1)
𝑥3(𝑘 + 1)

𝑥4(𝑘 + 1)

] = [

1 0 1 . 5
0
0
0

1
0
0

. 5
1
0

1
0
1

] [

𝑥1(𝑘)

𝑥2(𝑘)
𝑥3(𝑘)

𝑥4(𝑘)

] + [

0
0

𝑤1(𝑘)

𝑤2(𝑘)

] (5) 

[
𝑦1(𝑘)
𝑦2(𝑘)

] =

[
 
 
 √𝑥1

2(𝑘) + 𝑥2
2(𝑘)

tan−1 [
𝑥2(𝑘)

𝑥1(𝑘)
]

]
 
 
 

 

Where 𝑥1 and 𝑥2 are the x and y position in the Cartesian 

frame system, 𝑥3and 𝑥4 are the x and y velocities, and 𝑦1 and 𝑦2 

are the range r and bearing angle 𝜃, respectively. We define the 

system model by calculating the vector-valued functions 

𝑓(𝑥, 𝑢, 𝑘) and ℎ(𝑥, 𝑢, 𝑘) for the discrete plant model, where: 

𝑓(𝑥, 𝑢, 𝑘) = [

1 0 1 . 5
0
0
0

1
0
0

. 5
1
0

1
0
1

] [

𝑥1(𝑘)

𝑥2(𝑘)
𝑥3(𝑘)

𝑥4(𝑘)

] (6) 

ℎ(𝑥, 𝑢, 𝑘) =

[
 
 
 √𝑥1

2(𝑘) + 𝑥2
2(𝑘)

tan−1 [
𝑥2(𝑘)

𝑥1(𝑘)
]

]
 
 
 

 

After we define the plant model, we added noise to the model 

and construct Discrete Nonlinear Noisy Plant Model to simulate 

the plant model corrupted by additive noise (7). 

The Discrete Nonlinear Noisy Plant simulates the plant 

dynamics according to the following equations: 

𝑥(𝑘 + 1) = 𝑓(𝑥, 𝑢, 𝑘) + 𝑤(𝑘) (7) 

𝑦(𝑘) = ℎ(𝑥, 𝑢, 𝑘) + 𝑣(𝑘) 

Where w is the process noise vector and v is the measurement 

noise vector. 

Also we specify Initial State Estimate xhat(0|-1)=[30,25,0,0] and 

𝑄 = 𝑑𝑖𝑎𝑔[0,0,0.01,0.01] , 𝑅 = 𝑑𝑖𝑎𝑔[0.15,0.01] , 𝑁 = 0. 

After we define the plant model and add noise to the model, we 

can use the DEKF to estimate the states of the model. 

The DEKF takes measurements made on the plant that the 

Discrete Nonlinear Stochastic Noisy Plant represents.  

III. RESULT AND DISSCUTION 

Generally, the following figures illustrates the implementation of 

the DEKF for Discrete Nonlinear Stochastic Noisy Plant Model. 

Also the DEKF calculates the filtered state and output estimates 

using only known inputs and noisy measurements of the plant. 

The figures show the resulting graph of the filtered state and 

output estimates. The state dynamics are linear but the 

measurements are nonlinear. The x and y positions of the 

estimated states closely match the true system states. 

In this study, we changed the Initial Estimation Error Covariance 

Matrix to see how it affects the DEKF. Further, changing the 

Initial Estimation Error Covariance Matrix, its impact on the 

position of landmark in distance and angle from tip of 

autonomous car were investigated. The results show that 

changing principal diagonal of the Initial Estimation Error 

Covariance Matrix, improve the trajectory tracking. 

As shown in fig. 2, with 𝑃(0|−1)=diag[1,1,0.01,0.01], 

trajectory tracking gained more accuracy and MSE was 

significantly decreased as equal as 250 amp. Notably, tracking in 

angle and position x(t) showed highly accuracy.
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Fig. 2. Localization with DEKF with Initial Estimation Error Covariance matrix 

𝑃(0|−1)=diag[1,1,0.01,0.01] 

As shown in fig. 3, with 𝑃(0|−1)=diag [0.01,0.01,0.01,0.01], 

trajectory tracking did not have significant accuracy and also 

MSE was highly increased. 
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Fig. 3. Localization with DEKF with Initial Estimation Error Covariance matrix 

𝑃(0|−1)=diag[0.01,0.01,0.01,0.01] 

As demonstrated in fig. 4, with 𝑃(0|−1)= diag [1,1,1,1], the 

accuracy of trajectory tracking reduced in comparison with 

𝑃(0|−1)=diag [1,1,0.01,0.01] but had more improvement 

comparing with 𝑃(0|−1)=diag[0.01,0.01,0.01,0.01].
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      Fig. 4. Localization with DEKF with Initial Estimation Error 

Covariance matrix P(0|−1)=diag[1,1,1,1] 

Results demonstrated that trajectory tracking with DEKF with   

Initial Estimation Error Covariance matrix 

𝑃(0|−1)=diag[1,1,0.01,0.01] is more accurate than 

𝑃(0|−1)=diag[0.01,0.01,0.01,0.01] and 𝑃(0|−1)=diag[1,1,1,1]. 

That is due to the fat that MSE with 𝑃(0|−1)=diag[1,1,0.01,0.01] 

is close to 250 amp, that is less than two other matrixes. This can 

be observed in XY graph. 

 

IV. CONCLUSION 

This study presented a performance of DEKF for localization 

of Trajectory Tracking Problem, using measurements that 

corrupted by noise. Through simulations, it was observed that, the 

DEKF technique significantly more preferable and gives more 

precise result than the Kalman filter and other Trajectory 

Tracking optimization techniques. Results show that the best 

method that can be used for Discrete Nonlinear Stochastic Noisy 

State-Space Systems with Nonlinear or Non differentiable 

observations, is the DEKF that more flexible and robust and 

accurate state estimation. 
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